A Note on All Possible Factorizations of a Positive Integer

Rafael Jakimczuk
División Matemática
Universidad Nacional de Luján
Buenos Aires, Argentina
jakimcuz@mail.unlu.edu.ar

Abstract
Let \(n \) be a positive integer different of 1. We define the integer sequence \(q(n) \) where \(q(n) \) is the number of factorizations of \(n \) in positive integers different of 1 (the order of the factors is irrelevant). We establish the conjecture
\[
\lim_{n \to \infty} \frac{q(n)}{n} = 0
\]
and we prove the conjecture for the sequence of quadratfrei numbers and the sequence of prime powers. We also prove that in this conjecture \(n \) can not be replaced by \(n^h \) where \(0 < h < 1 \).

Mathematics Subject Classification: 11A99, 11B73, 11B99

Keywords: Factorizations of a positive integer, Conjecture

1 Introduction

Let us consider a positive integer \(n \geq 2 \).

Let \(q(n) \) be the number of all possible factorizations of \(n \) in positive integer factors different of 1 (the order of the factors is irrelevant).

The sequence of positive integers \(q(n) \) is very variable.

Clearly \(q(n) \) depends of the prime factorization of \(n \) and it does not depend of the primes in the factorization.

For example:

a) If \(n \) is prime then \(q(n) = 1 \) since \(n = n \).

b) If \(n = p_1p_2 \) where \(p_1 \) and \(p_2 \) are different primes then \(q(n) = q(p_1p_2) = 2 \) since in this case there are two possible factorizations, namely \(n = n \) and \(p_1p_2 = n \).
c) If \(n = p_1p_2p_3 \) where \(p_1, p_2 \) and \(p_3 \) are different primes then \(q(n) = q(p_1p_2p_3) = 5 \) since in this case there are five possible factorizations, namely \(n = p_1p_2p_3, (p_1p_2)p_3 = n, (p_1p_3)p_2 = n, (p_2p_3)p_1 = n \) and \(p_1p_2p_3 = n \).

d) In general if \(n \) is a product of \(k \) different primes (that is, a quadratfrei number) then \(q(n) = B_k \) where \(B_k \) is the \(k \)-th Bell number. Since in this case the number \(q(n) \) of factorizations equals the number of partitions of a set of \(k \) elements in disjoint subsets [1, page 214].

e) If \(n = p^4 \) where \(p \) is prime then \(q(n) = q(p^4) = 5 \) since in this case there are five possible factorizations, namely \(n = n, (pp)p = n, (pp)(p) = n, (pp)p = n \) and \(pppp = n \).

f) In general if \(n = p^k \) where \(p \) is prime then \(q(n) = q(p^k) = p(k) \) where \(p(k) \) denotes (as usual) the number of partitions of \(k \).

We now show a short table with the first values of the integer sequence \(q(n) \).

\[
\begin{align*}
q(2) &= 1 & q(3) &= 1 & q(4) &= q(2^2) = 2 & q(5) &= 1 & q(6) &= q(2.3) = 2 \\
q(7) &= 1 & q(8) &= q(2^3) = 3 & q(9) &= q(3^2) = 2 & q(10) &= q(2.5) = 2 & q(11) &= 1 \\
q(12) &= q(2^2.3) = 4 & q(13) &= 1 & q(14) &= q(2.7) = 2 & q(15) &= q(3.5) = 2 \\
q(16) &= q(2^4) = 5 & q(17) &= 1 & q(18) &= q(2.3^2) = 4 & q(19) &= 1 \\
q(20) &= q(2^2.5) = 4 & q(21) &= q(3.7) = 2 & q(22) &= q(2.11) = 2 & q(23) &= 1 \\
q(24) &= q(2^3.3) = 7 & q(25) &= q(5^2) = 2 & q(26) &= q(2.13) = 2 & q(27) &= q(3^3) = 3 \\
q(28) &= q(2^2.7) = 4 & q(29) &= 1 & q(30) &= q(2.3.5) = 5 & q(31) &= 1 \\
q(32) &= q(2^5) = 7 & q(33) &= q(3.11) = 2 & q(34) &= q(2.17) = 2 \\
q(35) &= q(5.7) = 2 & q(36) &= q(2^2.3^2) = 9 & q(37) &= 1 & q(38) &= q(2.19) = 2 \\
q(39) &= q(3.13) = 2 & q(40) &= q(2^3.5) = 7 & q(41) &= 1
\end{align*}
\]

We establish the following conjecture.

