Schur Harmonic Convexity of Gini Means

Zhen-Hang Yang

System Division
Zhejiang Province Electric Power Test and Research Institute
Hangzhou, Zhejiang, China, 310014
yzhkm@163.com

Abstract. In this paper, necessary and sufficient conditions for the Schur harmonic convex and Schur harmonic concave of Gini means are given.

Mathematics Subject Classification: 26D15, 26D99, 26B25

Keywords: Schur convexity, Schur harmonic convexity, Gini means, inequality

1. Introduction

Let $p, q \in \mathbb{R}$ and $a, b > 0$. The Gini means are defined as [13].

\begin{equation}
G_{p,q}(a, b) = \begin{cases}
\left(\frac{a^p + b^p}{a^q + b^q} \right)^{1/(p-q)}, & p \neq q, \\
\exp\left(\frac{ap \ln a + bq \ln b}{a^p + b^p} \right), & p = q.
\end{cases}
\end{equation}

It is easy to see that the Gini means $G_{p,q}(a, b)$ are continuous on the domain $\{(a, b; p, q) : a, b \in \mathbb{R}_+; p, q \in \mathbb{R}\}$ and differentiable with respect to $(a, b) \in (0, \infty) \times (0, \infty)$ for fixed $p, q \in \mathbb{R}$. Also, Gini means are symmetric with respect to a, b and p, q.

There has been a lot of literature such as [8, 9, 10, 11, 20, 21, 25, 26, 27, 30, 36, 43, 44, 45], and the related references therein about inequalities and properties of Gini means.

In recent years, the Schur convexity, Schur geometrically convexity and Schur harmonic convexity of $G_{p,q}(a, b)$ have attracted the attention of a considerable number of mathematicians [3, 4, 5, 14, 19, 28, 29, 31, 33, 34, 38, 39, 40]. Sándor [31] proved that the Gini means $G_{p,q}(a, b)$ are Schur convex on $(-\infty, 0] \times (-\infty, 0]$ and Schur concave on $[0, \infty) \times [0, \infty)$ with respect to
(p, q) for fixed a, b > 0 with a ≠ b. Yang [46] improved Sándor’s result and proved that Gini means \(G_{p,q}(a, b) \) are Schur convex with respect to (p, q) for fixed a, b > 0 if and only if \(p + q < 0 \) and Schur concave if and only if \(p + q > 0 \). Wang and Zhang [38, 39] shown that Gini means \(G_{p,q}(a, b) \) are Schur convex with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p + q \geq 1 \), \(p, q \geq 0 \) and Schur concave if and only if \(p + q \leq 1 \), \(p \leq 0 \) or \(p + q \leq 1 \), \(q \leq 0 \).

Gu and Shi [14, 34] also discussed the Schur convexity. Recently, Chu and Xia [5] also proved the same result as Wang and Zhang’s.

For the Schur geometrically convexity, Wang and Zhang [38, 39] proved that Gini means \(G_{p,q}(a, b) \) are Schur geometrically convex with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p + q \geq 0 \) and Schur geometrically concave if \(p + q \leq 0 \).

Gu and Shi [14, 34] also investigated the Schur geometrically convexities of Lehmer means \(G_{p,1-p}(a, b) \) and Gini mans \(G_{p,q}(a, b) \), respectively.

For the Schur harmonic convexity, Xia and Chu [40] gave an necessary and sufficient condition for Lehmer means \(G_{p,1-p}(a, b) \).

Theorem 1 ([40, Theorem 1.1]). The Lehmer mean values \(G_{p,p-1}(a, b) \) are Schur harmonic convex with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p \geq 0 \) and Schur harmonic concave with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p \leq 0 \).

The purpose of this paper is to investigate the Schur harmonic convexity of Gini means \(G_{p,q}(a, b) \), of which the idea is to find the necessary conditions from Lemma 2, and then prove these conditions are sufficient. Our main result is as follows.

Theorem 2. (1) Gini means \(G_{p,q}(a, b) \) are Schur harmonic convex with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p + q + 1 \geq 0 \) and \(\max(p, q) \geq 0 \).

(2) Gini means \(G_{p,q}(a, b) \) are Schur harmonic concave with respect to \((a, b) \in (0, \infty) \times (0, \infty)\) if and only if \(p + q + 1 \leq 0 \) and \(\max(p, q) \leq 0 \).

2. Definitions and Lemmas

Schur convexity was introduced by Schur in 1923 [22], and it has many important applications in analytic inequalities [2, 15, 47], linear regression [35], graphs and matrices [7], combinatorial optimization [17], information-theoretic topics [12], Gamma functions [23], stochastic orderings [32], reliability [16], and other related fields. Recently, Anderson et al. [1] discussed an attractive class of inequalities, which arise from the notation of harmonic convexity.

