\(\pi g\alpha \)-Separation Axioms
in BiČech Spaces

Ganes M. Pandya
School of Petroleum Management, Gujarat, India
ganes_17@yahoo.com

C. Janaki
Sree Narayana Guru College, Coimbatore, India

I. Arockiarani
Nirmala College for Women, Coimbatore, India

Abstract

In this paper, we introduce the concepts of \(\pi g\alpha \)-generalized closed sets in biČech closure space and investigate some of its Properties and characterization.

Mathematical Subject Classification: 54A05, 54E55

Keywords: Bi Čech closure operator, Bi Čech closure spaces, Bi Čech \(\pi g\alpha \)-generalised closed sets and Bi Čech \(\pi g\alpha \)-generalised open sets

1 Introduction

Čech closure spaces were introduced by Čech [1]. In Čech’s approach the operator satisfies idempotent condition among Kuratowski axioms. This condition need not hold for every set \(A \) of \(X \). When this condition is also true, the operator becomes topological closure operator. Thus the concept of closure space is the generalisation of a topological space. Closure functions that are more general than the topological ones have been studied already by Day[3]. A thorough discussion on closure functions is due to Hammer, see eg [6,7] and more recently Gnilka[4]. The notion of bitopological space were introduced by
J.C. Kelly[8]. Such spaces are equipped with two arbitrary topologies. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space. Čech closure space were studied by Chandrasekharra Rao in [2]. In this paper we introduce the $\pi g \alpha$-closed sets in BiČech closure spaces.

2 Preliminaries

Definition 2.1. Two functions k_1 and k_2 from power set X to itself are called Čech closure operators (simply biclosure operator) for X if they satisfies the following properties

- $k_1(\emptyset) = \emptyset$ and $k_2(\emptyset) = \emptyset$.
- $A \subset k_1(A)$ and $A \subset k_2(A)$ for any set $A \subset X$.
- $k_1(A \cup B) = k_1(A) \cup k_2(B)$ and $k_2(A \cup B) = k_2(A) \cup k_2(B)$ for any $A, B \subset X$.

(X, k_1, k_2) is called biČech closure space.

A subset A is closed in the closure space (X, k) if $k(A) = A$ and it is open if its complement is closed. The empty set and the whole space are both open and closed. A is a closed subset of a biČech closure space (X, k_1, k_2) if and only if A is a closed set of (X, k_1) and (X, k_2). Also the following conditions are equivalent for a closed set A

$$k_2k_1(A) = A$$
$$k_1A = A \ , \ k_2A = A$$

Definition 2.2. [2] A subset A in a biČech closure space (X, k_1, k_2) is said to be

1. k_i-regular open if $A = \text{int}_{k_i}(k_i(A))$, $i = 1, 2$
2. $k_i\alpha$-closed if $k_i[\text{int}_{k_i}(k_i(A))] \subseteq A$, $i=1,2$

The smallest Čech α-closed set containing A is called Čech α-closure of A and it is denoted by $k_\alpha(A)$. The largest Čech α-open set contained in A is called Čech α-interior of A and is denoted by $\text{int}_{k_\alpha}(A)$. $k_1\alpha(A)$ and $k_2\alpha(A)$ is the intersection of all Čech α-closed sets under the operator k_1 and k_2. The finite union of Čech regular-open sets is called Čech π-open. Every Čech regular open set is Čech π-open but the converse need not be true.

3. $(k_1, k_2) - \pi g\alpha$ closed sets

Definition 3.1. A subset A in a Čech closure space (X, k_1, k_2) is said to be (k_1, k_2)-$(\pi g\alpha)$ closed if $k_2\alpha(A) \subseteq U$, whenever $A \subseteq U$ and U is $k_1\pi$ open set in X.

Example 3.2. Let $X = \{a, b, c\}$ and let k_1 and k_2 be the two operators defined as $k_1(\phi) = \phi$, $k_1(X) = k_1(\{a, b\}) = X$, $k_1(\{a\}) = \{a, c\}$, $k_1(\{b\}) = k_1(\{b, c\}) = \{b\}$, $k_1(\{c\}) = \{c\}$.

$k_2(\phi) = \phi$, $k_2(X) = k_2(\{b, c\}) = X$, $k_2(\{a\}) = \{a\}$, $k_2(\{b\}) = k_2(\{a, b\}) = \{a, b\}$, $k_2(\{c\}) = k_2(\{a, c\}) = \{a\}$.

In this set $\{b\} \subseteq \{a, b\}$ is a $(k_1, k_2) - \pi g\alpha$ closed set.

