A Common Unique Random Fixed Point Theorem for Expansive Type Mappings in Hilbert Space

Sandhya Shukla
NRI Institute of Information Science and Technology Bhopal (M.P.), India
maths.sandhyashukla@gmail.com

Neeraj Malviya
NRI Institute of Information Science and Technology Bhopal (M.P.), India
maths.neeraj@gmail.com

Abstract

The object of this paper is to obtain a common unique fixed point theorem for two continuous, surjective random operators defined on a non empty closed subset of a separable Hilbert space. The corresponding result for non random case is also obtained.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Separable Hilbert space, random operators, common random fixed point

1 Introduction

The study of random fixed points has been an active area of contemporary research in mathematics. Some of the recent works in this field are noted in [2, 4, 5, 1]. In this paper, we construct a sequence of measurable functions and consider its convergence to the common unique random fixed point of two continuous, surjective random operators defined on a non-empty closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point of two continuous, surjective random operators, we have used a rational inequality.

Throughout this paper, \((\Omega, \Sigma)\) denotes a measurable space consisting of a set \(\Omega\) and sigma algebra \(\Sigma\) of subsets of \(\Omega\), \(H\) stands for a separable Hilbert space and \(C\) is a nonempty closed subset of \(H\).
2 Preliminaries

Definition 2.1. A function \(f : \Omega \to C \) is said to be measurable if
\(f^{-1}(B \cap C) \in \Sigma \) for every Borel subset \(B \) of \(H \).

Definition 2.2. A function \(F : \Omega \times C \to C \) is said to be a random operator if \(F(., x) : \Omega \to C \) is measurable for every \(x \in C \).

Definition 2.3. A measurable function \(g : \Omega \to C \) is said to be a random fixed point of the random operator \(F : \Omega \times C \to C \) if \(F(t, g(t)) = g(t) \) for all \(t \in \Omega \).

Definition 2.4. A random operator \(F : \Omega \times C \to C \) is said to be continuous if for fixed \(t \in \Omega \), \(F(t, .) : C \to C \) is continuous.

Condition (A). Two mappings \(S, T : C \to C \), where \(C \) is a non-empty subset of a Hilbert space \(H \), is said to satisfy condition (A) if

\[
\| Sx - Ty \|^2 \geq a_1 \| x - Sx \|^2 \| y - Ty \|^2 + a_2 \frac{\| x - Ty \|^2 \| y - Sx \|^2}{\| x - g \|^2} + a_3 \| x - Sx \|^2 + a_4 \| y - Ty \|^2 + a_5 \| x - y \|^2
\]

where \(a_1 + a_3 + a_4 + a_5 > 1 \), \(a_2 + a_5 > 1 \) and \(a_1, a_2, a_3, a_4, a_5 > 0 \) \hfill (2.1)

We construct a sequence of functions \(\{g_n\} \) as

\[
g_0 : \Omega \to C
\]

is arbitrary measurable function. For \(t \in \Omega \) and \(n = 0, 1, 2, \ldots \)

\[
g_{2n}(t) = S(t, g_{2n+1}(t)), \quad g_{2n+1}(t) = T(t, g_{2n+2}(t)) \hfill (2.4)
\]

3 Main Results

Theorem 3.1. Let \(C \) be a non-empty closed subset of a separable Hilbert space \(H \). Let \(S \) and \(T \) be two continuous, surjective random operators defined on \(C \) such that for \(t \in \Omega \), \(S(t, .), T(t, .) : C \to C \) satisfy condition (A). Then the sequence \(\{g_n\} \) obtained in (2.3) and (2.4) converges to the unique common random fixed point of \(S \) and \(T \).

Proof: For fixed \(t \in \Omega \), \(n = 1, 2, 3, \ldots \)

