A Note on Relative L-Order and Relative L^*-Order of Entire Functions

Sanjib Kumar Datta

Department of Mathematics, University of Kalyani
P.O.-Kalyani, Dist-Nadia, Pin-741235
West Bengal, India
Former Address:
(Department of Mathematics, University of North Bengal
P.O.-North Bengal University, Raja Rammohunpur
Dist-Darjeeling, Pin-734013
West Bengal, India)
sanjib.kr.datta@yahoo.co.in
s.kr.datta.ku@yahoo.co.in
sk.datta.nibu@yahoo.co.in

Meghlal Mallik

Panighta U.D.M. High School
P.O.-Paglachandi, Dist Nadia, Pin-741181
West Bengal, India
meghlal1982@yahoo.com
meghlal.mallik@yahoo.com

Abstract

In the paper we consider regular L relative growth and regular L' relative growth of an entire function with respect to another entire function and show that under certain conditions they are equal where $L \equiv L(r)$ is a slowly changing function.

Mathematics Subject Classification: 30D30, 30D35

Keywords: Entire function, slowly changing function, relative L-order, relative L'-order.
1 Introduction, Definitions and Notations.

Let \(f \) and \(g \) be two entire functions and

\[
F(r) = \max\{|f(z)| : |z| = r\} \quad \text{and} \quad G(r) = \max\{|g(z)| : |z| = r\}.
\]

If \(f \) is non-constant then \(F(r) \) is strictly increasing and continuous and its inverse \(F^{-1} : (|f(0)|, \infty) \to (0, \infty) \) exists and is such that

\[
\lim_{s \to \infty} F^{-1}(s) = \infty.
\]

The order \(\rho_f \) of \(f \) \{cf. [2], [4]\} is given by

\[
\rho_f = \inf \{\mu > 0 : F(r) < \exp(r^\mu) \text{ for all } r > r_0(\mu) > 0\}
\]

\[
= \limsup_{r \to \infty} \frac{\log \log F(r)}{\log r}
\]

where \(\log^{[k]} x = \log (\log^{[k-1]} x) \) for \(k = 1, 2, 3, \ldots \) and \(\log^{[0]} x = x \). The lower order of \(f \) denoted by \(\lambda_f \) is defined as

\[
\lambda_f = \liminf_{r \to \infty} \frac{\log \log F(r)}{\log r}.
\]

If \(\rho_f \) and \(\lambda_f \) are equal then \(f \) is said to be of regular growth \{cf. [5]\}. Recently Bernal [1] introduced the idea of relative order of \(f \) with respect to \(g \), denoted by \(\rho_g(f) \), as follows:

\[
\rho_g(f) = \inf \{\mu > 0 : F(r) < G(r^\mu) \text{ for all } r > r_0(\mu) > 0\}
\]

\[
= \limsup_{r \to \infty} \frac{\log G^{-1}F(r)}{\log r}
\]

where \(g \) is a non-constant entire function \(g \). The definition coincides with the classical one if \(g(z) = \exp z \). If \(f \) is non-constant and \(g = f \) then \(\rho_g(f) = 1 \). As in the classical case we define the relative lower order of \(f \) with respect to a non-constant entire function \(g \) denoted by \(\lambda_g(f) \) as follows:

\[
\lambda_g(f) = \liminf_{r \to \infty} \frac{\log G^{-1}F(r)}{\log r}.
\]

If \(\rho_g(f) = \lambda_g(f) \) then \(f \) is said to be of regular relative growth with respect to \(g \). Therefore if \(f \) is of regular relative growth with respect to a non-constant entire function \(g \), we have

\[
\rho_g(f) = \lim_{r \to \infty} \frac{\log G^{-1}F(r)}{\log r}.
\]
Clearly if \(f \) is of regular relative growth with respect to \(g(z) = \exp z \) then \(f \) is also of regular growth. Somasundaram and Thamizharasi [3] introduced the notions of \(L \)-order and \(L^* \)-order for entire functions where \(L \equiv L(r) \) is a positive continuous function increasing slowly i.e., \(L(ar) \sim L(r) \) as \(r \to \infty \) for every positive constant ‘\(a \)’. With the help of the above notion we may define relative \(L \)-order and relative \(L^* \)-order. The following definitions are then obvious.

