A Common Fixed Point Theorem for Φ-Weakly Commuting Mappings in Metric Spaces

K.P.R. Sastry1, G.A. Naidu2, P.V.S. Prasad3 and S.S.A. Sastri4

1 8-28-8/1, Tamil Street, Chinna Waltair
Visakhapatnam-530 017, India
kprsastry@hotmail.com

2 3 Department of Mathematics, Andhra University
Visakhapatnam-530 003, India
drgolivean@yahoo.com, pvsprasad10@yahoo.in

4 Department of Basic Science and Humanities
Coastal Institute of Technology and Management, Narapam, Vizianagaram-535 183, India
sambharasas@yahoo.co.in

Abstract

In this paper we introduce the concept of Φ-weakly commuting maps and show that the result of S.L. Singh, A. Hematulin and R. Pant [7] holds even if conditions (A_1) and (A_3) of Theorem 2.3 are dropped under certain restrictions (Theorem 2.5). We provide example and generalization to the same with some modifications.

Mathematics Subject Classification (2000): 47H10, 54H25

Keywords: common fixed point, compatible maps, Menger space, strict Menger space, triangular norm

1 Introduction

Throughout this paper R^+ is the set of non negative real numbers and Y is an arbitrary non empty set. For $T, f : Y \to X$, let $C(T, f)$ denote the set of coincidence points of T and f i.e. $C(T, f) = \{z \in Y : Tz = fz\}$.
We start with

Definition 1.1: [5] Let Φ denote the class of all functions $\varphi : R^+ \rightarrow R^+$ satisfying:

for any $\epsilon > 0$ there exists $\delta > \epsilon$ such that $\epsilon < t < \delta$ implies $\varphi(t) \leq \epsilon$.

Definition 1.2: [2] Let S, T and f be self maps on Y with values in a metric space (X,d). The pair (S,T) is asymptotically regular with respect to f at $x_0 \in Y$ if there exists a sequence $\{x_n\}$ in Y such that $fx_{2n+1} = Sx_{2n}, fx_{2n+2} = Tx_{2n+1}, n \in \{0,1,2,\ldots\}$ and $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0$.

(T,f) is asymptotically regular at $x_0 \in X$ if there exists a sequence $\{x_n\}$ such that $fx_{2n+1} = fx_{2n}, fx_{2n+2} = Tx_{2n+1}, n \in \{0,1,2,\ldots\}$ and $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0$.

If $Y = X$ and $S = T$, then we get the definition of asymptotic regularity of T with respect to f due to Rhoades et.al [6].

Definition 1.3: [4] Let (X,d) be a metric space and $T, f : X \to X$. Then they are said to be R-weakly commuting if there exists a positive real number R such that $d(Tfx, fTx) \leq R(d(Tx, fx))$ for all $x \in X$.

Definition 1.4: [7] Let $T, f : X \to X$. Then the pair (T, f) is (IT)-commuting at $z \in X$ if $Tfz = fTz$. They are (IT)-commuting on X (also called weakly compatible, by Jungck and Rhoades [2]) if $Tfz = fTz$ for all $z \in X$ such that $Tz = fz$.

The following theorem is proved in [5].

Theorem 1.5: [5] Let T be a continuous and asymptotically regular self map on a complete metric space (X,d) satisfying the following conditions:

(P_1) $d(Tx, Ty) \leq \varphi(D(x,y))$ for all $x, y \in X$

(P_2) $d(Tx, Ty) < D(x,y)$ for all distinct $x, y \in X$ where

$D(x,y) = d(x,y) + \gamma[d(x,Tx) + d(y, Ty)], \gamma \geq 0$ and $\varphi \in \Phi$.

Then T has a unique fixed point.

Moreover if $D(x,y) = d(x,y) + d(x,Tx) + d(y, Ty)$ (i.e. $\gamma = 1$) and φ is continuous and satisfies $\varphi(t) > t$ for all $t > 0$, then continuity of T can be dropped.

The following theorem is claimed to be a generalization of Theorem 1.5 in [7].

Theorem 1.6 (S.L. Singh et. al [7], Theorem 2.3): Let T and f be self maps on a complete metric space (X,d) such that

(A_1) $T(X) \subseteq f(X)$

(A_2) $d(Tx, Ty) \leq \varphi(g(x,y))$ for all $x, y \in X$ where $g(x,y) = d(fx, fy) + \gamma[d(fx, Tx) + d(fy, Ty)],$ for some $\gamma \geq 0$ and $\varphi \in \Phi$ is continuous.