\[
\| g_{2n-1}(t) - g_{2n}(t) \|^2 = \| T(t, g_{2n}(t)) - S(t, g_{2n+1}(t)) \|^2 = \| S(t, g_{2n+1}(t)) - T(t, g_{2n}(t)) \|^2
\]
\[\geq a_1 \frac{\|g_{2n-1}(t) - S(t, g_{2n-1}(t))\|^2 \|g_{2n}(t) - T(t, g_{2n}(t))\|^2}{\|g_{2n-1}(t) - g_{2n}(t)\|^2} + a_2 \frac{\|g_{2n+1}(t) - T(t, g_{2n+1}(t))\|^2 \|g_{2n}(t) - S(t, g_{2n+1}(t))\|^2}{\|g_{2n+1}(t) - g_{2n}(t)\|^2} \\
+ a_3 \left(\|g_{2n+1}(t) - S(t, g_{2n+1}(t))\|^2 \right) + a_4 \left(\|g_{2n}(t) - T(t, g_{2n}(t))\|^2 \right) + a_5 \left(\|g_{2n+1}(t) - g_{2n}(t)\|^2 \right) \\
= a_1 \frac{\|g_{2n+1}(t) - g_{2n}(t)\|^2 \|g_{2n}(t) - g_{2n-1}(t)\|^2}{\|g_{2n+1}(t) - g_{2n}(t)\|^2} + a_2 \frac{\|g_{2n+1}(t) - g_{2n-1}(t)\|^2 \|g_{2n}(t) - g_{2n}(t)\|^2}{\|g_{2n+1}(t) - g_{2n}(t)\|^2} \\
+ a_3 \left(\|g_{2n+1}(t) - g_{2n}(t)\|^2 \right) + a_4 \left(\|g_{2n}(t) - g_{2n-1}(t)\|^2 \right) + a_5 \left(\|g_{2n+1}(t) - g_{2n}(t)\|^2 \right) \\
= (a_1 + a_4) \left(\|g_{2n}(t) - g_{2n-1}(t)\|^2 \right) + (a_3 + a_5) \left(\|g_{2n+1}(t) - g_{2n}(t)\|^2 \right) \\
\Rightarrow \|g_{2n}(t) - g_{2n+1}(t)\|^2 \leq \frac{1 - (a_1 + a_4)}{a_3 + a_5} \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 \right) \\
\Rightarrow \|g_{2n}(t) - g_{2n+1}(t)\|^2 \leq \left(\frac{1 - (a_1 + a_4)}{a_3 + a_5} \right)^2 \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 \right) \\
\Rightarrow \|g_{2n}(t) - g_{2n+1}(t)\| \leq k_1 \left\| g_{2n-1}(t) - g_{2n}(t) \right\| \\
\text{where } k_1 = \left(\frac{1 - (a_1 + a_4)}{a_3 + a_5} \right)^\frac{1}{2} < 1 \quad \text{(as } a_1 + a_3 + a_4 + a_5 > 1) \\
\]

For fixed \(t \in \Omega, n = 1, 2, 3, \ldots \)

\[\|g_{2n-2}(t) - g_{2n-1}(t)\|^2 = \|S(t, g_{2n-1}(t)) - T(t, g_{2n}(t))\|^2 \]

\[\geq a_1 \frac{\|g_{2n-1}(t) - S(t, g_{2n-1}(t))\|^2 \|g_{2n}(t) - T(t, g_{2n}(t))\|^2}{\|g_{2n-1}(t) - g_{2n}(t)\|^2} + a_2 \frac{\|g_{2n-1}(t) - T(t, g_{2n}(t))\|^2 \|g_{2n}(t) - S(t, g_{2n-1}(t))\|^2}{\|g_{2n-1}(t) - g_{2n}(t)\|^2} \\
+ a_3 \left(\|g_{2n-1}(t) - S(t, g_{2n-1}(t))\|^2 \right) + a_4 \left(\|g_{2n}(t) - T(t, g_{2n}(t))\|^2 \right) + a_5 \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 \right) \\
= a_1 \frac{\|g_{2n-1}(t) - g_{2n-2}(t)\|^2 \|g_{2n}(t) - g_{2n-1}(t)\|^2}{\|g_{2n-1}(t) - g_{2n}(t)\|^2} + a_2 \frac{\|g_{2n-1}(t) - g_{2n-2}(t)\|^2 \|g_{2n}(t) - g_{2n}(t)\|^2}{\|g_{2n-1}(t) - g_{2n}(t)\|^2} \\
+ a_3 \left(\|g_{2n-1}(t) - g_{2n-2}(t)\|^2 \right) + a_4 \left(\|g_{2n}(t) - g_{2n-1}(t)\|^2 \right) + a_5 \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 \right) \\
= (a_1 + a_3) \left(\|g_{2n-1}(t) - g_{2n-2}(t)\|^2 \right) + (a_4 + a_5) \left(\|g_{2n-1}(t) - g_{2n}(t)\|^2 \right) \\
\Rightarrow \|g_{2n-1}(t) - g_{2n}(t)\|^2 \leq \frac{1 - (a_1 + a_3)}{a_4 + a_5} \left(\|g_{2n-2}(t) - g_{2n-1}(t)\|^2 \right) \\
\Rightarrow \|g_{2n-1}(t) - g_{2n}(t)\|^2 \leq \left(\frac{1 - (a_1 + a_3)}{a_4 + a_5} \right)^2 \left(\|g_{2n-2}(t) - g_{2n-1}(t)\|^2 \right) \\
\Rightarrow \|g_{2n-1}(t) - g_{2n}(t)\| \leq k_2 \left\| g_{2n-2}(t) - g_{2n-1}(t) \right\| \\
\text{where } k_2 = \left(\frac{1 - (a_1 + a_3)}{a_4 + a_5} \right)^\frac{1}{2} < 1 \quad \text{(as } a_1 + a_3 + a_4 + a_5 > 1) \\
\]

