Some Invariant Subsets of $Q^*(\sqrt{n})$

under the Action of $PSL(2, Z)$

M. Aslam Malik and M. Khalid Mahmood

Department of Mathematics
University of the Punjab
Quaid-e-Azam Campus
Lahore-54590, Pakistan
aslam@math.pu.edu.pk
khalid@math.pu.edu.pk

Abstract

In this paper, we study the action of the Modular Group $G = \langle x, y : x^2 = y^3 = 1 \rangle$ on $Q^*(\sqrt{n})$ when $n \not\equiv 0 \pmod{2p}$. We find that there exist two G-subsets of $Q^*(\sqrt{n})$ if n is a quadratic residue or quadratic non-residue modulo $2p$ and there exist four G-subsets of $Q^*(\sqrt{n})$ when $n \equiv p \pmod{2p}$.

Mathematics Subject Classification: 05C25, 11E04, 20G15

Keywords: Modular Group, G-subsets, Quadratic Congruence

1 Introduction and Preliminaries

We denote $\alpha = \frac{a + \sqrt{n}}{c}$ by $\alpha(a, b, c)$. Let $u > 1$ be a fixed integer. We say that two classes $\alpha(a, b, c)$ and $\alpha'(a', b', c')$ of $Q^*(\sqrt{n})$ are u-equivalent (and write $\alpha(a, b, c) \sim_u \alpha'(a', b', c')$ or $\alpha \sim_u \alpha'$) if and only if $a \equiv a' \pmod{u}$, $b \equiv b' \pmod{u}$ and $c \equiv c' \pmod{u}$. A set X with an action of some group G on it, is known as a G-set. Let $n = k^2m$, where k is any integer and m is square free positive integer. Then the set $Q^*(\sqrt{n}) = \{ \frac{a + \sqrt{n}}{c} : a, b = \frac{a^2-n}{c}, c \in \}$
Z and $(a, b, c) = 1$ is a G-subset of $Q(\sqrt{m})$ under the action of the modular group $G = \langle x, y : x^2 = y^3 = 1 \rangle$ where $x(\alpha) = \frac{1}{\alpha}$, $y(\alpha) = \frac{\alpha - 1}{\alpha}$ are the linear fractional transformations. It is well known that every real quadratic irrational number $u + v\sqrt{m}$ of $Q(\sqrt{m})$ can be written uniquely as $a + \sqrt{n}c$, where n is a non-square positive integer and $(a, \frac{a^2-n}{c}, c) = 1$. Action of the modular group $G = \langle x, y : x^2 = y^3 = 1 \rangle$ on certain subsets of the real quadratic field $Q(\sqrt{m})$ has been discussed earlier in [1, 2, 4] and [5]. In a recent work, M. Aslam Malik and M. Asim Zafar [1], have discussed the G-subsets of $Q^*(\sqrt{n})$ when $n \equiv 0(\mod 2p)$. Thus it becomes interesting to know the G-subsets of $Q^*(\sqrt{n})$ when $n \not\equiv 0(\mod 2p)$. In this paper we investigate the G-subsets of $Q^*(\sqrt{n})$ when n is a quadratic residue of $2p$ or quadratic non-residue of $2p$ and show that in either case there exist two proper G-subsets. Further we prove that there exist four G-subsets of $Q^*(\sqrt{n})$ when $n \equiv p(\mod 2p)$. Notations used in this paper are standard and we follow [5] and [6]. In particular, $\left(\frac{a}{p}\right)$ denotes the Legendre of a modulo p. We need the following results of [6], for use in the sequel.

Theorem 1.1 Let p be an odd prime. Then

1. $\left(\frac{a}{p}\right) \equiv a^{p-1/2} \pmod{p}$
2. $\left(\frac{-1}{p}\right) = (-1)^{p-1/2}$

Theorem 1.2 Let m be a positive integer with canonical decomposition $2^{e_0} \prod p_i^{e_i}$ and a any integer with $(a, m) = 1$. Then $x^2 \equiv a \pmod{m}$ is solvable if and only if $x^2 \equiv a \pmod{2^{e_0}}$ and $x^2 \equiv a \pmod{p_i^{e_i}}$ are solvable.

