F-Semiprime Ideals in Γ_N—Semiring

Sujit Kumar Sardar

Department of Mathematics
Jadavpur University
Kolkata-700032
West Bengal, India
sksardarjumath@gmail.com

Bibhas Chandra Saha

Chandidas Mahavidyalaya
Khujutipara, Birbhum,
West Bengal, India, PIN 731215
bibhas_sh@yahoo.co.in

Arup Mukhopadhyay

Department of Mathematics
Bankura Christian College, Bankura
amjumath@gmail.com

Abstract

We investigate here a general type of regularity and a general type of semiprime ideal i.e., F-semiprime ideal in a Γ_N—semiring S with respect to different mappings viz., $+()$, $+^()$, $*()$, $*^()$, $S()$, $\Gamma()$.

Mathematics Subject Classification: 16Y60, 16Y99, 20N10

Keywords: Γ-semiring, Γ_N-semiring, operator semirings, Von Neumann regularity, D-regularity, λ—regularity, f-regularity, F-semiprime ideal

1 Introduction

The concept of Γ-semiring was introduced by M. M. K. Rao[2] in 1995 as a generalization of semirings. Dutta et al[1] introduced the notion of operator semirings of a Γ-semiring in 2002 and they obtained some nice correspondences between a Γ-semiring and its operator semirings. The Γ-semiring introduced
by Rao was one sided which was in the sense of Barnes. In 2008 Sardar et al[7]
introduced the notion of a both sided \(\Gamma \)-semiring in the sense of Nobusawa
which they called Nobusawa \(\Gamma \)-semiring or \(\Gamma_N \)-semiring. They also introduced
a general type of regularity (which they called F regularity)[4] and general type
of semiprime ideal (which they called F semiprime ideal) in semiring[4] in the
year 2009. Subsequently they extended these ideas to \(\Gamma \)-semiring[6, 5] in the
year 2010. They mainly studied the mappings \((x)^+, (x)^+/, (x)^*/(y)^*/(y)'\). Since more
mappings viz., \(+(), (+/(), (*)', (S(), \Gamma() \) exist for a Nobusawa \(\Gamma \)-semiring,
it is natural to investigate the behaviour of F-semiprime ideals under these
mappings. This paper is the outcome of this investigation.

For the convenience of the reader we recall the following diagram which
shows the domain and co-domain of the mappings mentioned above. Their
definitions are given in appropriate places.

\[
\begin{array}{c}
P(S) & \xrightarrow{S()} & P(S) \\
\Gamma() & \xrightarrow{P(\Gamma)} & P(R) \\
P(L) & \xrightarrow{P(\Gamma)} & P(L) \\
P(\Gamma) & \xrightarrow{\Gamma()} & P(R)
\end{array}
\]

P\((S), P(\Gamma), P(L) \) and P\((R) \) are respectively the power sets of S, \(\Gamma \), L and R.

2 Preliminaries

We recall the following so as to use in the sequel.

Definition 2.1 [2] Let S and \(\Gamma \) be additive commutative monoids. S is
called a \(\Gamma \)-semiring if there exits a mapping \(S \times \Gamma \times S \rightarrow S \) (with \((m, \gamma, n) \rightarrow m \gamma n \)) satisfying following condition for all \(m, n, p \in S \) and for all \(\gamma, \mu \in \Gamma \):

(i) \(m \gamma (n+p) = m \gamma n + m \gamma p \)
(ii) \((m+n) \gamma p = m \gamma p + n \gamma p \)
(iii) \(m(\gamma + \mu)n = m \gamma n + m \mu n \)
(iv) \(m\gamma(n\mu p) = (m\gamma n)mp \)
(v) \(m\gamma 0 = 0\gamma m = 0 \), \(0 \) is the zero element of \(S \)
(vi) \(m\theta n = 0 \), \(\theta \) is the zero element of \(\Gamma \).