Definition 1 [3] The \(L \)-order \(\rho_f^L \) and the \(L \)-lower order \(\lambda_f^L \) of an entire function \(f \) are defined as follows:

\[
\rho_f^L = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log[rL(r)]} \quad \text{and} \quad \lambda_f^L = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log[rL(r)]}.
\]

Definition 2 [3] The \(L^* \)-order \(\rho_f^{L^*} \) and \(L^* \)-lower order \(\lambda_f^{L^*} \) of an entire function \(f \) are defined as follows:

\[
\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log M(r, f)}{[rL^*(r)]} \quad \text{and} \quad \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log M(r, f)}{[rL^*(r)]}.
\]

Definition 3 The relative \(L \)-order and relative lower \(L \)-order of an entire function \(f \) with respect to an entire function \(g \) respectively denoted by \(\rho_g^L(f) \) and \(\lambda_g^L(f) \) are defined as

\[
\rho_g^L(f) = \limsup_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[rL(r)]} \quad \text{and} \quad \lambda_g^L(f) = \liminf_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[rL(r)]}.
\]

Definition 4 The relative \(L^* \)-order and relative lower \(L^* \)-order of an entire function \(f \) with respect to an entire function \(g \) with rate \(t \) respectively denoted by \(\rho_g^{L^*}(f) \) and \(\lambda_g^{L^*}(f) \) are defined as

\[
\rho_g^{L^*}(f) = \limsup_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[rL^*(r)]} \quad \text{and} \quad \lambda_g^{L^*}(f) = \liminf_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[rL^*(r)]}.
\]

In fact Definition 2 and Definition 4 are more generalised than Definition 1 and Definition 3 respectively. The following definition is most generalised.

Definition 5 The relative \(L^* \)-order and relative lower \(L^* \)-order of an entire function \(f \) with respect to an entire function \(g \) with rate \(t \) respectively denoted by \(^{(t)}\rho_g^{L^*}(f) \) and \(^{(t)}\lambda_g^{L^*}(f) \) are defined as

\[
^{(t)}\rho_g^{L^*}(f) = \limsup_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[r \exp^[t]L(r)]} \quad \text{and} \quad ^{(t)}\lambda_g^{L^*}(f) = \liminf_{r \to \infty} \frac{\log G^{-1}F(r)}{\log[r \exp^[t]L(r)]}.
\]
where $t = 1, 2, 3, ...$

In the paper we prove a few theorems on the relationship between $\rho^L_g(f)$ and ρ^L_f. We do not explain the standard notations and definitions in the theory of entire functions as those are available in [5]. Throughout the paper we assume f, g etc. as non-constant functions, unless otherwise stated.

2 Theorems.

In this section we present the main results of the paper.

Theorem 1 If f be the L-regular growth and of L-regular relative growth with respect to g and $\rho^L_g(f) = \rho^L_f > 0$ then g is of L-regular growth of L-order one. Conversely if g is of L-regular growth of order one then $\rho^L_g(f) = \rho^L_f$ for every entire f with L-regular relative growth.

Proof. Let us first suppose that $\rho^L_g(f) = \rho^L_f(f) = \rho > 0$.

Also let $0 < \varepsilon < 1$. Let us set $\varepsilon_1 = \frac{\rho \varepsilon}{2 + \varepsilon}$.

So $\varepsilon_1 < \rho$.

Then there exists $r_0 > 0$ such that for $r \geq r_0$

$$F(r) < \exp[(rL(r))^{\rho + \varepsilon_1}] \text{ and } F(r) > \exp[(rL(r))^{\rho - \varepsilon_1}]. \quad (1)$$

Also $F(r) < G(r^{\rho + \varepsilon_1})$ and $F(r) > G(r^{\rho - \varepsilon_1})$. \quad (2)

From (1) and (2) we get for $r \geq r_0$

$$G(r^{\rho - \varepsilon_1}) < F(r) < \exp[(rL(r))^{\rho + \varepsilon_1}]$$

and therefore for $r \geq r_0^\rho$ we obtain from above that

$$G(r) < \exp[(rL(r))^{\frac{\rho + \varepsilon_1}{\rho - \varepsilon_1}}] = \exp[(rL(r))^{1 + \frac{2\varepsilon_1}{\rho - \varepsilon_1}}].$$

