On Universal Enveloping Locally C*-Algebra for a Locally JB-Algebra

Alexander A. Katz
Department of Mathematics and Computer Science
St. John’s University
300 Howard Avenue, DaSilva Academic Center 314
Staten Island, NY 10301, USA
katza@stjohns.edu

Oleg Friedman
Department of Mathematical Sciences
University of South Africa
POB 392 UNISA
Pretoria 0003, Republic of South Africa
friedman001@yahoo.com

Current Address: Department of Mathematics
Touro College, LCM
75-31 150th Street, Kew Gardens Hills, NY 11367
USA

Abstract
A theorem is presented on existence and uniqueness up to a topological *-isomorphism of the universal locally C*-algebra for arbitrary locally JB-algebra.

Mathematics Subject Classification: Primary 46H05, 46H70; Secondary 46L05, 46L70

Keywords: Locally C*-algebras, locally JB-algebras, projective families, projective limits

The abstract Banach associative symmetrical *-algebras over C, so called C*-algebras, were introduces first by Gelfand and Naimark in [1]. In the present time the theory of C*-algebras become a vast portion of Functional Analysis
having connections and applications in almost all branches of Modern Mathematics and Theoretical Physics (see for example [2] for the basic theory of C*-algebras).

From the 1940’s and the beginning of 1950’s there were numerous attempts made to extend the theory of C*-algebras to a category wider than Banach algebras. For example, in 1952, while working on the theory of locally-multiplicatively-convex algebras as projective limits of projective families of Banach algebras, Arens in the paper [3] and Michael in the monograph [4] independently for the first time studied projective limits of projective families of functional algebras in the commutative case and projective limits of projective families of operator algebras in the non-commutative case. In 1971 Inoue in the paper [5] explicitly studied topological *-algebras which are topologically *-isomorphic to projective limits of projective families of C*-algebras and obtained their basic properties. He as well suggested a name of locally C*-algebras for that category. Below we will denote these algebras as LC*-algebras. For the present state of the theory of LC*-algebras see recently published monograph of Fragoulopoulou [6].

At the same time there were numerous attempts to extend the theory of C*-algebras to non-associative algebras which are close to associative, in particular to Jordan algebras. In fact, in 1978 Alfsen, Schultz and Størmer published their celebrated paper [7], in which they introduced and studied real Jordan Banach formally real algebras called JB-algebras, which are real non-associative analogues of C*-algebras, and obtained for this category analogues of the results from aforementioned paper [1] by Gelfand and Naïmark. The exposition of elementary theory of JB-algebras can be found in the monograph [8] by Hanche-Olsen and Størmer, published in 1984. In particular, in this monograph there is the following theorem which was for the first time proved in 1980 by Alfsen, Hanche-Olsen and Schultz in the paper [9].

Theorem 1 (Alfsen, Hanche-Olsen, Schultz [9]) For an arbitrary JB-algebra A there exists a unique up to an isometric *-isomorphism a C*-algebra $C_u^*(A)$ (the universal enveloping C*-algebra for the JB-algebra A), and a Jordan homomorphism $\psi_A : A \to C_u^*(A)_{sa}$ from A to the self-adjoint part of $C_u^*(A)$, such that:

1. $\psi_A(A)$ generates $C_u^*(A)$ as a C*-algebra;

2. for any pair composed of a C*-algebra \mathfrak{A} and a Jordan homomorphism $\varphi : A \to \mathfrak{A}_{sa}$ from A into the self-adjoint part of \mathfrak{A}, there exists a *-homomorphism $\tilde{\varphi} : C_u^*(A) \to \mathfrak{A}$ from the C*-algebra $C_u^*(A)$ into C*-algebra \mathfrak{A}, such that $\varphi = \tilde{\varphi} \circ \psi_A$;

3. there exists a *-antiautomorphism Φ of order 2 on the C*-algebra $C_u^*(A)$, such that $\Phi(\psi_A(a)) = \psi_A(a)$, $\forall a \in A$.

From the aforesaid one can see that it is natural and interesting to study
Jordan topological algebras which are projective limits of projective families of JB-algebras. Those algebras under the name of *locally JB-algebras* were introduced and studied by Katz and Friedman in the paper [10] published in 2006. In what follows we will call these algebras *LJB-algebras*.

An important question of the theory of LJB-algebras would have been an analogue of the theorem 1 above. For the further exposition we need the following technical theorem which is a corollary of Theorem 1 and general properties of projective limits of projective families of Banach algebras.

Theorem 2 Let \(\Lambda \) be a directed set of indices, and an arbitrary LJB-algebra \(A \) be a projective limit \(A = \lim_{\rightarrow} A_\alpha \), where \(\alpha \in \Lambda \), and \(A_\alpha \) be a projective family of JB-algebras. Then the family of C*-algebras \(C_\alpha^*(A) \), where \(\forall \alpha \in \Lambda \), \(C_\alpha^*(A) \) be universal enveloping C*-algebra for the corresponding JB-algebra \(A_\alpha \), is a projective family of C*-algebras.

Using the theorems 1 and 2 we are able to obtain the following main theorem about existence and uniqueness of universal enveloping LC*-algebra for an arbitrary LJB-algebra.

Theorem 3 For an arbitrary LJB-algebra \(A \) there exists a unique up to a topological *-isomorphism a LC*-algebra \(LC_\alpha^*(A) \) (the universal enveloping locally C*-algebra for the LJB-algebra \(A \)), and a Jordan homomorphism \(\psi_A : A \to LC_\alpha^*(A)_{sa} \) from \(A \) to the self-adjoint part of \(LC_\alpha^*(A) \), such that:

1). \(\psi_A(A) \) generates \(LC_\alpha^*(A) \) as a LC*-algebra;
2). for any pair composed of a LC*-algebra \(\mathfrak{A} \) and a Jordan homomorphism \(\varphi : A \to \mathfrak{A}_{sa} \) from \(A \) into the self-adjoint part of \(\mathfrak{A} \), there exists a *-homomorphism \(\widehat{\varphi} : LC_\alpha^*(A) \to \mathfrak{A} \) from the LC*-algebra \(LC_\alpha^*(A) \) into LC*-algebra \(\mathfrak{A} \), such that \(\varphi = \widehat{\varphi} \circ \psi_A \);
3). there exists a *-anti-automorphism \(\Phi \) of order 2 on the LC*-algebra \(LC_\alpha^*(A) \), such that \(\Phi(\psi_A(a)) = \psi_A(a) \), \(\forall a \in A \).

ACKNOWLEDGEMENTS. The second author is thankful to Dr. Louis E. Labuschagne (UNISA, South Africa) and the first author for the help and support during the work on the present communication.

References

Received: July, 2008