If \(A \) and \(B \) are subsets of a \(\Gamma \)-semiring \(S \) and \(\Delta \subseteq \Gamma \), we denote by \(A\Delta B \), the subset of \(S \) consisting of all finite sums of the form \(\sum a_i\alpha_ib_i \) where \(a_i \in A, b_i \in B \) and \(\alpha_i \in \Delta \).

An additive subsemigroup \(I \) of a \(\Gamma \)-semiring \(S \) is called a left(right) ideal of \(S \) if \(S\Gamma I \subseteq I \) (\(I\Gamma S \subseteq I \)). If \(I \) is both a left ideal and right ideal then \(I \) is called a two-sided ideal or simply an ideal of \(S \).

Definition 2.2 [1] Let \(S \) be a \(\Gamma \)-semiring and \(F \) be the free additive commutative semigroup generated by \(S \times \Gamma \). Then the relation \(\rho \) on \(F \), defined by
\[
\sum_{i=1}^{m}(x_i,\alpha_i)\rho \sum_{j=1}^{n}(y_j,\beta_j) \text{ if and only if } \sum_{i=1}^{m}x_i\alpha_i a = \sum_{j=1}^{n}y_j\beta_j a \text{ for all } a \in S \text{ (m, n} \in Z^+) \text{ is a congruence on } F. \text{ Congruence class containing } \sum_{i=1}^{m}(x_i,\alpha_i) \text{ is denoted by } \sum_{i=1}^{m}[x_i,\alpha_i]. \text{ Then } F/\rho \text{ is an additive commutative semigroup. Now } F/\rho \text{ forms a semiring with the multiplication defined by } \left(\sum_{i=1}^{m}[x_i,\alpha_i]\right) \left(\sum_{j=1}^{n}[y_j,\beta_j]\right) = \sum_{i,j}[x_i\alpha_i y_j,\beta_j]. \text{ This semiring is denoted by } L \text{ and called the left operator semiring of the } \Gamma \text{-semiring } S.

Dually the right operator semiring \(R \) of the \(\Gamma \)-semiring \(S \) has been defined where
\[
R = \left\{ \sum_{i=1}^{m}[\alpha_i,x_i]: \alpha_i \in \Gamma, x_i \in S, i = 1, 2, ..., m; m \in Z^+ \right\}
\]
and the multiplication on \(R \) is defined as \(\left(\sum_{i=1}^{m}[\alpha_i,x_i]\right) \left(\sum_{j=1}^{n}[\beta_j,y_j]\right) = \sum_{i,j}[\alpha_i,x_i\beta_j y_j]. \) Let \(S \) be a Nobusawa \(\Gamma \)-semiring and \(L \) and \(R \) respectively be the left and right operator semirings of the associated \(\Gamma \)-semiring \(S \). For any subset \(A \) of \(R \) we define \(^* A = \left\{ \gamma \in \Gamma: [\gamma,S] = [\{\gamma\},S] \subseteq A \right\} \) and \(Q \subseteq L \), we define \(^+ Q \) = \{ \gamma \in \Gamma: [S,\gamma] = [S,\{\gamma\}] \subseteq Q \}.

Again for \(\Theta \subseteq \Gamma \) we define \(^* \Theta = \{ r \in R: \tau\Gamma \subseteq \Theta \} \) and \(^{+} \Theta = \{ l \in L: \Gamma l \subseteq \Theta \} \).