The inequalities (3.1) and (3.2) are jointly imply that for all \(t \in \Omega, n = 1, 2, 3, \ldots \)
\[\| g_n(t) - g_{n+1}(t) \| \leq k \| g_{n-1}(t) - g_n(t) \| \]

where \(k = \max \{ k_1, k_2 \} < 1 \)

\[\Rightarrow \| g_n(t) - g_{n+1}(t) \| \leq k^n \| g_0(t) - g_1(t) \| \quad \text{for} \ t \in \Omega \] (3.3)

Now, we shall prove that for \(t \in \Omega \), \(\{g_n(t)\} \) is a Cauchy sequence. For this for every positive integer \(p \), we have

\[\| g_n(t) - g_{n+p}(t) \| = \| g_n(t) - g_{n+1}(t) + g_{n+1}(t) - \ldots + g_{n+p-1}(t) - g_{n+p}(t) \| \]

\[\leq \| g_{n+1}(t) - g_{n+2}(t) \| + \ldots + \| g_{n+p-1}(t) - g_{n+p}(t) \| \]

\[\leq \left[k^n + k^{n+1} + k^{n+2} + \ldots + k^{n+p-1} \right] \| g_0(t) - g_1(t) \| \quad \text{(by (3.3))} \]

\[= k^n \left[1 + k + k^2 + \ldots + k^{p-1} \right] \| g_0(t) - g_1(t) \| \]

\[< \frac{k^n}{1-k} \| g_0(t) - g_1(t) \| \quad \text{for} \ t \in \Omega \]

As \(n \to \infty \), \(\| g_n(t) - g_{n+p}(t) \| \to 0 \), it follows that for \(t \in \Omega \), \(\{g_n(t)\} \) is a Cauchy sequence and hence is convergent in Hilbert space \(H \).

For \(t \in \Omega \), let

\[\{g_n(t)\} \to g(t) \quad \text{as} \ n \to \infty \] (3.4)

Since \(C \) is closed, \(g \) is a function from \(C \) to \(C \).

Since \(S \) and \(T \) are surjective maps. So there exist two functions \(g' : \Omega \to C \) and \(g'' : \Omega \to C \) such that

\[g(t) = S(t,g'(t)) \text{ and } g(t) = T(t,g''(t)) \] (3.5)

For \(t \in \Omega \),

\[\| g_{2n}(t) - g(t) \|^2 = \| S(t,g_{2n+1}(t)) - T(t,g''(t)) \|^2 \]

\[\geq a_1 \| g_{2n+1}(t)-S(t,g_{2n+1}(t)) \|^2 g''(t)-T(t,g''(t)) \|^2 + a_2 \| g_{2n+1}(t)-T(t,g''(t)) \|^2 g''(t)-S(t,g_{2n+1}(t)) \|^2 \]

\[+ a_3 \| g_{2n+1}(t)-S(t,g_{2n+1}(t)) \|^2 + a_4 \| g''(t)-T(t,g''(t)) \|^2 + a_5 \| g_{2n+1}(t)-g''(t) \|^2 \]