(A_3) $d(Tx, Ty) < g(x,y)$ for all distinct $x, y \in X$

(A_4) (T, f) is asymptotically regular at $x_0 \in X$.

If T is continuous then T has a fixed point provided that T and f are R-weakly commuting. Further if f is continuous and $\gamma = 1$, then T and f have a unique
common fixed point provided that T and f are R-weakly commuting.

The above theorem is not valid if \((A_1)\) is dropped, in view of the following example. However, in proving the theorem, the authors used \((A_1)\) to construct a sequence \(\{x_n\}\) and hence \(\{y_n\}\), beginning with a point \(x_0 \in X\). Using \((A_4)\) the authors claimed that \(\lim_{n \to \infty} d(y_n, y_{n+1}) = 0\) for the above sequence \(\{y_n\}\), which need not be true.

Further, the authors assumed tacitly that \(\varphi(t) < t \text{ if } t > 0\), to arrive at a contradiction, but for the \(\varphi\) under consideration in the theorem this may not hold. This is evident from the following example.

Example 1.7: Let \(X = [0, 1]\) with usual metric \(d\). Let \(T, f : X \to X\) be defined by \(Tx = 1 - x^2\) and \(fx = 1 \forall x \in X\). Let \(\varphi : R^+ \to R^+\) be defined by

\[
\varphi(x) = \begin{cases}
 x^2 & \text{if } 0 \leq x < 1 \\
 1 & \text{if } x \geq 1
\end{cases}
\]

Then \(\varphi \in \Phi\), but \(\varphi\) does not satisfy \(\varphi(t) = t \text{ if } t > 0\). We can find two sequences \(\{x_n\}\) and \(\{y_n\}\) such that \(x_n = 0\) and \(Tx_{n-1} = fx_n = y_n\).

When \(\gamma = 1\), we have \(y_n \to 1\), i.e. \(z = 1\) and \(Tz = T1 = 0\).

but \(d(z, Tz) \leq \varphi(d(z, Tz)) < d(z, Tz)\), a contradiction.

\(\Rightarrow \) \(z = Tz\), is not valid argument.

2 Main Results

We state our main definitions and theorem which may be regarded as a generalization to theorem 1.6.

Definition 2.1: Let \(\Phi\) denote the class of all functions \(\varphi : R^+ \to R^+\) satisfying:

for any \(\epsilon > 0\) there exists \(\delta > \epsilon\) such that \(\epsilon < t < \delta\) implie \(\varphi(t) \leq \epsilon\) and \(\varphi(t) = t \text{ if } t = 0\).

Remark: If \(\varphi \in \Phi\) and \(\varphi\) is continuous, then \(\varphi(t) \leq t \forall t > 0\).

The following example shows that if \(\varphi\) is not continuous, then the above remark may not hold.

Example 2.2: Define \(\varphi : R^+ \to R^+\) by \(\varphi(x) = \begin{cases}
 \frac{1}{2} & \text{if } x < \frac{1}{2} \\
 \frac{1}{3} & \text{if } x > \frac{1}{2} \\
 1 & \text{if } x = \frac{1}{2}
\end{cases}\)

Then \(\varphi\) is discontinuous and \(\varphi(\frac{1}{2}) = 1 > \frac{1}{2}\).

Examples: (i) Define \(\varphi : R^+ \to R^+\) by \(\varphi(x) = Rx \forall x > 0\) and \(R\) is a positive real number less than 1.
(ii) Define $\varphi : R^+ \to R^+$ by $\varphi(x) = \begin{cases} \frac{2}{3} & \text{if } x < \frac{1}{2} \\ \frac{1}{2} & \text{if } x \geq \frac{1}{2} \end{cases}$

Then φ is not continuous at $x = \frac{1}{2}$ and $\varphi(t) \leq \epsilon$.

(iii) Define $\varphi : R^+ \to R^+$ by $\varphi(x) = \begin{cases} \frac{2}{3} & \text{if } x < \frac{1}{2} \\ \frac{1}{2} & \text{if } x \geq \frac{1}{2} \end{cases}$

Then φ is continuous at $x = \frac{1}{2}$ and $\varphi(t) \leq \epsilon$.

Definition 2.3: Let (X, d) be a metric space and $T, f : X \to X$. Then they are said to be Φ-weakly commuting if there exists a $\varphi \in \Phi$ such that $d(Tfx, fTx) \leq \varphi(d(Tx, fx)) \forall x \in X$.