Theorem 1.3

1. Let p be any odd prime such that $p \equiv 1(\mod 4)$ and a be a quadratic residue of p then $p - a$ is a quadratic residue of p.
2. Let p be any odd prime such that $p \equiv 3(\mod 4)$ and a be a quadratic residue of p then $p - a$ is a quadratic non-residue of p.
2 Action of G on $Q^*(\sqrt{n})$ when $\left(\frac{n}{p}\right) = 1$ or -1

We know that,

$$x\left(\frac{a + \sqrt{n}}{c}\right) = \frac{-a + \sqrt{n}}{b}$$ \hspace{1cm} (1)

$$y\left(\frac{a + \sqrt{n}}{c}\right) = \frac{(-a + b) + \sqrt{n}}{b}$$ \hspace{1cm} (2)

To find the G-subsets of $Q^*(\sqrt{n})$ when n is a quadratic residue or quadratic non-residue of $2p$, the following two lemmas are needed.

Lemma 2.1 Let $\alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n})$ and $p \equiv 3(mod\ 4)$ be a prime divisor of a. Then $\left(\frac{b}{p}\right) = -\left(\frac{c}{p}\right)$ or $\left(\frac{b}{p}\right) = \left(\frac{c}{p}\right)$ according as n is a quadratic residue or quadratic non-residue of p.

Proof. Let n be a quadratic residue of $2p$ such that $p \mid a$. Then $x^2 \equiv n(mod\ 2p)$ is solvable. So by Theorem 1.2, $x^2 \equiv n(mod\ p)$ is solvable and hence $\left(\frac{a}{p}\right) = 1$. Also $p \mid a$, so the relation $a^2 - n = bc$ implies $0^2 - n \equiv bc(mod\ p)$. That is,

$$p - n \equiv bc(mod\ p).$$ \hspace{1cm} (3)

Since $p \equiv 3(mod\ 4)$ so by Theorem 1.3, $p - n$ is a quadratic non-residue of p. Hence by (3), bc is a quadratic non-residue of p. Therefore one of b or c is a quadratic residue of p and other is a quadratic non-residue of p. Consequently, $\left(\frac{b}{p}\right) = -\left(\frac{c}{p}\right)$.

Similarly if n is a quadratic non-residue of $2p$ such that $p \mid a$, so again by Theorem 1.2, $x^2 \equiv n(mod\ p)$ is not solvable since $x^2 \equiv n(mod\ 2)$ always admits a solution. This means that $\left(\frac{a}{p}\right) = -1$. Also $a \equiv 0(mod\ p)$. So the relation $a^2 - n = bc$ gives $0^2 - n \equiv bc(mod\ p)$. Then,

$$n \equiv -bc(mod\ p)$$ \hspace{1cm} (4)

As n is a quadratic non-residue of p, so by (4), we have,

$$-1 = \left(\frac{n}{p}\right) = \left(\frac{-bc}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{b}{p}\right) \left(\frac{c}{p}\right)$$ \hspace{1cm} (5)
Since \(p \equiv 3(\text{mod } 4) \), so by Theorem 1.1, (5) implies that
\[
\left(\frac{b}{p}\right) = 1
\]
Which clearly shows that both \(b \) and \(c \) are quadratic residues of \(2p \) or quadratic
non-residues of \(p \). Hence, \(\left(\frac{b}{p}\right) = \left(\frac{c}{p}\right) \). \(\square \)

The proof of the following lemma is analogous to the proof of lemma 2.1.

Lemma 2.2 Let \(\alpha = a + \sqrt{n}c \in Q^*(\sqrt{n}) \) and \(p \equiv 1(\text{mod } 4) \) be a prime divisor of \(a \). Then \(\left(\frac{b}{p}\right) = \left(\frac{c}{p}\right) \) or \(\left(\frac{b}{p}\right) = -\left(\frac{c}{p}\right) \) according as \(n \) is a quadratic residue or quadratic non-residue of \(2p \).