So, $G(r) < \exp[(rL(r))^{1 + \varepsilon}]$ for $r \geq r_0^\rho$. \quad (3)
Similarly from (1) and (2) we obtain that
\[
\exp\left[\{(rL(r))^{1-\varepsilon}\}^2\right] < G(r) \text{ for } r \geq r_0^{2\rho}. \tag{4}
\]
So from (3) and (4), for \(r \geq r_0^{2\rho}\)
\[
\exp\left[\{(rL(r))^{1-\varepsilon}\}^2\right] < G(r) < \exp\left[\{(rL(r))^{1+\varepsilon}\}^2\right].
\tag{5}
\]
So \(g(z)\) is of \(L\)-regular growth of order one. Conversely for \(\varepsilon > 0\) there exists \(r_1 > 0\) such that for \(r \geq r_1\),
\[
\exp\left[\{(rL(r))^{1-\varepsilon}\}^2\right] < G(r) < \exp\left[\{(rL(r))^{1+\varepsilon}\}^2\right].
\tag{5}
\]
Also from the definition of \(\rho^L_g(f)\), there exists \(r_2 > 0\) such that for \(r \geq r_2\),
\[
G(r^{\rho^L(f)}) < F(r) < G(r^{\rho^L(f)+\varepsilon}). \tag{6}
\]
From (5) and (6), we have for \(r \geq r_3 = \max(r_1, r_2)\),
\[
\exp\left[\{rL(r)\}^{\rho^L(f)\varepsilon(1+\rho^L(f)+\varepsilon)}\right] < F(r) < \exp\left[\{rL(r)\}^{\rho^L(f)+\varepsilon(1+\rho^L(f)+\varepsilon)}\right]. \tag{7}
\]
Since \(\varepsilon > 0\) is arbitrary, from (7) we obtain that
\[
\rho^L_f = \lim_{r \to \infty} \frac{\log \log F(r)}{\log \{rL(r)\}} = \rho^L_g(f).
\]
This proves the theorem. In the next theorem we see the more generalisation of Theorem 1. ■

Theorem 2 If \(f\) be of \(L^*\)-regular growth and \(L^*\)-regular relative growth with respect to \(g\) and \(\rho^L_g(f) = \rho^L_f > 0\) then \(g\) is of \(L^*\)-regular growth of \(L^*\)-order one. Conversely if \(g\) is of \(L^*\)-regular growth of \(L^*\)-order one then \(\rho^L_g(f) = \rho^L_f\) for every entire \(f\) with \(L^*\)-regular relative growth.

Proof. Let us forst suppose that
\[
\rho^L_g(f) = \rho^L_f = \rho > 0.
\]
Also let \(0 < \varepsilon < 1\).

Let us set \(\varepsilon_1 = \frac{\rho \varepsilon}{2 + \varepsilon}\)
So \(\varepsilon_1 < \rho\).
Then there exists $r_0 > 0$ such that for $r \geq r_0$
\[
F(r) < \exp\{re^{L(r)}\rho^{+\varepsilon_1}\} \quad \text{and} \quad F(r) > \exp\{re^{L(r)}\rho^{-\varepsilon_1}\}.
\]
(8)

From (2) and (8) for $r \geq r_0$,
\[
G(r^{\rho^{+\varepsilon_1}}) < F(r) < \exp\{re^{L(r)}\rho^{+\varepsilon_1}\}
\]
and therefore for $r \geq r_0^\rho$ we obtain from above that
\[
G(r) < \exp\{re^{L(r)}\rho^{+\varepsilon_1}\} = \exp\{re^{L(r)}\frac{2\varepsilon_1}{\rho^{+\varepsilon_1}}\}.
\]
So, $G(r) < \exp\{\{re^{L(r)}\}^{1+\varepsilon}\}$ for $r \geq r_0^\rho$.

(9)

Similarly from (2) and (8) we obtain that
\[
\exp\{\{re^{L(r)}\}^{1-\varepsilon}\} < G(r) \quad \text{for} \quad r \geq r_0^{2\rho}.
\]

(10)

So g is of L^*-regular growth of order one. Conversely for $\varepsilon > 0$ there exists $r_1 > 0$ such that for $r \geq r_1$,
\[
\exp\{\{re^{L(r)}\}^{1-\varepsilon}\} < G(r) < \exp\{\{re^{L(r)}\}^{1+\varepsilon}\}.
\]

(11)

Also from the definition of $\rho^*_g(f)$, there exists $r_2 > 0$ such that for $r \geq r_2$,
\[
G(r^{\rho^*_g(f)\varepsilon}) < F(r) < G(r^{\rho^*_g(f)\varepsilon}).
\]

(12)

From (11) and (12), we have for $r \geq r_3 = \max(r_1, r_2)$,
\[
\exp\{\{re^{L(r)}\}^{\rho^*_g(f)\varepsilon\varepsilon(1+\rho^*_g(f)\varepsilon)}\} < F(r)
\]
\[< \exp\{re^{L(r)}\}^{\rho^*_g(f)\varepsilon(1+\rho^*_g(f)\varepsilon)}\}.
\]

