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Abstract 
 
A model for insect dispersal has been considered, an equilibrium and stability 
analysis has been done and the behavior to the  solitary and traveling wave 
solutions of the model are obtained.  
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1. Introduction 

 
   The dynamics of population has been described using mathematical models 
which have been very successful in giving good effect in the study of animal and 
human populations. Fife [5], considered reaction and diffusion systems which are 
distributed in 3-dimentional spaces. Abualrub [1], studied diffusion in two 
dimensional spaces for which diffusion is more realistic and applicable in life. 

Also he talked about long range diffusion with population pressure in Plankton- 
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Herbivore populations. In [3], we included long range diffusion involving flux for 
insect population and talked about the existence and uniqueness of solutions for 
the considered model in the  space. And we found the required p and q in 
similar approach used in [2]. In this paper we study solitary wave solution using 
the generalized Tanh function method as in [7]. Also we find a traveling wave 

solution then, we discuss stability of solutions to our model. 
 
 

2. Long Range Diffusion Involving Flux 
 

   Here we consider long range diffusion involving flux in two dimensions which 
is given by: 

( )(2) 2 1
1 2 3 4t xu D u u u u u αα α α α +− Δ = + + + Δ                                (1) 

( ,0) ( )u x f x=                                                                               (2) 
; where  ( , )u u x t=   is the insect population density . Here Δ represents the 
Laplacian operator and 

42
(2)

2 2
,i j i jx x

∂
Δ =

∂ ∂∑ .                                                                         (3) 

tu  is the rate of change of the insect population density, (2)D uΔ  is the long range 
diffusion term, where D is a small constant, and α, α4 are positive constants. 2u  is 
the interaction between the males and females of the insect population, and xu is 

the instantaneous flux in the x direction due to molecular diffusion. Here ( )1u α+Δ  
is the regular diffusion of the insect population. 
For simplicity take the one dimensional case thus, equations (1) and (2) become 

( )xxxxxxxxt uuuuuuDuu ++++=− 2
43

2
21 2αααα                       (4) 

)()0,( xfxu = ;           where  Rx∈                                              (5) 
 
 
3. Solitary Wave Solutions 
 
   First, we want to find an exact solitary wave solution to equation (4) using the 
generalized Tanh function method which is based on the Riccati equation which 
is given by 
 2ByAy +=′  (6) 

; where 
dz
dyy =′  , and A, B are constants. 

The main idea of this method is mentioned in [7].  
Letting 
 )(),( ξutxu = ;    where    ctx −=ξ  (7) 
substituting equation (7) into equation (4) we obtain 
 022)( 4

2
4
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which is a fourth order nonlinear ODE. 
Now, by introducing the independent variable Y = tanhξ the solution of equation 
(8) can be written in the following form 

 ∑
=

==
n

j

j
jYautxu

0

)(),( ξ  (9) 

; where Y = tanhξ ;n and naaa ,,, 10 K  can be determined as in the description of 
the tanh method which is mentioned earlier. 
In equation (9) balancing the term uu ′′  with the term )4(u   gives n = 2; that is the 
solution has the form 
 2

210)( YaYaau ++=ξ . (10) 
Substituting  (6) and (10) into (9) to get the following difficult algebraic equation 
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Now, collecting the coefficients to get a system of seven nonlinear algebraic 
equations. Solving the resulting system for caaa ,,, 210  using mathematica 
software, we obtain the following set of solutions 
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                                                     3c α= −  
We can choose one of the set of solutions for the Riccati equation, see[4] 
; namely the following: 

 

( )

( )

2
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( ) tanh sech

3        tanh sech
2 2

u a a i

D D D i

ξ ξ ξ

α ξ ξ
α α α

= + +

⎛ ⎞
= − − +⎜ ⎟
⎝ ⎠                             (12) 

 
Conclusion 3.1 
   If we assume that D = 1, 2 1α = , 4 1α = , then the solution can be graphed using 
mathematica software to be an ellipse; this means that our solution is stable since 
the origin is a center point, see [4]. 
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4. Traveling Wave Solution 
 
   Now want to seek an exact traveling wave solution. If such solution exists it can 
be written in the following form: 
 )(),( zktxu = ,     ctxz −=  (13) 
;where c is the wave speed. Substituting equation (13) in equation ( 4) to obtain: 
 ( )(4) 2 2

3 1 2 4( ) 2 0c k Dk k k k kkα α α α′ ′ ′′+ + + + + + =  (14) 
; where the differentiation in equation (14) is with respect to z. 
Since we are looking for a traveling wave solution, we have to impose the 
following conditions on  k: 
 1)( =−∞k    and   0)( =∞k  (15) 
Remark 4.1  
   The reason for imposing the boundary conditions (15) is because we seek a 
nonnegative solution k of equation (14), for which k at one end, say as −∞→z , is 
at one steady state and as +∞→z  it is at the other. As done in Murray [6] and 
from the first term in the asymptotic wave front solution to Fisher's equation we 
expect that the solution of equation (14) together with the conditions in (15) might 
take the form: 

 ( )41
1)(

zae
zk

+
=  (16) 

; where, as in Murray [6], we must assume that 
2
1)0( =k  and this will give 

124 −=a . 
Remark 4.2 

   The conditions on k given in equation (16) and the condition 
2
1)0( =k   means 

that the number of insects in the beginning of the experiment was one unit that is 
larger than its number in the middle of the experiment because half of the insects 
died out and at the end of the experiment they will become all dead. 
 
 
5. Stability of Solutions  
 
   Here we study the stability of solutions to a model of long range diffusion 
involving flux. Consider the equation (14) which can be convert into a system of 
ODE's as follows: 
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Then system (17) can be written in the matrix form as follows: 
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equation (18) can be written in the following form 
 )(kgkAk

rrr
+=′  (19) 

the last system is almost linear system since )(xg r  has continuous (1st,2nd, 3rd, and 
4th) partial derivatives, and (0, 0, 0, 0)  is the only equilibrium point of the system. 
Now, we need to study the type of the equilibrium point  (0, 0, 0, 0)  and discuss 
its stability, to do this we find 
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to get the following equation: 
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α
λ                                                     (20) 

Solving equation (20) using mathematica software to get very complicated roots, 
see [4] . 
 
Remark 5.1 
   We can use our result in finding the solitary wave solution by generalized tanh 
function method . Then, equation (20) can be written as:  

 4 1 0
D
αλ + =

 
(21) 

Solving equation (21) and assuming that both α 1
 and D are positive, we obtain 

the following roots: 
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Conclusion 5.2 
   We may assume that , as in the solitary wave solution. It is obvious that 
the equilibrium point  will be unstable spiral point because and  
have positive real parts. 
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