The following lemma of [4] is of crucial importance.

Lemma 2.3 Let \(\alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) \), with \(b = \frac{a^2 - n}{c} \) and \((a, b, c) = 1 \). Then the sets
\[
A = \{ \alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) : 2 \mid (b, c) \} \quad \text{and} \quad B = \{ \alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) : 2 \nmid (b, c) \}
\]
are both \(G \)-subsets of \(Q^*(\sqrt{n}) \).

To explore the \(G \)-subsets of \(Q^*(\sqrt{n}) \) when \(n \) is a quadratic residue or quadratic non-residue of \(2p \), we discuss the case when \(p \equiv 3(\text{mod } 4) \) in the following theorem and the case when \(p \equiv 1(\text{mod } 4) \) can be proved in a similar technique.

Theorem 2.4 Let \(\alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) \) and \(p \) be a prime such that \(p \equiv 3(\text{mod } 4) \). Then.
(a) If \(n \) is a quadratic residue of \(2p \), then the sets
\[
A_1 = \{ \alpha \in A : \left(\frac{a}{p}\right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p}\right) = -\left(\frac{c}{p}\right) \}
\]
\[
B_1 = \{ \alpha \in B : \left(\frac{a}{p}\right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p}\right) = -\left(\frac{c}{p}\right) \}
\]
are the \(G \)-subsets of \(Q^*(\sqrt{n}) \).
(b) If \(n \) is a quadratic non-residue of \(2p \), then the sets
\[A_2 = \{ \alpha \in A : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = \left(\frac{\alpha}{p} \right) \} \]

\[B_2 = \{ \alpha \in B : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = \left(\frac{\alpha}{p} \right) \} \]

are the \(G \)-subsets of \(Q^*(\sqrt{n}) \)

Proof. Let \(\alpha = \frac{a + \sqrt{n}}{c} \in A_1 \) with \(n \) is a quadratic residue of \(2p \). Since each \(g \in G \) can be expressed in terms of \(x, y \). Therefore, it is sufficient to show that the action of \(x, y \) on \(\alpha \) belongs to \(A_1 \). Since \(n \) is a quadratic residue of \(2p \), so by Theorem 1.3, \(n \) is a quadratic residue of \(p \). First, we see that \(A_1 \) is invariant under \(x \). For this, we know, \(x(\alpha) = \frac{-a + \sqrt{n}}{b} = \frac{a_1 + \sqrt{n}}{c_1} \), where, \(a_1 = -a \), \(b_1 = c \), \(c_1 = b \). Let \(p \mid a \) with \(\left(\frac{b}{p} \right) = -\left(\frac{c}{p} \right) \). Then \(a_1 = -a \equiv 0 \pmod{p} \). Also under the action of \(x, b \) and \(c \) have the same significance instead of replacement of each other. We, therefore, have \(\left(\frac{b_1}{p} \right) = -\left(\frac{c_1}{p} \right) \). Similarly, if \(\left(\frac{b}{p} \right) = \pm 1 \) then \(a_1 = -a \not\equiv 0 \pmod{p} \). Since there always exist \(\frac{p-1}{2} \) quadratic residues and \(\frac{p-1}{2} \) quadratic non-residues of an odd prime \(p \). So, \(\left(\frac{a}{p} \right) = \pm 1 \).

Hence in either case \(x(\alpha) \in A_1 \). To see that \(A_1 \) is invariant under \(y \). We take \(y(\frac{a + \sqrt{n}}{c}) = \frac{-a + b + \sqrt{n}}{b} = \frac{a_2 + \sqrt{n}}{c_2} \), where, \(a_2 = -a + b \), \(b_2 = -2a + b + c \), and \(c_2 = b \).