Proposition 3.3. If A and B are $(k_1, k_2) - \pi g\alpha$ closed sets then so is $A \cup B$.

Proof. Let A and B be two $(k_1, k_2) - \pi g\alpha$ closed sets. Let U be $k_1\pi$ open set in X. Let $(A \cup B) \subseteq U$. Since A and B are $(k_1, k_2) - \pi g\alpha$-closed sets, $K_{2\alpha}(A) \subseteq U$ and $k_{2\alpha}(B) \subseteq U$. Hence $k_{2\alpha}(A \cup B) \subseteq U$. Thus $A \cup B$ is $(k_1, k_2) - \pi g\alpha$ closed set.
Proposition 3.4. If A is (k_1, k_2)-$\pi g\alpha$ closed set then $k_{2\alpha}(A) - A$ contains no non-empty k_1-π closed sets.

Proof. Let A be $((k_1, k_2)$-$\pi g\alpha$ closed set. Let U be a non-empty k_1-π closed contained in $k_{2\alpha}(A) - A$. Now, $U \subseteq k_{2\alpha}(A)$ and $U \subseteq A$ and $A \subseteq U^c$. Since U is k_1-π closed, U^c is k_1-π open. Thus $k_{2\alpha}(A) \subseteq U^c$. Consequently, $U \subseteq [k_{2\alpha}(A)]^c$ and $U \subseteq k_{2\alpha}(A) \cap [k_{2\alpha}(A)]^c = \phi$. Therefore, $U = \phi$ and $k_{2\alpha}(A) - A$ contains no non-empty k_1-π closed sets.

Proposition 3.5. Let (X, k_1, k_2) be biČech closure space, For each x in X, \{x\} is k_1-π closed or \{x\}c is (k_1, k_2)-$\pi g\alpha$ closed set.

Proof. Let (X, k_1, k_2) be biČech closure space. Suppose that \{x\} is not k_1-π closed set, \{x\}c is not k_1-π open set. Therefore the only k_1-π open set containing \{x\}c is X. Thus \{x\}$^c \subseteq X$. Also $k_{2\alpha}[\{x\}^c] \subseteq k_{2\alpha}(X) = X$. Hence \{x\}c is a $\pi g\alpha$ closed set.

Proposition 3.6. Let A be (k_1, k_2)-$\pi g\alpha$ closed set and if A is k_1-π open set then $A = k_{2\alpha}(A)$.

Proof. Let A be (k_1, k_2)-$\pi g\alpha$ closed subset of a biČech closure space (X, k_1, k_2) and let A be k_1-π open set. Then $k_{2\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is k_1-π open set in X. Since A is k_1-π open and $A \subseteq A$, we have $k_{2\alpha}(A) \subseteq A$. But always $A \subseteq k_{2\alpha}(A)$. Thus, $A = k_{2\alpha}(A)$.

Proposition 3.7. Let $A \subseteq Y \subseteq X$ and suppose that A is (k_1, k_2)-$\pi g\alpha$ closed set in (X, k_1, k_2). Then A is (k_1, k_2)-$\pi g\alpha$ closed relative to Y.

Proof. Let S be any k_1-π open set in Y such that $A \subseteq S$. Then $S = U \cap Y$ for some U which is k_1-π open set in X. Therefore $A \subseteq U \cap Y$ implies $A \subseteq U$.
Since A is (k_1,k_2)-$\pi g\alpha$ closed set in X, we have $k_{2\alpha}(A) \subseteq U$. Hence $Y \cap k_{2\alpha}(A) \subseteq Y \cap U = S$. Thus A is $\pi g\alpha$ -closed set relative to Y.

\section*{4 (k_1,k_2)-$\pi g\alpha$ open sets}

\textbf{Definition 4.1.} A subset A in bi\v{C}ech closure space (X, k_1, k_2) is called (k_1,k_2)-$\pi g\alpha$ open set if A^c is (k_1,k_2)-$\pi g\alpha$ closed set in (X, k_1, k_2).

\textbf{Proposition 4.2.} A subset A of (X, k_1, k_2) is called (k_1,k_2)-$\pi g\alpha$ open set if and only if $F \subseteq \text{int}_{k_2}(A)$ whenever F is k_1-π closed set and $F \subseteq A$.