For convenience of readers, we recall some definitions as follows.

Definition 1. [22, 37] Let \(x = (x_1, x_2, ..., x_n) \) and \(y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n(n \geq 2) \).
(i) x is said to be majorized by y (in symbol $x \prec y$) if

\begin{equation}
\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i \text{ for } 1 \leq k \leq n-1, \quad \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i,
\end{equation}

where $x_1 \geq x_2 \cdots \geq x_n$ and $y_1 \geq y_2 \cdots \geq y_n$ are rearrangements of x and y in a decreasing order.

(ii) $x \geq y$ means $x_i \geq y_i$ for all $i = 1, 2, \cdots, n$. Let $\Omega \subset \mathbb{R}^n (n \geq 2)$. The function $\phi: \Omega \to \mathbb{R}$ is said to be increasing if $x \geq y$ implies $\phi(x) \geq \phi(y)$. ϕ is said to be decreasing if and only if $-\phi$ is increasing.

(iii) $\Omega \subset \mathbb{R}^n$ is called a convex set if $(\alpha x_1 + \beta y_1, \cdots, \alpha x_n + \beta y_n) \in \Omega$ for all x and y, where $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$.

(iv) Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be a set with nonempty interior. Then $\phi: \Omega \to \mathbb{R}$ is said to be Schur convex if $x \prec y$ on Ω implies $\phi(x) \leq \phi(y)$. ϕ is said to be Schur concave if $-\phi$ is Schur convex.

Definition 2. [24, 48] Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n (n \geq 2)$. Denote

\begin{equation}
\frac{1}{x} = \left(\frac{1}{x_1} \frac{1}{x_2} \ldots \frac{1}{x_n} \right) \quad \text{and} \quad \frac{1}{y} = \left(\frac{1}{y_1} \frac{1}{y_2} \ldots \frac{1}{y_n} \right).
\end{equation}

(i) $\Omega \subset \mathbb{R}^n$ is called a harmonic convex set if $(\frac{2x_1y_1}{x_1+y_1}, \cdots, \frac{2x_ny_n}{x_n+y_n}) \in \Omega$ for all x and y.

(ii) Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be a set with nonempty interior. Then function $\phi: \Omega \to \mathbb{R}$ is said to be Schur harmonic convex on Ω if $\frac{1}{x} \prec \frac{1}{y}$ on Ω implies $\phi(x) \leq \phi(y)$. ϕ is said to be Schur harmonic concave if $-\phi$ is Schur harmonic convex.

Definition 3. [22](i) $\Omega \subset \mathbb{R}^n (n \geq 2)$ is called symmetric set, if $x \in \Omega$ implies $Px \in \Omega$ for every $n \times n$ permutation matrix P.

(ii) The function $\phi: \Omega \to \mathbb{R}$ is called symmetric if for every permutation matrix P, $\phi(Px) = \phi(x)$ for all $x \in \Omega$.

The following well-known result was proved by Marshall and Olkin [22] (also see [37]).

Lemma 1. Let $\Omega \subset \mathbb{R}^n$ be a symmetric set with nonempty interior Ω^0 and $\phi: \Omega \to \mathbb{R}$ be continuous on Ω and differentiable in Ω^0. Then ϕ is Schur convex (Schur concave) on Ω if and only if ϕ is symmetric on Ω and

\begin{equation}
(x_1 - x_2) \left(\frac{\partial \phi}{\partial x_1} - \frac{\partial \phi}{\partial x_2} \right) \geq (\leq) 0
\end{equation}

holds for any $x = (x_1, x_2, \ldots, x_n) \in \Omega^0$.

For the Schur harmonic convexity, there has similar result [6, 40, 41].
Lemma 2. Let \(\Omega \subset \mathbb{R}^n \) be a symmetric set with a nonempty interior harmonic convex set \(\Omega^0 \). Let \(\phi : \Omega \to \mathbb{R} \) be continuous on \(\Omega \) and differentiable in \(\Omega^0 \). Then \(\phi \) is Schur harmonic convex (Schur harmonic concave) on \(\Omega \) if and only if \(\phi \) is symmetric on \(\Omega \) and

\[
(x_1 - x_2) \left(x_1^2 \frac{\partial \phi}{\partial x_1} - x_2^2 \frac{\partial \phi}{\partial x_2} \right) \geq (\leq) 0
\]

holds for any \(x = (x_1, x_2, \ldots, x_n) \in \Omega^0 \).