Let \(A \subseteq S \) and \(\Phi \subseteq \Gamma \). Then \(\Gamma(A) = \{ \alpha \in \Gamma: SaS \subseteq A \} \), where \(SaS \) denotes the finite sums of the form \(\sum_{i=1}^{k}u_i\alpha v_i \), \(u_i, v_i \in S \) and \(S(\Phi) = \{ s \in S: \Gamma s \Gamma \subseteq \Phi \} \), where \(\Gamma s \Gamma \) denotes the finite sums of the form \(\sum_{j=1}^{p}\gamma_j s \lambda_j \), \(\gamma_j, \lambda_j \in \Gamma \).
Definition 2.3 Let S be a $Γ-$semiring and $Γ$ be a S-semiring. If for $a, b, c \in S$ and $α, β, γ \in Γ$, $(αab)βc = a(αβ)c$ and $(αaβ)bγ = α(ab)γ = αa(βbγ)$ then S is called a weak Nobusawa $Γ-$semiring. Also if the following condition hold: for all $s_1, s_2 \in S$, $s_1 α s_2 = s_1 β s_2$ implies $α = β$, then S is called a Nobusawa $Γ-$semiring or simply $Γ_N$-semiring.

Definition 2.4 [1] Let S be a $Γ-$semiring and L and R be its left operator semiring and right operator semiring respectively. If there exists an element $\sum_{i=1}^{m} [e_i, δ_i] \in L \sum_{j=1}^{n} [γ_j, x_j] \in R$ such that $\sum_{i=1}^{m} e_i δ_i a = a$ (respectively $\sum_{j=1}^{n} a γ_j x_j = a$) for all $a \in S$ then S is said to have the left unity $\sum_{i=1}^{m} [e_i, δ_i]$ (respectively right unity $\sum_{j=1}^{n} [γ_j, x_j]$).

Definition 2.5 [4] [5] For every semiring $(Γ-$semiring) S, let us associate a mapping $F_S: S \to G(S, +)$, where $G(S, +)$ denotes the set of all submonoids of $(S, +)$. Then $\{F_S: S$ is a semiring $(Γ-$semiring)\} is called a regularity for semirings (respectively $Γ-$semirings) if the following conditions are satisfied
(a) if $Φ: S \to T$ is a semiring (respectively $Γ-$semiring) epimorphism then $F_T(Φ(a)) = Φ(F_S(a))$ for all $a \in S$,
(b) if A is an ideal of S and $a \in A$, then $F_A(a) \subseteq F_S(a)$,
(c) if $r, s \in S$ and $s \in F_S(r)$, then $F_S(r + s) \subseteq F_S(r)$.

Example 2.6 [4] [5] For a semiring $(Γ$-semiring) S and $F_S: S \to G(S, +)$ be defined by
(i) $F_S(a) = aSa$ (respectively $F_S(a) = aΓSTa$),
(ii) $F_S(a) = SaS$ (respectively $F_S(a) = STaΓS$),
(iii) $F_S(a) = aS$ (respectively $F_S(a) = aΓS$),
(iv) $F_S(a) = Sa$ (respectively $F_S(a) = STa$),
(v) $F_S(a) = SaSaS$ (respectively $F_S(a) = STaΓSTaΓS$), F_S gives rise to a regularity for semirings (respectively $Γ-$semirings). The regularities (i), (ii), (iii), (iv) and (v) are respectively called Von Neumann regularity or simply regularity, $λ$-regularity, right D-regularity, left D-regularity and f-regularity in semirings ($Γ-$semirings).

From the Definition 2.3 it follows that for $Γ_N$-semiring S, S is $Γ-$semiring and $Γ$ is a S-semiring.

3 Main Results

If otherwise not mentioned in this section S will denote a $Γ_N-$semiring and L, R respectively as the left, right operator semirings of the corresponding $Γ-$semiring S.
Definition 3.1 A regularity \(\{ F_X : X \text{ is a semiring or } \Gamma_N-\text{semiring} \} \) is said to satisfy condition D if the following conditions are satisfied:

(a) \(F_\Gamma(\Gamma s \Gamma) \subseteq \Gamma F_\Gamma(s \Gamma) \) for \(s \in S \); ii) \(F_\Gamma(S \alpha S) \subseteq SF_\Gamma(\alpha)S \) for \(\alpha \in \Gamma \).
(b) \(F_\Gamma(r \Gamma) \subseteq F_R(r \Gamma) \) for \(r \in R \); ii) \(F_\Gamma(\Gamma l) \subseteq \Gamma F_L(l) \) for \(l \in L \).
(c) \(F_R([\alpha, S]) = [F_\Gamma(\alpha), S] \) for \(r \in R \); ii) \(F_L([S, \alpha]) = [S, F_\Gamma(\alpha)] \) for \(l \in L \).