\textit{Proof.} Suppose A is (k_1,k_2)-$\pi g\alpha$ open set in (X, k_1, k_2). Let F be k_1-π closed set and $F \subseteq A$. Then F^c is k_1-π open set and $A^c \subseteq F^c$. Since A^c is (k_1,k_2)-$\pi g\alpha$ closed set, we have $k_{2\alpha}(A^c) \subseteq F^c$. This implies $F \subseteq [k_{2\alpha}(A^c)]^c = \text{int}_{k_2}(A)$. That is $F \subseteq \text{int}_{k_2}(A)$ whenever F is k_1-π closed set and $F \subseteq A$. Let V be any k_1-π open set in X such that $A^c \subseteq V$. Thus $V^c \subseteq A$ and V^c is k_1-semi closed. Therefore, $V^c \subseteq \text{int}_{k_2}(A)$. Hence we get $[\text{int}_{k_2}(A)]^c \subseteq V$. Implies $k_{2\alpha}(A^c) \subseteq V$ gives A^c is (k_1,k_2)-$\pi g\alpha$ closed set. Thus A is (k_1,k_2)-$\pi g\alpha$ open set.

\textbf{Corollary 4.3.} A subset A of (X, k_1, k_2) is (k_1,k_2)-$\pi g\alpha$ closed set, then $k_{2\alpha}(A) - A$ is (k_1,k_2)-$\pi g\alpha$ open set.

\textit{Proof.} Let F be k_1-π closed set such that $F \subseteq k_{2\alpha}(A) - A$. Then using proposition 3.6, $F = \emptyset$. Therefore $F \subseteq \text{int}_{2\alpha}\{k_{2\alpha}(A) - A\}$ and $k_{2\alpha}(A) - A$ is (k_1,k_2)-$\pi g\alpha$ open set.

\textbf{Proposition 4.4.} If A and B be (k_1,k_2)-$\pi g\alpha$ open set, then so is $A \cap B$.

\hfill \Box
Proof. Let \(A^c \cup B^c \subseteq U \) where \(U \) is \(k_1-\pi \)-open. This implies \(A^c \subseteq U \) and \(B^c \subseteq U \), gives \(k_{2\alpha} (A^c) \subseteq U \) and \(k_{2\alpha} (B^c) \subseteq U \). Thus \(k_{2\alpha} (A^c) \cup k_{2\alpha} (B^c) \subseteq U \). Therefore \(k_{2\alpha} (A^c \cup B^c) \subseteq U \). Therefore \(A \cap B \) is \((k_1,k_2)\)-\(\pi g\alpha \) open set.

\[\square \]

5 \((k_1,k_2)\)-\(\pi g\alpha - T_{\frac{1}{2}}\) biclosure space

Definition 5.1. A biclosure space \((X, k_1, k_2)\) is called a \(\pi g\alpha - T_{\frac{1}{2}}\) biclosure space if every \(\pi g\alpha \)-closed subset of \((X, k_1, k_2)\) is a \(k_1-\alpha \) closed.

Proposition 5.2. The biclosure space \((X, k_1, k_2)\) is a \(\pi g\alpha - T_{\frac{1}{2}}\) space iff every \(\{x\}\) of \(X \) is either \(k_1-\alpha \) open or \(k_2-\pi \) closed.

Proof. Let \(x \in X \) and suppose that \(\{x\}\) is not a \(k_2-\pi \)-closed subset of \(X \). Then \(X - \{x\}\) is not a \(k_2-\pi \) open subset of \(X \). The only \(\pi \)-open subsets of \((X, k_2)\) containing \(X - \{x\}\) is \(X \), hence \(X - \{x\}\) is a \((k_1,k_2)\)-\(\pi g\alpha \) closed subset of \(X \). Since \((X, k_1, k_2)\) is a \(\pi g\alpha - T_{\frac{1}{2}}\) biclosure space, \(X - \{x\}\) is \(k_1-\alpha \) closed subset of \(X \). Consequently \(\{x\}\) is \(k_1-\alpha \)-open subset of \(X \).

Conversely. Let \(A \) be \((k_1,k_2)\)-\(\pi g\alpha \) closed subset of \((X, k_1,k_2)\). Suppose \(x \notin A \), then \(\{x\} \subseteq X - A \) and we have \(A \subseteq X - \{x\}\). If \(\{x\}\) is \(k_1-\alpha \) open, then \(X - \{x\}\) is \(k_1-\alpha \) closed subset of \(X \) and we have \(k_{1\alpha}(A) \subseteq k_1(X - \{x\}) = X - \{x\} \) and thus \(x \notin k_{1\alpha}(A) \). If \(\{x\}\) is \(k_2-\pi \) closed subset of \(X \) then \(X - \{x\}\) is \(k_2-\pi \) open subset of \(X \). Since \(A \) is \((k_1,k_2)\)-\(\pi g\alpha \) closed, \(k_{2\alpha}(A) \subseteq X - \{x\}\). Therefore \(\{x\} \notin k_{1\alpha}(A) \) and we get \(k_{1\alpha}(A) \subseteq A \). Thus \(k_{1\alpha}(A) = A \) and \(A \) is \(k_1-\alpha \) closed in \(X \) and \(X \) is \(\pi g\alpha - T_{\frac{1}{2}} \) space.

\[\square \]

6 Separation Axioms

In this section we introduce the concept of generalized \(\pi g\alpha \)-Hausdorff biclosure spaces, \(\pi g\alpha \)-regular biclosure spaces and study some of the seperation axioms.