Definition 2.4: Let T and f be maps on X with values in a metric space (X, d). Then T is asymptotically regular with respect to f at $x_0 \in X$ if there exists a sequence $\{x_n\}$ in X such that $fx_n = Tx_{n-1}$, $n = 0, 1, 2, \ldots$ and $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0$.

We state our main theorem, in which the conditions (A_1) and (A_3) of Theorem 1.6 are dropped.

Theorem 2.5: Let T and f be self maps on a complete metric space (X, d) such that (2.5.1) $d(Tx, Ty) \leq \varphi(g(x,y))$ for all $x, y \in X$ where

$$g(x, y) = d(fx, fy) + \gamma[d(fx, Tx) + d(fy, Ty)], \gamma \geq 0 \text{ and } \varphi \in \Phi \text{ is continuous.}$$

(2.5.2) T is asymptotically regular with respect to f at $x_0 \in X$.

If T is continuous then T has a fixed point provided that T and f are Φ-weakly commuting. Further if f is continuous and $\gamma = 1$, then T and f have a unique common fixed point provided that T and f are Φ-weakly commuting.

Proof: Since T is asymptotically regular with respect to f at x_0, there exists a sequence $\{x_n\}$ in X such that $y_n = fx_n = Tx_{n-1}$, $n = 0, 1, 2, \ldots$ and $\lim_{n \to \infty} d(fx_n, fx_{n+1}) = \lim_{n \to \infty} d(y_n, y_{n+1}) = 0$.

Fix $\epsilon > 0$. There exists $\delta > \epsilon$ such that $\epsilon < t < \delta \Rightarrow \varphi(t) \leq t$.

Hence there exists $N \geq 1$ such that $d(y_n, y_{n+1}) < \frac{\delta - \epsilon}{1 + 2\gamma}$ for all $n \geq N$ (1)

We prove that $d(y_n, y_m) < \frac{\delta - \epsilon}{1 + 2\gamma} + \epsilon$ for all $m, n \geq N$, $m \geq n \geq N$ (2)

Let $n \geq N$ be fixed.

If $m = n$ or $n + 1$, then clearly (2) holds, by (1).

Assume that (2) to hold for an integer $m \geq n + 1$

$$g(x_n, x_m) = d(fx_n, fx_m) + \gamma[d(fx_n, Tx_n) + d(fx_m, Tx_m)]$$

$$= d(y_n, y_m) + \gamma[d(y_n, y_{n+1}) + d(y_m, y_{m+1})]$$

$$< \frac{\delta - \epsilon}{1 + 2\gamma} + \epsilon + \gamma \left(\frac{\delta - \epsilon}{1 + 2\gamma} + \frac{\delta - \epsilon}{1 + 2\gamma} \right)$$

$$= \delta$$

If $d(Tx_n, Tx_m) \not< \epsilon$, then

$$\epsilon < d(Tx_n, Tx_m) < \varphi(g(x_n, x_m)) \leq g(x_n, x_m) < \delta$$

$$\Rightarrow \epsilon < g(x_n, x_m) \leq \epsilon,$$ a contradiction.
Therefore $d(Tx_n, Tx_m) \leq \epsilon$.
Consider $d(y_n, y_{n+1}) \leq d(y_n, y_{n+1}) + d(y_{n+1}, y_{m+1})$
\[= d(y_n, y_{n+1}) + d(Tx_n, Tx_m) \]
\[< \frac{\delta}{1+2\gamma} + \epsilon \]
Therefore $\{y_n\}$ is a Cauchy sequence.

Since X is complete, $\{y_n\}$ is convergent, say, z.

(i) Suppose T is continuous, then $TTx_n \to Tz$, $Tfx_n \to Tz$.

Since T, f are Φ-weakly commuting, we have

\[d(Tfx_n, fTx_n) \leq \varphi(d(Tx_n, fx_n)) \leq d(Tx_n, fx_n) \]

On letting $n \to \infty$, we get $fTx_n \to Tz$.

If $z \neq Tz$, then by condition (2.5.1)

\[d(Tx_n, TTx_n) \leq \varphi(g(x_n, Tx_n)) \]
\[= \varphi(d(fx_n, fTx_n) + \gamma[d(fx_n, Tx_n) + d(TTx_n, TTx_n)]) \]

On letting $n \to \infty$, we get

\[d(z, Tz) \leq \varphi(d(z, Tz)) < d(z, Tz), \text{ a contradiction.} \]

Therefore $Tz = z$.