3. Proof of Main Result

Lemma 3. Let \(G = G_{p,q} := G_{p,q}(a,b) \) defined by (1.1) and

\[
A = p + q + 1, \quad B = p - q + 1, \quad C = p - q - 1.
\]

Then

\[
\Delta := (a - b) \left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) = \frac{G \sqrt{ab} (a - b)}{2 \cosh pt \cosh qt} g_{p,q}(t),
\]

where

\[
g_{p,q}(t) = \begin{cases}
(p-q) \sinh At + \sinh Bt + q \sinh Ct & \text{if } p \neq q, \\
\sinh(2p + 1)t + \sinh t + 2pt \cosh t & \text{if } p = q,
\end{cases}
\]

\(t = \ln \sqrt{a/b} \) and \(g(p,q,t) := g_{p,q}(t) \in C^\infty(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+) \).

Proof. For \(p \neq q \), some simple partial derivative calculations yield

\[
\frac{\partial \ln G}{\partial a} = \frac{1}{G} \frac{\partial G}{\partial a} = \frac{1}{p - q} \left(\frac{pa^{p-1}}{a^p + b^p} - \frac{qa^{q-1}}{a^q + b^q} \right),
\]

\[
\frac{\partial \ln G}{\partial b} = \frac{1}{G} \frac{\partial G}{\partial b} = \frac{1}{p - q} \left(\frac{pb^{p-1}}{a^p + b^p} - \frac{qb^{q-1}}{a^q + b^q} \right),
\]

hence,

\[
a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} = \frac{G}{p - q} \left(p \frac{a^{p+1} - b^{p+1}}{a^p + b^p} - q \frac{a^{q+1} - b^{q+1}}{a^q + b^q} \right).
\]

Substituting \(\ln \sqrt{a/b} = t \) and using \(\sinh x = \frac{1}{2}(e^x - e^{-x}) \), \(\cosh x = \frac{1}{2}(e^x + e^{-x}) \), the right hand side above can be written as

\[
a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} = \frac{G \sqrt{ab}}{p - q} \left(\frac{p \sinh(p + 1)t}{\cosh pt} - \frac{q \sinh(q + 1)t}{\cosh qt} \right)
\]

\[
= \frac{G \sqrt{ab}}{2 \cosh pt \cosh qt} \frac{2p \sinh(p + 1)t \cosh qt - 2q \sinh(q + 1)t \cosh pt}{p - q}.
\]
Using the “product into sum” formula for hyperbolic functions and (3.1), we have
\[
(3.6) \frac{\partial^2 G}{\partial a \partial b} - b^2 \frac{\partial^2 G}{\partial b^2} = \frac{G \sqrt{ab}}{2 \cosh pt \cosh qt} \frac{(p - q) \sinh At + p \sinh Bt + q \sinh Ct}{p - q} \]
\[
= \frac{G \sqrt{ab}}{2 \cosh pt \cosh qt} \varphi_{p,q}(t).
\]
For \(p = q\), note \(G_{p,q}(a, b)\) can be expressed as
\[
(3.5) \quad G_{p,q}(a, b) = \int_0^1 Z(tp + (1 - t)q; a, b)dt, \quad \text{where} \quad Z(t; a, b) = e^{a't \ln a + b't \ln b},
\]
the integrand in (3.5) has continuous partial derivatives of any order with respect to \(p, q, a, b\) on \(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+\), hence \(G_{p,q}(a, b) \in C^\infty\). Thus
\[
\frac{\partial G_{p,p}}{\partial a} = \lim_{q \to p} \frac{\partial G_{p,q}}{\partial a}, \quad \frac{\partial G_{p,p}}{\partial b} = \lim_{q \to p} \frac{\partial G_{p,q}}{\partial b}.
\]
From (3.4) and by a limit calculation we obtain
\[
\left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) \bigg|_{q=p} = a^2 \frac{\partial \left(\lim_{q \to p} G \right)}{\partial a} - b^2 \frac{\partial \left(\lim_{q \to p} G \right)}{\partial b} \]
\[
= \lim_{q \to p} \left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) \]
\[
= \lim_{q \to p} \left(\frac{G \sqrt{ab}}{2 \cosh pt \cosh qt} \right) \frac{(p - q) \sinh At + p \sinh Bt + q \sinh Ct}{p - q} \]
\[
= \frac{G \sqrt{ab}}{2 \cosh pt \cosh qt} \varphi_{p,p}(t).
\]
Lastly, let us prove \(g(p, q, t) := g_{p,q}(t) \in C^\infty(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+)\).
It is easy to see
\[
g(p, q, t) = \begin{cases} \frac{1}{p-q} \int_q^p (\sinh A_1 t + (u - q)t \cos A_1 t + \sinh B_1 t + ut \sinh B_1 t + qt \cosh C_1 t)du, & \text{if } p \neq q, \\ \sinh(2p + 1)t + \sinh t + 2pt \cosh t & \text{if } p = q, \end{cases}
\]
where \(A_1 = u + q + 1, \ B_1 = u - q + 1, \ C_1 = u - q - 1.\) With \(u = pv + (1 - v)q,\)
then
\[
(3.6) \quad g(p, q, t) = \int_0^1 \left(\sinh A_2 t + v(p - q)t \cos A_2 t + \sinh B_2 t + (pv + (1 - v)q)t \sinh B_2 t + qt \cosh C_2 t \right)dv,
\]
where \(A_2 = pv + (2 - v)q + 1, \ B_2 = (p - q)v + 1, \ C_2 = (p - q)v - 1.\)
It is clear that the integrand in (3.6) has continuous partial derivatives of any order with respect to p, q, t on $\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+$, which follows $g(p, q, t) \in C^{\infty}(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+)$. This lemma is proved.