\[= a_1 \| g_{2n+1}(t)-g_{2n}(t) \|^2 g''(t)-T(t,g''(t)) \|^2 + a_2 \| g_{2n+1}(t)-T(t,g''(t)) \|^2 g''(t)-g_{2n}(t) \|^2 \]

\[+ a_3 \| g_{2n+1}(t)-g_{2n}(t) \|^2 + a_4 \| g''(t)-T(t,g''(t)) \|^2 + a_5 \| g_{2n+1}(t)-g''(t) \|^2 \]
Making $n \to \infty$ in the above inequality we have by virtue of (3.4), for all $t \in \Omega$,

$$0 \geq (a_4 + a_5) \| g(t) - g''(t) \|^2$$

$$\Rightarrow \| g(t) - g''(t) \|^2 = 0 \quad \text{[as } (a_4 + a_5) > 0\text{]}$$

$$\Rightarrow g(t) = g''(t) \text{ for } t \in \Omega \quad (3.6)$$

In an exactly similar way by using $(a_3 + a_5) > 0$ we can prove that

$$g(t) = g'(t) \text{ for } t \in \Omega \quad (3.7)$$

Thus by (3.5), (3.6) and (3.7) we have, for $t \in \Omega$,

$$S(t, g(t)) = g(t) \quad (3.8)$$

and

$$T(t, g(t)) = g(t) \quad (3.9)$$

Again, if $A : \Omega \times C \to C$ is a continuous random operator on a nonempty subset C of a separable Hilbert space H, then for any measurable function $f : \Omega \to C$, the function $h(t) = A(t, f(t))$ is also measurable [3].

It follows from the construction of $\{g_n\}$ ((2.3) and (2.4)) and the above consideration that $\{g_n\}$ is a sequence of measurable functions. From (3.4) it follows that g is also a measurable function. This fact along with ((3.8) and (3.9)) shows that $g : \Omega \to C$ is a common random fixed point of S and T.

Next we prove the uniqueness. Let $h : \Omega \to C$ be another random fixed point common to S and T, that is, for $t \in \Omega$,

$$S(t, h(t)) = h(t) \text{ and } T(t, h(t)) = h(t) \quad (3.10)$$

Then for $t \in \Omega$,

$$\| g(t) - h(t) \|^2 = \| S(t, g(t)) - T(t, h(t)) \|^2$$

$$\geq a_1 \frac{\| g(t) - S(t, g(t)) \|^2 \| h(t) - T(t, h(t)) \|^2}{\| g(t) - h(t) \|^2} + a_2 \frac{\| g(t) - T(t, h(t)) \|^2 \| h(t) - S(t, g(t)) \|^2}{\| g(t) - h(t) \|^2}$$

$$+ a_3 \| g(t) - S(t, g(t)) \|^2 + a_4 \| h(t) - T(t, h(t)) \|^2 + a_5 \| g(t) - h(t) \|^2$$
\[\Rightarrow \| g(t) - h(t) \|^2 \geq (a_2 + a_5) \| g(t) - h(t) \|^2 \text{ (by (3.10))} \]

\[\Rightarrow \| g(t) - h(t) \|^2 = 0 \quad \text{[as } (a_2 + a_5) > 1] \]

\[\Rightarrow g(t) = h(t) \text{ for all } t \in \Omega \]

This completes the proof of the theorem 3.1.

Corollary 3.2. Let \(S, T : C \rightarrow C \) be two continuous, surjective self maps of a nonempty closed subset \(C \) of a Hilbert Space \(H \), be such that inequality (2.1) is satisfied along with (2.2). Then the sequence obtained by starting with an arbitrary element \(x_0 \in C \),

\[
\begin{align*}
x_{2n} &= Sx_{2n+1}, \quad n = 0, 1, 2, \ldots \quad (3.11) \\
x_{2n+1} &= Tx_{2n+2}, \quad n = 0, 1, 2, \ldots \quad (3.12)
\end{align*}
\]

converges to a unique common fixed point of \(S \) and \(T \).

The proof of the corollary is immediate by assuming \(\Omega \) to be a singleton set.

Remark 3.3. It is necessary to assume \(H \) to be separable in the corollary (3.2).

Acknowledgment. The authors would like to thank Professor S.S. Pagey (Institute for Excellence in Higher Education, Bhopal (M.P.) INDIA) for constant encouragement and helpful discussions in the preparation of this paper.

References

Received: October, 2010