(ii) If f is continuous and $\gamma = 1$, then $ffx_n \to fz$ and $fTx_n \to fz$.

Since T, f are Φ-weakly commuting, we have

\[d(Tfx_n, fTx_n) \leq \varphi(d(fx_n, Tx_n)) \leq d(fx_n, Tx_n) \]

Letting $n \to \infty$, we get $Tfx_n \to fz$.

If $fz \neq z$, by condition (A_2), we have

\[d(Tx_n, Tfx_n) \leq \varphi(g(x_n, fx_n)) \]

\[= \varphi(d(fx_n, ffx_n) + \gamma[d(fx_n, Tx_n) + d(ffx_n, Tfx_n)]) \]

On letting $n \to \infty$

We get $d(z, fz) \leq \varphi(d(z, fz)) < d(z, fz)$, a contradiction.

Therefore $fz = z$.

Similarly we can prove that $Tz = z$.

Hence $fz = z = Tz$.

\therefore z is a common fixed point of f and T.

To prove uniqueness, let u be a common fixed point of f and T.

Consider $d(z, u) = d(Tz, Tu) \leq \varphi(d(z, u))$
\[= \varphi(d(fz, fu) + [d(fz, Tz) + d(fu, Tu)]) \]
\[\Rightarrow d(z, u) \leq \varphi(d(z, u)) < d(z, u), \text{ a contradiction.} \]
Therefore $z = u$.
Hence f and T have unique common fixed point.

Theorem 2.6: Let T and f be self maps on an arbitrary non empty set Y with values in a metric space (X, d) such that

(2.6.1) $d(Tx, Ty) \leq \varphi(g(x, y))$ for all $x, y \in X$ where

$g(x, y) = d(fx, fy) + \gamma(d(fx, Tx) + d(fy, Ty))$, $0 \leq \gamma \leq 1$, $\varphi \in \Phi$

$
\varphi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is continuous.

(2.6.2) T is asymptotically regular with respect to f at $x_0 \in Y$.

If $f(Y)$ is a complete subspace of X, then

(i) $C(T, f)$ is non empty

Further, if $Y = X$, then

(ii) T and f have a unique common fixed point provided that T and f are Φ-weakly commuting at a point $u \in C(T, f)$.

Proof: Since T is asymptotically regular with respect to f at x_0, there exists a sequence $\{x_n\}$ in X such that

$y_n = fx_n = Tx_{n-1}$, $n = 0, 1, 2, \ldots$ and

$$\lim_{n \to \infty} d(fx_n, fx_{n+1}) = \lim_{n \to \infty} d(y_n, y_{n+1}) = 0.$$

Then $\{y_n\}$ is Cauchy sequence, which can be shown as in Theorem 2.5.

(i) Suppose $f(Y)$ is complete. Then the sequence $\{y_n\}$ is convergent. Say, z.

Let $u \in f^{-1}z$. Then $fu = z$.

By taking $x = u$ and $y = x_n$ in condition (2.6.1), we get

$$d(Tu, Tx_n) \leq \varphi(g(u, x_n))) = \varphi(d(fu, fx_n) + \gamma[d(fu, Tu) + d(fx_n, Tx_n)])$$

On letting $n \to \infty$, we get

$$d(Tu, Tz) \leq \varphi(d(z, z) + \gamma[d(z, Tu) + d(z, z)])$$

$$\Rightarrow d(Tu, Tz) \leq \varphi(\gamma d(z, Tz)) < d(z, Tz),$$ a contradiction

$$\therefore Tu = z = fu$$

Hence $C(T, f) \neq \emptyset$

(ii) Suppose $Y = X$ and (T, f) is Φ- weakly commuting at u.

Then $d(Tfu, fTu) \leq \varphi(d(fu, Tu)) = \varphi(0) = 0$.

So that $Tfu = fTu$ and $TTu = Tfu = f Tu = ffu$.

By taking $x = u$ and $y = Tu$ in condition (2.6.1), we get

$$d(Tu, TTu) \leq \varphi(g(u, Tu)) = \varphi(d(fu, fTu) + \gamma[d(fu, Tu) + d(fTu, TTu)])$$

$$\Rightarrow d(Tu, TTu) \leq \varphi(d(Tu, TTu)) < d(Tu, TTu),$$ a contradiction.
Therefore $TTu = Tu$ and $fTu = TTu = Tu = z$.
The uniqueness of common fixed point follows easily.

References

Received: July, 2010