Definition 6.1. A biclosure space \((X, k_1, k_2)\) is said to be

1. \((k_1, k_2)\)-\(\pi g\alpha\)-Hausdorff space whenever \(x\) and \(y\) are distinct points of \(X\) there exist a \(k_1\)-\(\pi g\alpha\)-open subset \(U\) and \(k_2\)-\(\pi g\alpha\) open subset \(V\) of \(X\) such that \(x \in U\), \(y \in V\) and \(U \cap V = \phi\).

2. \((k_1, k_2)\)-\(\pi g\alpha\)-regular space if for any closed subset \(F\) of \((X)\) and any point \(x \in X - F\), there exist \(k_2\)-\(\pi g\alpha\) open subsets \(U\) and \(V\) of \(X\) such that \(x \in U\), \(F \subseteq V\) and \(U \cap V = \phi\).

Definition 6.2. Let \((X, u_1,u_2)\) and \((Y,v_1,v_2)\) be closure spaces. A map \(f : X \to Y\) is called \(\pi g\alpha\)-irresolute, if \(f^{-1}(F)\) is a \(\pi g\alpha\)-closed subset of \(X\) for every \(\pi g\alpha\)-closed subset \(F\) of \((Y,v)\).

Clearly, a map \(f : X \to Y\) is \(\pi g\alpha\)-irresolute if and only if \(f^{-1}(G)\) is a \(\pi g\alpha\)-open subset of \((X, u)\) for every \(\pi g\alpha\)-open subset \(G\) of \((Y,v)\).

Definition 6.3. Let \((X, u_1,u_2)\) and \((Y,v_1,v_2)\) be biclosure spaces and let \(i \in \{1, 2\}\). A map \(f : (X, u_i) \to (Y,v_i)\) is called \(i\)-\(\pi g\alpha\)-irresolute if the map \(f : (X, u_i) \to (Y,v_i)\) is \(\pi g\alpha\)-irresolute. A map \(f\) is called \(\pi g\alpha\)-irresolute if \(f\) is \(i\)-\(\pi g\alpha\)-irresolute for each \(i \in \{1, 2\}\).

Proposition 6.4. Let \((X, u_1,u_2)\) and \((Y, v_1,v_2)\) be biclosure spaces. Let \(f : (X, u_1,u_2) \to (Y, v_1,v_2)\) be injective and \(\pi g\alpha\)-irresolute. If \((Y, v_1,v_2)\) is a \((v_1,v_2)\)-\(\pi g\alpha\)-Hausdorff biclosure space, then \((X, u_1,u_2)\) is a \((u_1,u_2)\)-\(\pi g\alpha\)-Hausdorff space.

Proof. Let \(x\) and \(y\) be any two distinct points of \(X\). Then \(f(x)\) and \(f(y)\) are distinct points of \(Y\). Since \((Y, v_1,v_2)\) is a \((v_1,v_2)\)-\(\pi g\alpha\)-Hausdorff biclosure space, there exists a disjoint \(v_1\)-\(\pi g\alpha\)-open subset \(U\) of \((Y,v_1)\) and \(v_2\)-\(\pi g\alpha\)-open subset \(V\) of \((Y,v_2)\) containing \(f(x) \in U\) and \(f(y) \in V\) respectively. Since \(f\) is
$\pi g\alpha$-irresolute and $U \cap V = \phi$, $f^{-1}(U)$ is a $u_1-\pi g\alpha$ open subset of X and $f^{-1}(V)$ is a $u_2-\pi g\alpha$ open subset of X such that $f^{-1}(U) \cap f^{-1}(V) = \phi$ and (X, u_1,u_2) is a $\pi g\alpha$-Hausdorff biclosure space.

Proposition 6.5. Let (X, u_1,u_2) and (Y, v_1,v_2) be biclosure spaces. Let $f : (X, u_1,u_2) \to (Y, v_1,v_2)$ be injective, closed and $\pi g\alpha$-irresolute. If (Y, v_1,v_2) is a $\pi g\alpha$-regular biclosure space, then (X, u_1,u_2) is a $\pi g\alpha$-regular biclosure space.

References

Received: September, 2010