Lemma 4. Let $g(t) := g_{p,q}(t)$ and $\beta = \max(|A|, |B|, |C|)$. Then

\[
\lim_{t \to 0} \frac{g(t)}{t} = \lim_{t \to 0} g'(t) = 2(p + q + 1), \tag{3.7}
\]

\[
\lim_{t \to \infty} \frac{2\beta g(t)}{e^{\beta t}} = \lim_{t \to \infty} \frac{2g'(t)}{e^{\beta t}} = \begin{cases} p + q + 1 & \text{if } p > q > 0 \text{ or } -1 > p > q, \\
-q^2/(p-q) & \text{if } p = -1 > q, \\
2(p+1) & \text{if } p > q = 0, \\
p(p-q+1)/(p-q) & \text{if } p > -1, q < 0, p > q, \\
2p+1 & \text{if } p > 0 \text{ or } p < -1, \\
2 & \text{if } p = 0, \\
-\infty & \text{if } -1 \leq p < 0, \end{cases} \tag{3.8}
\]

\[
\lim_{t \to \infty} \frac{2\beta g(t)}{e^{\beta t}} = \lim_{t \to \infty} \frac{2g'(t)}{e^{\beta t}} = \begin{cases} 2p+1 & \text{if } p > 0 \text{ or } p < -1, \\
2 & \text{if } p = 0, \\
-\infty & \text{if } -1 \leq p < 0, \end{cases} \tag{3.9}
\]

Proof. A simple calculation yields

\[
g'(t) = \begin{cases} \frac{(p-q)A \cosh At + pB \cosh Bt + qC \cosh Ct}{p-q} & \text{if } p \neq q, \\
(2p+1) \cosh(2p+1)t + (2p+1) \cosh t + 2pt \sinh t & \text{if } p = q. \end{cases} \tag{3.10}
\]

(3.7) easily follows from a simple limit calculation. For $p \neq q$, since $g(0) = 0$, applying L’Hospital’s rule yields

\[
\lim_{t \to 0} \frac{g(t)}{t} = \lim_{t \to 0} g'(t) = \lim_{t \to 0} \frac{(p-q) \sinh At + p \sinh Bt + q \sinh Ct}{p-q} = \frac{(p-q)A + pB + qC}{p-q} = 2(p + q + 1).
\]

Likewise, for $p = q$, we have

\[
\lim_{t \to 0} \frac{g(t)}{t} = \lim_{t \to 0} g'_{p,p}(t) = \lim_{q \to p} \left(\lim_{t \to 0} \frac{g_{p,q}(t)}{t} \right) = \lim_{q \to p} (2(p + q + 1)) = 2(2p + 1).
\]
(3.9) easily follows from the limit relation

\[
\lim_{t \to \infty} \frac{2 \cosh \alpha t}{e^{\beta t}} = \begin{cases}
1 & \text{if } \beta = |\alpha|, \\
0 & \text{if } \beta > |\alpha|.
\end{cases}
\]

In the case of \(p > q \), we have

\[
(p - q) \lim_{t \to \infty} \frac{2g(t)}{e^{\beta t}} = (p - q) \lim_{t \to \infty} \frac{2g'(t)}{e^{\beta t}}
= \lim_{t \to \infty} \frac{(p - q)A \cosh At + pB \cosh Bt + qC \cosh Ct}{e^{\beta t}}
= \begin{cases}
(1) (p - q)A & \text{if } |p + q + 1| > |p - q + 1|, |p - q - 1|, \\
(2) (p - q)A + pB & \text{if } |p + q + 1| = |p - q + 1| > |p - q - 1|, \\
(3) (p - q)A + qC & \text{if } |p + q + 1| = |p - q - 1| > |p - q + 1|, \\
(4) pB & \text{if } |p - q + 1| > |p + q + 1|, |p - q - 1|, \\
(5) pB + qC & \text{if } |p - q + 1| = |p - q - 1| > |p + q + 1|, \\
(6) (p - q)A + pB & \text{if } |p + q + 1| > |p - q - 1|, \\
qC & \text{if } |p - q - 1| > |p + q + 1|, |p - q + 1|, \\
(7) qC & \text{if } |p - q - 1| = |p + q + 1| > |p - q + 1|, \\
(8) (p - q)A + qC & \text{if } |p + q - 1| = |p + q + 1| > |p - q + 1|, \\
(9) pB + qC & \text{if } |p - q - 1| = |p - q + 1| > |p + q + 1|, \\
(10) (p - q)A + pB + qC & \text{if } |p + q + 1| = |p - q - 1| = |p - q + 1|.
\end{cases}
\]