Let \(p \mid a \) with \(\left(\frac{b}{p} \right) = -\left(\frac{c}{p} \right) \). Then, \(a_2 \equiv b \pmod{p} \) but \(\left(\frac{b}{p} \right) = -\left(\frac{c}{p} \right) \). Hence \(a_2 \) is either a quadratic residue or quadratic non-residue of \(p \). This implies that \(\left(\frac{a_2}{p} \right) = \pm 1 \) and therefore \(y(\alpha) \in A_1 \). Finally, if \(\left(\frac{a}{p} \right) = \pm 1 \) then \(a_2 = -a + b \equiv 0 \pmod{p} \) or \(a_2 = -a + b \not\equiv 0 \pmod{p} \). Suppose \(a_2 = -a + b \equiv 0 \pmod{p} \) then the equation \(a_2^2 - n = b_2c_2 \) gives \(-n = (-2a + b + c)c \equiv 0 \pmod{p} \). Since \(n \) is a quadratic residue of \(p \), so by Lemma 2.1, we have \(\left(\frac{-2a + b + c}{p} \right) = -\left(\frac{c}{p} \right) \)

or \(\left(\frac{a_2}{p} \right) = -\left(\frac{a}{p} \right) \). If \(a_2 = -a + b \not\equiv 0 \pmod{p} \) then as explained above, we have, \(\left(\frac{a_2}{p} \right) = \pm 1 \). Therefore in either case \(y(\alpha) \in A_1 \). Consequently, the set \(A_1 \) is mapped onto itself under \(x \) and \(y \) and, therefore, it is a \(G \)-subset of \(Q^*(\sqrt{n}) \). Similarly the sets \(B_1, A_2 \) and \(B_2 \) are the \(G \)-subsets of \(Q^*(\sqrt{n}) \).

\[\square \]

Theorem 2.5 Let \(\alpha = \frac{a + \sqrt{n}}{c} \in Q^*(\sqrt{n}) \) and \(p \) be a prime such that \(p \equiv 1 \pmod{4} \), Then.

(a) If \(n \) is a quadratic residue of \(2p \), then the sets
\[A_1 = \{ \alpha \in A : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = \left(\frac{c}{p} \right) \} \]

\[B_1 = \{ \alpha \in B : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = \left(\frac{c}{p} \right) \} \]

are the G-subsets of $Q^*(\sqrt{n})$

(b) If n is a quadratic non-residue of $2p$, then the sets

\[A_2 = \{ \alpha \in A : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = -\left(\frac{c}{p} \right) \} \]

\[B_2 = \{ \alpha \in B : \left(\frac{\alpha}{p} \right) = \pm 1 \text{ or if } p \mid a \text{ then } \left(\frac{b}{p} \right) = -\left(\frac{c}{p} \right) \} \]

are the G-subsets of $Q^*(\sqrt{n})$

Example 2.5 Take $n \equiv 1 (mod \ 6)$. Since the set \{0, 1, 2, 3, 4, 5\} has only one quadratic residue of 6 namely 1, so by Theorem 2.4, the set A_1 contains classes of the form, \{0, 1, 5\}, \{1, 0, 1\}, \{1, 0, 3\}, \{1, 0, 5\}, \{1, 1, 0\}, \{1, 2, 3\}, \{1, 3, 0\}, \{1, 3, 2\}, \{1, 3, 4\}, \{1, 4, 3\}, \{1, 5, 0\}, \{3, 1, 2\}, \{3, 4, 5\}, \{4, 1, 3\}, \{4, 3, 1\}, \{4, 3, 3\}, \{4, 3, 5\}, \{4, 5, 3\}, \{0, 5, 1\}, \{5, 1, 0\}, \{5, 3, 0\}, \{5, 5, 0\}, \{5, 0, 1\}, \{5, 3, 2\}, \{5, 0, 3\}, \{5, 2, 3\}, \{5, 4, 3\}, \{5, 3, 4\}, \{5, 0, 5\}, \{3, 2, 1\}, \{3, 5, 4\}, \{2, 3, 1\}, \{2, 1, 3\}, \{2, 3, 3\}, \{2, 5, 3\} and \{2 3 5\}

Then by equations (1) and (2), it can be seen that A_1 is mapped onto itself under the transformations x and y. Hence it is a G-subset of $Q^*(\sqrt{n})$. Similarly, we can find other G-subsets of $Q^*(\sqrt{n})$.