(13)

Since $\varepsilon > 0$ is arbitrary, from (13) we obtain that
\[
\rho^*_f = \lim_{r \to \infty} \frac{\log^2 F(r)}{\log[re^{L(r)}]} = \rho^*_g(f).
\]

Thus the theorem is established. ■
Theorem 3 If f be of L^\ast-regular growth and of L^\ast-regular relative growth with respect to g with rate t for $t = 1, 2, 3, \ldots$ and $(t)\rho_g^{L^\ast}(f) = (t)\rho_f^{L^\ast}$ then g is of L^\ast-regular growth of L^\ast-order one with rate t in each case. Conversely if g is of L^\ast-regular growth of L^\ast-order one with rate t in each case then $(t)\rho_g^{L^\ast}(f) = (t)\rho_f^{L^\ast}$ for every entire f with L^\ast-regular relative growth with rate t.

Proof. Let us first suppose that

$$(t)\rho_g^{L^\ast}(f) = (t)\rho_f^{L^\ast} = \rho > 0.$$

Also let $0 < \varepsilon < 1$.

Let us set $\varepsilon_1 = \frac{\rho \varepsilon}{2 + \varepsilon}$.

So $\varepsilon_1 < \rho$.

Then there exists $r_0 > 0$ such that for $r \geq r_0$

$$F(r) < \exp\{r \exp[\ell L(r)]^{\rho + \varepsilon_1}\} \text{ and } F(r) > \exp\{r \exp[\ell L(r)]^{\rho - \varepsilon_1}\}. \tag{14}$$

From (2) and (14) for $r \geq r_0$,

$$G(r^{\rho - \varepsilon_1}) < F(r) < \exp\{r \exp[\ell L(r)]^{\rho + \varepsilon_1}\}$$

and therefore for $r \geq r_0^\rho$ we obtain from above that

$$G(r) < \exp\{r \exp[\ell L(r)]^{\rho + \varepsilon_1}\} = \exp\{r \exp[\ell L(r)]^{1 + \frac{\varepsilon_1}{\rho - \varepsilon_1}}\}.$$

So, $G(r) < \exp\{r \exp[\ell L(r)]^{1+\varepsilon}\}$ for $r \geq r_0^\rho$. \tag{15}

Similarly from (2) and (14) we obtain that

$$\exp\{r \exp[\ell L(r)]^{1-\varepsilon}\} < G(r) \text{ for } r \geq r_0^{2\rho}. \tag{16}$$

So, from (15) and (16), for $r \geq r_0^{2\rho}$

$$\exp\{r \exp[\ell L(r)]^{1-\varepsilon}\} < G(r) < \exp\{r \exp[\ell L(r)]^{1+\varepsilon}\}.$$

So g is of L^\ast-regular growth of order one with rate t. Conversely for $\varepsilon > 0$ there exists $r_1 > 0$ such that for $r \geq r_1$,

$$\exp\{r \exp[\ell L(r)]^{1-\varepsilon}\} < G(r) < \exp\{r \exp[\ell L(r)]^{1+\varepsilon}\}. \tag{17}$$
Also from the definition of \((t) \rho^L_g (f) \), there exists \(r_2 > 0 \) such that for \(r \geq r_2 \),

\[
G(r (t) \rho^L_g (f)^{-\varepsilon}) < F(r) < G(r (t) \rho^L_g (f)^{+\varepsilon}).
\]

From (17) and (18), we have for \(r \geq r_3 = \max(r_1, r_2) \),

\[
\exp\left\{r \exp[t] L(r)\right\}^{(t) \rho^L_g (f)^{-\varepsilon}(1+(t) \rho^L_g (f)^{-\varepsilon})} < F(r)
\]

\[
< \exp\left\{r \exp[t] L(r)\right\}^{(t) \rho^L_g (f)^{+\varepsilon}(1+(t) \rho^L_g (f)^{+\varepsilon})}.
\]

Since \(\varepsilon(> 0) \) is arbitrary, from (19) we obtain that

\[
(t) \rho^L_f = \lim_{r \to \infty} \frac{\log[2] F(r)}{\log[r \exp[t] L(r)]} = (t) \rho^L_g (f).
\]

This proves the theorem. \(\blacksquare \)

Remark 1 For \(t = 1 \), Theorem 3 coincides with Theorem 2.

References

Received: November, 2010