Conjecture 1.1 The following limit holds.

\[
\lim_{n \to \infty} \frac{q(n)}{n} = 0
\]
2 On the limit of \(\frac{q(n)}{n} \)

Let \(c_n \) be the sequence of quadratfrei numbers. This sequence has positive high density \(\frac{6}{\pi^2} \cong \frac{2}{3} \) [6, page 269].

In the following theorem we prove that this sequence of high density satisfies our conjecture.

Theorem 2.1 If \(c_n \) is the sequence of quadratfrei numbers then

\[
\lim_{n \to \infty} \frac{q(c_n)}{c_n} = 0
\]

(1)

Proof. We have (see either [3, Theorem 24] or [4]).

\[
\log(p_1 p_2 \ldots p_n) = n \log n + n \log \log n - n + o(n)
\]

(2)

Where \(p_1 p_2 \ldots p_n \) is the first quadratfrei with \(n \) prime factors. That is, the product of the first \(n \) primes.

On the other hand, we have [2, pages 102-109]

\[
\log B_n = n \log n - n \log \log n - n + o(n)
\]

(3)

Therefore (2) and (3) give

\[
\log \frac{B_n}{p_1 p_2 \ldots p_n} = -2n \log \log n + o(n)
\]

Hence

\[
\lim_{n \to \infty} \log \frac{B_n}{p_1 p_2 \ldots p_n} = -\infty
\]

and consequently we have

\[
\lim_{n \to \infty} \frac{q(p_1 p_2 \ldots p_n)}{p_1 p_2 \ldots p_n} = \lim_{n \to \infty} \frac{B_n}{p_1 p_2 \ldots p_n} = 0
\]

(4)

Finally, (4) implies (1). The theorem is proved.

In the following theorem we shall show that in conjecture 1.1 we can not replace \(n \) by \(n^h \) where \(0 < h < 1 \).

Theorem 2.2 The conjecture

\[
\lim_{n \to \infty} \frac{q(n)}{n^h} = 0 \quad (0 < h < 1)
\]

is false.
Proof. We have (see either [3, Theorem 24] or [4]).

\[
\log(p_1 p_2 \ldots p_n) = n \log n + n \log \log n - n + o(n)
\]

Consequently

\[
\log(p_1 p_2 \ldots p_n)^h = h \log(p_1 p_2 \ldots p_n) = hn \log n + hn \log \log n - hn + o(n) \quad (5)
\]

On the other hand, we have [2, pages 102-109]

\[
\log B_n = n \log n - n \log \log n - hn + o(n) \quad (6)
\]

Therefore (5) and (6) give

\[
\log \frac{B_n}{(p_1 p_2 \ldots p_n)^h} = (1 - h)n \log n - n \log \log n - hn \log \log n - hn + o(n)
\]

Hence

\[
\lim_{n \to \infty} \frac{B_n}{(p_1 p_2 \ldots p_n)^h} = \infty
\]

and consequently we have

\[
\lim_{n \to \infty} \frac{q(p_1 p_2 \ldots p_n)}{(p_1 p_2 \ldots p_n)^h} = \lim_{n \to \infty} \frac{B_n}{(p_1 p_2 \ldots p_n)^h} = \infty
\]

The theorem is proved.

In the following theorem we prove that the sequence of prime powers whose density is zero also satisfies our conjecture.

Theorem 2.3 If \(d_n\) is the sequence of prime powers then

\[
\lim_{n \to \infty} \frac{q(d_n)}{d_n} = 0 \quad (7)
\]

Proof. The first prime power with \(n\) prime factors is \(2^n\). Let \(p(n)\) be the number of partitions of \(n\). In an elementary way can be proved that [5],

\[
p(n) < \exp(c_1 \log n \sqrt{n} + c_2 \log n) \quad (8)
\]

Where \(c_1\) and \(c_2\) are positive constants.

Consequently (8) gives

\[
\lim_{n \to \infty} \frac{q(2^n)}{2^n} = \lim_{n \to \infty} \frac{p(n)}{2^n} = 0 \quad (9)
\]

Equation (9) implies (7). The theorem is proved.
References

Received: November, 2010