Proposition 3.2 (A) Von numann regularity satisfies the condition D, (B) Left D-regularity satisfies the condition D, (C) Right D-regularity satisfies the condition D, (D) \(\lambda \)-regularity satisfies the condition D, (E) \(f \)-regularity satisfies the condition D.

Proof. (A) Let \(F \) denote the Von numann regularity.

a) i) Let \(s \in S \). Then \(F_\Gamma(\Gamma s \Gamma) = (\Gamma s \Gamma)ST S(\Gamma s \Gamma) \)
\(\subseteq \Gamma s[\Gamma, S][\Gamma, S] \Gamma s \Gamma \)
\(\subseteq \Gamma sR^2 s \Gamma \)
\(\subseteq \Gamma sR \Gamma s \Gamma \)
\(\subseteq \Gamma s[\Gamma, S] \Gamma s \Gamma \)
\(\Gamma (s \Gamma ST s) \Gamma \)
\(= \Gamma F_\Gamma(s \Gamma) \).

ii) Let \(\alpha \in \Gamma \). Then \(F_S(S \alpha S) = (S \alpha S) \Gamma ST S(S \alpha S) \)
\(\subseteq S \alpha[\Gamma, S][\Gamma, S] S \alpha S \)
\(\subseteq S \alpha L^2 S \alpha S \)
\(\subseteq S \alpha L \alpha S \alpha S \)
\(\subseteq S \alpha[\Gamma, S] S \alpha S \)
\(\subseteq S(\alpha \Gamma ST S \alpha) S \)
\(= SF_\Gamma(\alpha) S. \)

b)i) Let \(r \in R \). Then \(F_\Gamma(r \Gamma) = (r \Gamma)ST S(r \Gamma) \)
\(\subseteq r[\Gamma, S][\Gamma, S] r \Gamma \)
\(\subseteq r R^2 r \Gamma \)
\(\subseteq r R r \Gamma \)
\(= F_R(r \Gamma) \).

ii) Let \(l \in L \). Then \(F_\Gamma(\Gamma l) = (\Gamma l)ST S(\Gamma l) \)
\(\subseteq \Gamma l[S, \Gamma][S, \Gamma] l \)
\(\subseteq \Gamma lL^2 l \)
\(\subseteq \Gamma l \Gamma l \)
\(= \Gamma F_L(l) \).

(c i) Let \(\alpha \in \Gamma \). Then \(F_R([\alpha, S]) = [\alpha, S] R[\alpha, S] \)
\(= [\alpha, S][\Gamma, S][\alpha, S] \)
\(= [\alpha \Gamma ST S \alpha, S] \)
\(= [F_\Gamma(\alpha), S]. \)

ii) Let \(\alpha \in \Gamma \). Then \(F_L([S, \alpha]) = [S, \alpha] L[S, \alpha] \)
\(= [S, \alpha][\Gamma, S][S, \alpha] \)
\(= [S, \alpha \Gamma ST S \alpha]. \)
By applying similar argument we obtain the other cases. ■

The following examples shows that not every regularity satisfies condition D.