In all cases above, the case (2)=(6), case (3)=(8), case (5)=(9); while the case (3), (7) and case (5), (10) are required to satisfy \(p < q \) and \(p = q \), respectively. After removing three the same cases, that are case (6), (8), (9); and two cases of being required \(p < q \), that are case (3), (7); and two cases of being required \(p = q \), that are case (5), (10), and by rearrangements, we obtain

\[
(p - q) \lim_{t \to \infty} \frac{2g(t)}{e^{\beta t}}
= \begin{cases}
(1) (p - q)(p + q + 1) & \text{if } (p + 1)q > 0, \|p(q + 1)\| > 0, p > q, \\
(2) 2p(p + 1) - q(p + q + 1) & \text{if } (p + 1)q = 0, p > q, \\
(4) p(p - q + 1) & \text{if } (p + 1)q < 0, p > q, \\
(p - q)(p + q + 1) & \text{if } p > q > 0 \text{ or } -1 > p > q, \\
-pq^2 & \text{if } p = -1 > q, \\
2p(p + 1) & \text{if } p > q = 0, \\
p(p - q + 1) & \text{if } p > -1, q < 0, p > q.
\end{cases}
\]
Divided by \((p - q)\) in the above limit relation, the first part of (3.9) follows. In the case of \(p = q\). Since \(g(p, q, t) \in C^\infty(\mathbb{R} \times \mathbb{R} \times \mathbb{R}_+)\)

\[
\lim_{t \to \infty} \frac{2\beta g(t)}{e^{\beta t}} = \lim_{t \to \infty} \frac{2\beta g_{p,p}(t)}{e^{\beta t}} = \lim_{q \to p,q < p} \left(\lim_{t \to \infty} \frac{2\beta g_{p,q}(t)}{e^{\beta t}} \right)
\]

\[
= \begin{cases}
(p + q + 1) & \text{if } p > 0 \text{ or } -1 > p, \\
\frac{-q^2}{p-q} & \text{if } p = -1, \\
2(p + 1) & \text{if } p = 0, \\
\frac{p(p-q+1)}{p-q} & \text{if } -1 < p < 0,
\end{cases}
\]

which implies the second part of (3.9).

This completes the proof. ■

Now we can prove the necessity.

Proof of Necessity. If Gini means \(G_{p,q}(a, b)\) are Schur harmonic convex or Schur harmonic concave with respect to \((a, b) \in (0, \infty) \times (0, \infty)\), then

(3.12) \[
\Delta = (a - b) \left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) \geq 0 \text{ for all } a, b \in (0, \infty)
\]

or

(3.13) \[
\Delta = (a - b) \left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) \leq 0 \text{ for all } a, b \in (0, \infty).
\]

Since \(\Delta\) is symmetric with respect to \(a\) and \(b\), without loss of generality we assume \(a > b\), then \(t = \ln \sqrt{a/b} > 0\). From (3.2) \(\Delta \geq (\leq) 0\) for all \(a, b \in (0, \infty)\) if and only if \(g(t) \geq (\leq) 0\) for all \(t > 0\). It follows that

(3.14) \[
\lim_{t \to 0, t > 0} \frac{g(t)}{t} \geq 0 \text{ and } \lim_{t \to \infty} \max(|A|, |B|, |C|) \frac{2g(t)}{e^{t \max(|A|, |B|, |C|)}} \geq 0
\]

or

(3.15) \[
\lim_{t \to 0, t > 0} \frac{g(t)}{t} \leq 0 \text{ and } \lim_{t \to \infty} \max(|A|, |B|, |C|) \frac{g(t)}{e^{t \max(|A|, |B|, |C|)}} \leq 0.
\]

(1) Firstly, let

\[
\Omega_1 = \{(p, q) : p + q + 1 \geq 0 \text{ and } p \geq q, p \geq 0\},
\]

\[
\Omega_1' = \{(p, q) : p + q + 1 \geq 0 \text{ and } q \geq p, q \geq 0\}.
\]
Then
\[\Omega_1 \cup \Omega'_1 = \{(p, q) : p + q + 1 \geq 0 \text{ and } \max(p, q) \geq 0\}. \]

Next we prove \((p, q) \in \Omega_1 \cup \Omega'_1\) is the necessary condition for (3.12).

(1.1) **Case 1:** \(p > q\).