3 Action of G on $Q^*(\sqrt{n})$ when $n \equiv p(mod \ 2p)$

In the following theorem, we show that there exist four G-subsets of $Q^*(\sqrt{n})$ when $n \equiv p(mod \ 2p)$

Theorem 3.1 Let p be an odd prime such that $n \equiv p(mod \ 2p)$ and

\[\alpha = \frac{a+\sqrt{n}}{c} \in Q^*(\sqrt{n}), \text{ with } b = \frac{a^2-n}{c}. \]

Then the following sets.

$A_1 = \{ \alpha \in A : \left(\frac{b}{p} \right) = \left(\frac{c}{p} \right) = 1 \text{ or if } p \text{ divides one of } b \text{ or } c \text{ then other is a} \]
Some invariant subsets

quadratic residue of p }

\[A_2 = \{ \alpha \in A : \left(\frac{\alpha}{p} \right) = \left(\frac{b}{p} \right) = -1 \text{ or if } p \text{ divides one of } b \text{ or } c \text{ then other is a quadratic residue of } p \} \]

\[B_1 = \{ \alpha \in B : \left(\frac{\alpha}{p} \right) = \left(\frac{a}{p} \right) = 1 \text{ or if } p \text{ divides one of } b \text{ or } c \text{ then other is a quadratic residue of } p \} \]

\[B_2 = \{ \alpha \in B : \left(\frac{\alpha}{p} \right) = \left(\frac{c}{p} \right) = -1 \text{ or if } p \text{ divides one of } b \text{ or } c \text{ then other is a quadratic non-residue of } p \} \]

are the G-subsets of $\mathbb{Q}^*(\sqrt{n})$.

Proof. Let $\alpha = \frac{a + \sqrt{n}}{c} \in A_1$. We show that the action of x, y on α belongs to A_1. To show that A_1 is invariant under x. We know, $x(\alpha) = \frac{-a + \sqrt{n}}{b} = \frac{a_1 + \sqrt{n}}{c_1}$, where, $a_1 = -a$, $b_1 = c$, $c_1 = b$. Let $\left(\frac{b}{p} \right) = \left(\frac{c}{p} \right) = 1$. If $a \equiv 0(mod \ p)$, then $a_1 = -a \equiv 0(mod \ p)$. Therefore, the equation $b_1c_1 = a_1^2 - n$ reduces to $b_1c_1 \equiv 0(mod \ p)$. This shows that one of b or c is divisible by p which is a contradiction. Thus if b and c both are quadratic residues of p then $a \equiv 0(mod \ p)$ is not possible. We, therefore, suppose $a \not\equiv 0(mod \ p)$ then $a_1 \not\equiv 0(mod \ p)$ which implies that a_1^2 is a quadratic residue of p. Then $b_1c_1 \equiv a_1^2(mod \ p)$ gives that both b_1 and c_1 are the quadratic residues of p. Next, we suppose, p divides one of b or c and other is a quadratic residue of p. Again if $a \not\equiv 0(mod \ p)$ then $a_1 = -a \not\equiv 0(mod \ p)$. So the relation $b_1c_1 \equiv a_1^2(mod \ p)$ implies that both b_1 and c_1 are either quadratic residues or quadratic non-residues of p which is a contradiction. Thus we take $a \equiv 0(mod \ p)$. Then we must have $b_1c_1 \equiv 0(mod \ p)$. This certainly implies that one of them must be divisible by p and other is a quadratic residue of p. Hence in either case $x(\alpha) \in A_1$. To see that A_1 is invariant under y. We take $y(\frac{a + \sqrt{n}}{c}) = \frac{-a + b + \sqrt{n}}{b} = \frac{a_2 + \sqrt{n}}{c_2}$, where, $a_2 = -a + b$, $b_2 = -2a + b + c$, and $c_2 = b$. Let $\left(\frac{b}{p} \right) = \left(\frac{c}{p} \right) = 1$ then $a \not\equiv 0(mod \ p)$. So $b_2c_2 = a_2^2 - n$ yields that $b_2c_2 \equiv a_2^2(mod \ p)$. Now, if $a_2 = -a + b \not\equiv 0(mod \ p)$ then b_2c_2 is a quadratic residue of p. Since $c_2 = b$ is a quadratic residue of p so is b_2 as well. But if $a_2 = -a + b \equiv 0(mod \ p)$ then we have, $b_2c_2 \equiv 0(mod \ p)$. Thus p must divide b_2 and $c_2 = b$ is a quadratic residue of p. Thus in either case $y(\alpha) \in A_1$. Finally, we suppose p divides one of b or c and other is a quadratic residue of p. Then p divides a. Hence $a_2 = -a + b \equiv b(mod \ p)$. Let p divides b with c as the quadratic residue. Then $b_2 = -2a + b + c \equiv c(mod \ p)$ and $c_2 = b \equiv 0(mod \ p)$. This shows that p divides c_2 with b_2 as the quadratic residue of p. Consequently, A_1 is invariant under
the action of \(x \) and \(y \). Similarly, we can show that the sets \(A_2 \), \(B_1 \) and \(B_2 \) are the \(G \)-subsets.