Example 3.3 Let $S=\Gamma=Z_0^+$. Then S is a Γ_N-semiring with respect to usual addition and multiplication. Suppose $F_S(a) = \{x + a\alpha x : x \in S\}$ for some fixed $\alpha \in \Gamma$, where $a \in S$ (hence $F_{\Gamma}(\alpha) = \{\gamma + \alpha s\gamma : \gamma \in \Gamma\}$ for some fixed $s \in S$, where $\alpha \in \Gamma$). Then F gives rise to a regularity. Now if we take $r = [1,1] \in R$ and $\alpha = 2 \in \Gamma$, then $F_{\Gamma}(r\Gamma) = Z_0^+$. Again $F_{R}(r\Gamma) = F_{R}([1,1])Z_0^+ = 2Z_0^+$. Hence $F_S(r\Gamma) \not\subseteq F_{R}(r\Gamma)$.

Definition 3.4 [4][6] Let $\{F_S: S$ is a semiring$; \Gamma_N$-semiring$\}$ be a regularity for Γ_N-semirings. An ideal I of a semiring$; \Gamma_N$-semiring$\}$ S is called F-semiprime if $F_S(r) \subseteq I$ implies $r \in I$ where $r \in S$.

Henceforth S will denote a Γ_N-semiring with unities and L,R be the left and right operator semirings of S respectively and $\{F_X: X$ is a semiring or Γ_N-semiring$\}$ will be a regularity for semirings or Γ_N-semirings satisfying condition D.

Proposition 3.5 Suppose P is an F-semiprime ideal of S. Then $\Gamma(P)$ is an F-semiprime ideal of Γ.

Proof. Let P be an F-semiprime ideal of S. Then P is an ideal of S. Hence $\Gamma(P)$ is an ideal of Γ (cf. Theorem 4.1[7]). Let $\alpha \in \Gamma$ and $F_{\Gamma}(\alpha) \subseteq \Gamma(P)$. Then $SF_{\Gamma}(\alpha)S \subseteq \Gamma(P)S$.

$\Rightarrow SF_{\Gamma}(\alpha)S \subseteq P$ [follows from the definition of $\Gamma(P)$],

$\Rightarrow F_S(S\alpha S) \subseteq P$ [since F satisfies condition D],

$\Rightarrow S\alpha S \subseteq P$ [since P is an F-semiprime ideal of S],

$\Rightarrow \alpha \in \Gamma(P)$ [follows from the definition of $\Gamma(P)$].

Consequently, $\Gamma(P)$ is an F-semiprime ideal of Γ. ■

Proposition 3.6 Suppose Φ is an F-semiprime ideal of Γ. Then $S(\Phi)$ is an F-semiprime ideal of S.

Proof. Let Φ be an F-semiprime ideal of Γ. Then Φ is an ideal of Γ. Hence $S(\Phi)$ is an ideal of S (cf. Note bellow Theorem 4.1[7]). Let $a \in S$ and $F_S(a) \subseteq S(\Phi)$. Then $SF_{\Gamma}(\alpha)S \subseteq \Gamma(P)S$.

$\Rightarrow \Gamma F_S(a) \Gamma \subseteq \Phi$ [follows from the definition of $S(\Phi)$],

$\Rightarrow F_{\Gamma}(\Gamma a \Gamma) \subseteq \Phi$ [since F satisfies condition D],

$\Rightarrow \Gamma a \Gamma \subseteq \Phi$ [since Φ is an F-semiprime ideal of Γ],

$\Rightarrow a \in S(\Phi)$ [follows from the definition of $S(\Phi)$].

Consequently, $S(\Phi)$ is an F-semiprime ideal of S. ■
Proposition 3.7 Let P be an F-semiprime ideal of R. Then *P is an F-semiprime ideal of Γ.

Proof. Let P be an F-semiprime ideal of R. Then P is an ideal of R. Hence *P is an ideal of Γ (cf. Note below Theorem 4.11[7]). Let $\alpha \in \Gamma$ and $F_{\Gamma}(\alpha) \subseteq ^*P$. Then $[F_{\Gamma}(\alpha), S] \subseteq [^*P, S]$.