From (3.14) we have

(1.1.1) Subcase 1:
\[
\begin{align*}
2(p + q + 1) &\geq 0, \\
p + q + 1 &\geq 0, \\
(p + 1)q &> 0, \\
p(q + 1) &> 0, \\
p &> q.
\end{align*}
\]

That is \((p, q) \in \Omega_{11} = \{(p, q) : p > q > 0\}\).

(1.1.2) Subcase 2:
\[
\begin{align*}
2(p + q + 1) &\geq 0, \\
2p(p + 1)/(p - q) &\geq 0, \\
p &> q = 0.
\end{align*}
\]

That is \((p, q) \in \Omega_{12} = \{(p, q) : p > q = 0\}\).

(1.1.3) Subcase 3:
\[
\begin{align*}
2(p + q + 1) &\geq 0, \\
p(p - q + 1) &\geq 0, \\
p &> -1, \\
q &< 0, \\
p &> q.
\end{align*}
\]

That is \((p, q) \in \Omega_{13} = \{(p, q) : p + q + 1 \geq 0, p \geq 0 > q\}\).

To sum up, \((p, q) \in \Omega_{11} \cup \Omega_{12} \cup \Omega_{13}\).

(1.2) **Case 2:** \(p < q\). Since \(g_{p,q}(t)\) is symmetric with respect to \(p\) and \(q\), we see that if \(G_{p,q}(a, b)\) is Schur harmonic convex then \((p, q) \in \Omega'_{11} \cup \Omega'_{12} \cup \Omega'_{13}\), where
\[
\begin{align*}
\Omega'_{11} &= \{(p, q) : q > p > 0\}, \\
\Omega'_{12} &= \{(p, q) : q > p = 0\}, \\
\Omega'_{13} &= \{(p, q) : p + q + 1 \geq 0, q \geq 0 > p\}.
\end{align*}
\]

(1.3) **Case 3:** \(p = q\). (3.12) holds implies that

(1.3.1) Subcase 1:
\[
\begin{align*}
2(2p + 1) &\geq 0, \\
2p + 1 &\geq 0, \\
p &> 0 \text{ or } p < -1.
\end{align*}
\]
Subcase 2:
\[
\begin{cases}
2(2p + 1) \geq 0, \\
p = 0.
\end{cases}
\]
That is \((p, q) \in \Omega_{10} = \{(p, q) : p = q \geq 0\}.

The above all cases show that if \(G_{p,q}(a, b)\) is Schur harmonic convex then there must be \((p, q) \in \Omega_{11} \cup \Omega_{12} \cup \Omega_{13} \cup \Omega'_{11} \cup \Omega'_{12} \cup \Omega'_{13} \cup \Omega_{10} = \Omega_1 \cup \Omega'_1.\)

(2) Secondly, let
\[
\Omega_2 = \{p + q + 1 \leq 0 \text{ and } \max(p, q) \leq 0\}.
\]
we prove \((p, q) \in \Omega_2\) is the necessary condition for (3.13).

Case 1: \(p > q\). (3.13) holds implies that

(2.1.1) Subcase 1:
\[
\begin{cases}
2(p + q + 1) \leq 0, \\
p + q + 1 \leq 0, \\
(p + 1)q > 0, \\
p(q + 1) > 0, \\
p > 1.
\end{cases}
\]
That is \((p, q) \in \Omega_{21} = \{(p, q) : -1 > p > q\}.

(2.1.2) Subcase 2:
\[
\begin{cases}
2(p + q + 1) \leq 0, \\
-2/(p - q) \leq 0, \\
p = -1 > q.
\end{cases}
\]
That is \((p, q) \in \Omega_{22} = \{(p, q) : p = -1 > q\}.

(2.1.3) Subcase 3:
\[
\begin{cases}
2(p + q + 1) \leq 0, \\
p(p - q + 1) \leq 0, \\
p > -1, \\
q < 0, \\
p > q.
\end{cases}
\]
That is \((p, q) \in \Omega_{23} = \{(p, q) : p + q + 1 \leq 0, -1 < p \leq 0, q < 0, p > q\}.