We conclude this paper with the following remarks.

Remarks 3.2

(1) If \(n \equiv 0 \,(\text{mod } pq) \), where \(p \) and \(q \) are distinct odd primes. then \(Q^*(\sqrt{n}) \) contains four \(G \)-subsets. As we know by Theorem 3.1, that if \(n \equiv p \,(\text{mod } 2p) \), then \(Q^*(\sqrt{n}) \) has four \(G \)-subsets. Since \(n \equiv p \,(\text{mod } 2p) \), so there exist some integer \(t \) such that \(n = p + 2pt = p(1 + 2t) = pt_1 \), where \(t_1 = 1 + 2t \), now we choose the values of \(t \) for which \(t_1 \) is an odd prime \(q \) different from \(p \), then we have \(n \equiv 0 \,(\text{mod } pq) \).

(2) If \(n \) is a quadratic residue of \(2p \), then the \(G \)-subsets of \(Q^*(\sqrt{n}) \) namely \(A_1 \) and \(B_1 \) mentioned in Theorem 2.4, contain \(3p(p+1) \) and \(p(p+1) \) classes respectively.

(3) If \(n \) is a quadratic non-residue of \(2p \), then the \(G \)-subsets of \(Q^*(\sqrt{n}) \) namely \(A_2 \) and \(B_2 \) mentioned in Theorem 2.4, contain \(3p(p-1) \) and \(p(p-1) \) classes respectively.

(4) If \(n \equiv p \,(\text{mod } 2p) \), then two of the four \(G \)-subsets of \(Q^*(\sqrt{n}) \) namely \(A_1 \) and \(A_2 \) mentioned in Theorem 3.1, contain \(\frac{3}{2}(p^2 - 1) \) classes and the other two namely \(B_1 \) and \(B_2 \) mentioned in Theorem 3.1, contain \(\frac{p^2-1}{2} \) classes respectively.

References

[2] M. Aslam Malik, S. M. Husnine, and A. Majeed: The orbits of \(Q^*(\sqrt{p}) \), \(p \equiv 3 \,(\text{mod } 4) \) under the Action of the Modular Group \(G = \langle x, y : x^2 = y^3 = 1 \rangle \). PUJM, Vol.36. (2003-04), 1-14.

[3] M. Aslam Malik, S. M. Husnine, and A. Majeed: Properties of Real Quadratic Irrational Numbers under the action of group \(H = \langle x, y : \)
Some invariant subsets

[5] S. M. Husnine, M. Aslam Malik, and A. Majeed: On Ambiguous Numbers of an invariant subset \(\mathbb{Q}^*(\sqrt{k^2m}) \) of \(\mathbb{Q}(\sqrt{m}) \) under the action of the Modular Group \(\text{PSL}(2,\mathbb{Z}) \). Studia Scientiarum Mathematicarum Hungarica Vol.42(4) (2005)

Received: December, 2010