$\Rightarrow [F_{\Gamma}(\alpha), S] \subseteq P$ [follows from the definition of *P],

$\Rightarrow F_R([\alpha, S]) \subseteq P$ [since F satisfies condition D],

$\Rightarrow [\alpha, S] \subseteq P$ [since P is an F-semiprime ideal of R],

$\Rightarrow \alpha \in ^*P$ [follows from the definition of *P].

Consequently, *P is an F-semiprime ideal of Γ.

Analogously we can prove the following result for left operator semiring.

Proposition 3.8 Let Q be an F-semiprime ideal of L. Then ^+Q is an F-semiprime ideal of Γ.

Proposition 3.9 Let Φ be an F-semiprime ideal of Γ. Then $^*\Phi$ is an F-semiprime ideal of R.

Proof. Let Φ be an F-semiprime ideal of Γ. Then Φ is an ideal of R. Hence $^*\Phi$ is an ideal of Γ (cf. Note below Theorem 4.11[7]). Let $r \in R$ and $F_{\Gamma}(r) \subseteq ^*\Phi$. Then $F_R(r) \subseteq ^*\Phi$.

$\Rightarrow F_R(r) \Gamma \subseteq \Phi$ [follows from the definition of $^*\Phi$],

$\Rightarrow F_{\Gamma}(r \Gamma) \subseteq \Phi$ [since F satisfies condition D],

$\Rightarrow r \Gamma \subseteq \Phi$ [since Φ is an F-semiprime ideal of Γ],

$\Rightarrow r \in ^*\Phi$ [follows from the definition of $^*\Phi$].

Consequently, $^*\Phi$ is an F-semiprime ideal of R.

Analogously we can prove the following result for left operator semiring.

Proposition 3.10 Let Φ be an F-semiprime ideal of Γ. Then $^+\Phi$ is an F-semiprime ideal of L.

To conclude the paper we obtain below various inclusion preserving bijections for F-semiprime ideals.

Theorem 3.11 Let S be a Γ_N-semiring with unities and L, R be respectively the left and right operator semirings of the corresponding Γ-semiring S. Suppose $\{F_X : X$ is a semiring or Γ-semiring $\}$ is a regularity for semirings or Γ-semirings satisfying the condition D. Then there exists

(i) an inclusion preserving bijection between the set of F-semiprime ideals of S and that of Γ via the mapping $I \mapsto \Gamma(I)$,

(ii) an inclusion preserving bijection between the set of F-semiprime ideals of Γ and that of R via the mapping $P \mapsto ^*P$,

(iii) an inclusion preserving bijection between the set of F-semiprime ideals of Γ and that of L via the mapping $Q \mapsto ^+Q$.

Proof. (i) We know that \(I \mapsto \Gamma(I) \) is an inclusion preserving bijection between the set of ideals of \(S \) and that of \(\Gamma \). Now since an \(F \)-semiprime ideal is firstly an ideal, the rest of the theorem follows from Propositions 3.5 and 3.6.

(ii) By Theorem 4.15 of [7], \(P \mapsto {}^*P \) is an inclusion preserving bijection between the set of ideals of \(\Gamma \) and that of \(R \). The rest of the theorem follows from Propositions 3.7 and 3.8.

(iii) By Theorem 4.15 of [7], \(Q \mapsto {}^+Q \) is an inclusion preserving bijection between the set of ideals of \(\Gamma \) and that of \(L \). Then the theorem follows from Proposition 3.9 and 3.10.

Concluding Remark. In this paper we discuss a general type of regularity of a \(\Gamma_N \)-semiring \(S \) and corresponding semiprime ideals viz., \(F \)-semiprime ideals. Since corresponding to every \(\Gamma_N \)-semiring there is a matrix semiring \(S_2 = \begin{pmatrix} R & \Gamma \\ S & L \end{pmatrix} \) defined by Sardar et al[3], it is very natural to investigate, as a sequel to this paper, the interrelation between \(S \) and \(S_2 \) in terms of those regularities and corresponding \(F \)-semiprime ideals.

References

Received: October, 2010