To sum up, \((p, q) \in \Omega_{21} \cup \Omega_{22} \cup \Omega_{23}.\)

Case 2: \(p < q\). Since \(g_{p,q}(t)\) is symmetric with respect to \(p\) and \(q\), hence if \(G_{p,q}(a, b)\) is Schur harmonic concave then \((p, q) \in \Omega'_{21} \cup \Omega'_{22} \cup \Omega'_{23},\) where
\[
\begin{align*}
\Omega'_{21} &= \{(p, q) : -1 > q > p > 0\}, & \Omega'_{22} &= \{(p, q) : q = -1 > p\} \\
\Omega'_{23} &= \{(p, q) : p + q + 1 \leq 0, -1 < q \leq 0, p < 0, q > p\}.
\end{align*}
\]

Case 3: \(p = q\). (3.13) holds implies that
(2.3.1) Subcase 1:
\[
\begin{aligned}
&\begin{cases}
2(2p+1) \leq 0, \\
2p+1 \leq 0, \\
p > 0 \text{ or } p < -1.
\end{cases}
\Rightarrow p < -1.
\end{aligned}
\]

(2.3.2) Subcase 2:
\[
\begin{aligned}
&\begin{cases}
2(2p+1) \leq 0, \\
p = -1,
\end{cases}
\Rightarrow p = -1.
\end{aligned}
\]

(2.3.3) Subcase 3:
\[
\begin{aligned}
&\begin{cases}
2(2p+1) \leq 0, \\
-1 < p < 0,
\end{cases}
\Rightarrow -1 < p \leq -\frac{1}{2}.
\end{aligned}
\]

That is \((p, q) \in \Omega_{20} = \{(p, q) : p = q \leq -\frac{1}{2}\}\).

The above all cases show that if \(G_{p,q}(a, b)\) is Schur harmonic convex then there must be \((p, q) \in \Omega_{21} \cup \Omega_{22} \cup \Omega_{23} \cup \Omega'_{21} \cup \Omega'_{22} \cup \Omega'_{23} \cup \Omega_{20} = \Omega_2\).

The necessity is proved.

To prove the sufficiency, we need the following lemmas.

Lemma 5. \(g(t)\) defined by (3.3) is increasing with \(t\) on \((0, \infty)\) if \((p, q) \in \Omega_1 \cup \Omega'_1\) and decreasing with \(t\) on \((0, \infty)\) if \((p, q) \in \Omega_2\).

Proof. (1) we first show \(g'(t) \geq 0\) if \((p, q) \in \Omega_1 \cup \Omega'_1\). By the symmetry of \(p\) and \(q\), we assume \(p \geq q\).

(1.1) In the case of \((p, q) \in \Omega_{11} \cup \Omega_{12}\), that is \(p > q \geq 0\). Then
\[
(p - q)g'(t) = (p - q)\cosh At + (pB - q)\cosh Bt + q(\cosh Bt - \cosh Ct)
+ q(p - q)\cosh Ct
= (p - q)\cosh At + (pB - q)\cosh Bt + 2q\sinh(p - q)t \sinh t
+ q(p - q)\cosh Ct
> 0 \text{ (due to } pB - q = (p + 1)(p - q) > 0)\).
\]

(1.1.2) In the case of \((p, q) \in \Omega_{13}\), that is \(p + q + 1 \geq 0\) and \(p \geq 0, q < 0\).

- If \(p + q + 1 \geq 0\) and \(p \geq 0, -1 < q < 0\), then

\[
(p - q)g'(t) = (p - q)\cosh At + (pB + qp)\cosh Bt - qp(\cosh Bt - \cosh Ct)
- q(p + 1)\cosh Ct
= (p - q)\cosh At + (pB + qp)\cosh Bt - 2qp\sinh(p - q)t \sinh t
- q(p + 1)\cosh Ct > 0 \text{ (due to } pB + qp = p^2 + p \geq 0)\).
\]
In the case of $p > q$
The expression becomes:

$$ (p-q)g'(t) = (p-q)A \cosh At + pB \cosh Bt + qC \cosh Ct $$

Using the identity $\cosh(A+B) = \cosh A \cosh B + \sinh A \sinh B$, we can simplify:

$$ (p-q)g'(t) = (p-q)A \cosh At + (p-q)A \cosh Bt - 2qp \sinh(p-q)t \sinh t $$

Further simplification:

$$ + 2q(q+1) \sinh(p-q)t \sinh t > 0 $$

Hence $g'(t) \geq 0$ if $(p, q) \in \Omega_{11} \cup \Omega_{12} \cup \Omega_{13}$.

(2.1) In the case of $p = q$. If $(p, q) \in \Omega_{10} = \{(p, q) : p = q \geq 0\}$, then

$$ g'(t) = (2p + 1) \cosh(2p + 1)t + (2p + 1) \cosh t + 2pt \sinh t > 0. $$

These show $g(t)$ defined by (3.3) is increasing with t on $(0, \infty)$ if $(p, q) \in \Omega_1$.

(2) Next we show $g'(t) \leq 0$ if $(p, q) \in \Omega_2$. By the symmetry of p and q, we also assume $p \geq q$.

(2.1) In the case of $p > q$.

(2.1.1) In the case of $(p, q) \in \Omega_{21} \cup \Omega_{22}$, that is $-1 \geq p > q$. We have

$$ (p-q)g'(t) = (p-q)A \cosh At + pB \cosh Bt + qC \cosh Ct $$

Using the identity $\cosh(A+B) = \cosh A \cosh B + \sinh A \sinh B$, we can simplify:

$$ (p-q)g'(t) = (p-q)A \cosh At + (p-q)A \cosh Bt + q(p-q) \cosh Ct $$

Further simplification:

$$ + q(q+1) \cosh Ct > 0 $$

(2.1.2) In the case of $(p, q) \in \Omega_{23} = \{(p, q) : p+q+1 \leq 0, -1 < p \leq 0, q < 0, p > q\}$:

- If $p + q + 1 \leq 0$ and $-1 < p \leq 0, -1 \leq q < 0, p > q$. By (3.17) we have

$$ (p-q)g'(t) = (p-q)A \cosh At + (p-q)A \cosh Bt - 2qp \sinh(p-q)t \sinh t $$

$$ + 2q(q+1) \sinh(p-q)t \sinh t \leq 0. $$

- If $p + q + 1 \leq 0$ and $-1 < p \leq 0, q < -1$. By (3.16) we have

$$ (p-q)g'(t) = (p-q)A \cosh At + p(p+1) \cosh Bt - 2qp \sinh(p-q)t \sinh t $$

$$ - q(q+1) \cosh Ct < 0. $$

(2.2) In the case of $p = q$. If $(p, q) \in \{(p, q) : p = q \leq -\frac{1}{2}\}$, then

$$ g'(t) = (2p + 1) \cosh(2p + 1)t + (2p + 1) \cosh t + 2pt \sinh t < 0, $$

These show $g(t)$ defined by (3.3) is decreasing with t on $(0, \infty)$ if $(p, q) \in \Omega_2$. This completes the proof. □
Now we are in a position to prove the sufficiency.

Proof of Sufficiency. (1) By Lemma 5, $g(t)$ defined by (3.3) is increasing with t on $(0, \infty)$ if $(p, q) \in \Omega_1 \cup \Omega'_1$, therefore, $g(t) \geq g(0) = 0$ for all $t \in (0, \infty)$ and then (3.12) holds. From (3.2) and by Lemma 2, $G_{p,q}(a, b)$ is Schur harmonic convex with respect to $(a, b) \in (0, \infty) \times (0, \infty)$.

(2) In the same way, if $(p, q) \in \Omega_2$, $g(t)$ defined by (3.3) is decreasing with t on $(0, \infty)$, therefore, $g(t) \leq g(0) = 0$ for all $t \in (0, \infty)$ and then (3.13) holds, that is $G_{p,q}(a, b)$ is Schur harmonic concave with respect to $(a, b) \in (0, \infty) \times (0, \infty)$.

This completes the proof of sufficiency. \(\blacksquare\)

Thus we complete whole proof of Theorem 2.

Remark 1. By the above proofs it is easy to see that

\begin{equation}
\Delta := (a - b) \left(a^2 \frac{\partial G}{\partial a} - b^2 \frac{\partial G}{\partial b} \right) = 0 \text{ for all } a, b \in (0, \infty) \text{ with } a \neq b.
\end{equation}

if and only if $(p, q) \in \{(0, -1), (-1, 0)\}$.

In fact, if $(p, q) \in \{(0, -1), (-1, 0)\}$. It is easy to verify that $g(t) = 0$ for all $t \in (0, \infty)$, which implies (3.18) holds.

On the other hand, if (3.18) holds, it can be divided into three cases.

Case 1: $p > q$. From (3.7) we see that

\begin{align*}
p + q + 1 &> 1 \text{ or } < -1 & \text{ if } p > q > 0 \text{ or } -1 > p > q, \\
-\frac{q^2}{p - q} &< 0 & \text{ if } p = -1 > q, \\
\frac{2p(p + 1)}{(p - q)} &> 0 & \text{ if } p > q = 0, \\
\frac{p(p - q + 1)}{(p - q)} &< 0 \text{ or } = 0 \text{ or } > 0 & \text{ if } p > -1, q < 0, p > q.
\end{align*}

It follows from (3.18) together with (3.4) and 3.7 that

\begin{align*}
2(p + q + 1) &= 0, \\
p(p - q + 1)/(p - q) &= 0 \text{ if } p > -1, q < 0, p > q.
\end{align*}

Solving the equations yields $(p, q) = (0, -1)$.

Case 2: $p < q$. By the symmetry of p and q we also have $(p, q) = (-1, 0)$.

Case 3: $p = q$. we have

\begin{align*}
2(p + q + 1) &= 0, \\
2p + 1 &= 0 \text{ if } p > 0 \text{ or } p < -1.
\end{align*}

Obviously, this equations have not any solutions.

Therefore, if (3.18) is true, then $(p, q) \in \{(0, -1), (-1, 0)\}$.

References

Received: September, 2010