Approximate Amenability of Weighted Group Algebras

S. Naseri

Department of Mathematics, University of Kurdistan
Pasdaran boulevard, Sanandaj
Postal Code 66177-15175, P.O. Box 416, Iran
sabernaseri2008@gmail.com

Abstract

In this paper for a locally compact group G we show that if $L^1(G, \omega)$ is approximately amenable then G is an amenable group, but the converse is not valid in general. We also investigate the approximate amenability of $M(G, \omega)$ and $L^1(G, \omega)^{**}$.

Introduction

Recently Ghahramani and Loy in [3] introduced the notion of approximately amenable Banach algebras and, among other interesting results, they proved that for a locally compact group G, the group algebra $L^1(G)$ is approximately amenable if and only if G is amenable.

The aim of the present paper is to show that for any weight function $\omega \geq 1$ on G, the approximate amenability of the Banach algebra $L^1(G, \omega)$ implies the amenability of G, but in general the converse is not true.

1 Preliminaries

Let G denote a locally compact group with a fixed left Haar measurable λ; and ω be a weight function on G; that is a Borel measurable function $\omega: G \rightarrow \mathbb{R}^+$ such that

$$\omega(x,y) \leq \omega(x)\omega(y), \quad (x, y \in G).$$

The weighted group algebra $L^1(G, \omega)$ is the space of all measurable complex-valued functions f on G such that

$$\int_G |f(x)|\omega(x)dx < \infty,$$
and equipped with the convolution product \ast of functions; that is for $f, g \in L^1(G, \omega)$ and $x \in G$

$$(f \ast g)(x) = \int_G f(xy^{-1})g(y)dy,$$

and the norm

$$\|f\|_\omega = \int_G |f(x)|\omega(x)dx.$$

Also, let $L^\infty(G, \omega^{-1})$ be the space of all measurable complex-valued functions ϕ on G, such that $\frac{\phi}{\omega}$ is essentially bounded, and for $\phi \in L^\infty(G, \omega^{-1})$ define

$$\|\phi\|_{\infty, \omega} = \|\frac{\phi}{\omega}\|_{\infty} = \text{ess sup}\{\frac{|\phi(x)|}{\omega(x)}| x \in G\}.$$

The spaces $L^1(G, \omega)$ and $L^\infty(G, \omega^{-1})$ are in duality by

$$\langle f, \phi \rangle = \int_G f \phi d\lambda \quad (f \in L^1(G, \omega), \phi \in L^\infty(G, \omega^{-1})),$$

and if $\omega(x) \geq 1, (x \in G)$ then $L^\infty(G) \subseteq L^\infty(G, \omega^{-1})$. Let $M(G, \omega)$ be the Banach space of all complex-valued, regular Borel measures μ on G such that

$$\|\mu\|_\omega = \int_G \omega(x)d|\mu|(x) < \infty.$$

Note that $M(G, 1) = M(G)$. If $\omega(x) \geq 1(x \in G)$ then $M(G, \omega)$ is a subalgebra of $M(G)$.

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A}-bimodule. A bounded linear map $D : \mathcal{A} \to X$ is called a derivation if

$$D(ab) = D(a).b + a.D(b) \quad (a, b \in \mathcal{A}).$$

For every $x \in X$ we define ad^A_x by

$$ad^A_x(a) = ax - xa \quad (a \in \mathcal{A}).$$

It is easily seen that ad^A_x is a derivation. Derivation of this form are called inner derivation.

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A}-bimodule. Then X^*, the dual space of X, is a Banach \mathcal{A}-bimodule for operations given by

$$\langle x, a\xi \rangle = \langle xa, \xi \rangle, \quad \langle x, \xi a \rangle = \langle ax, \xi \rangle \quad (a \in \mathcal{A}, \ x \in X, \ \xi \in X^*),$$

X^* is the dual module of X; and in particular \mathcal{A}^* is the dual module of \mathcal{A}.
A Banach algebra \mathcal{A} is called *amenable* if for any \mathcal{A}-bimodule X, any derivation $D : \mathcal{A} \to X^*$ is inner. This definition of amenability was introduced by Johnson in [5]. A Banach algebra \mathcal{A} is called *weakly amenable* if any derivation $D : \mathcal{A} \to A^*$ inner. Trivially, any amenable Banach algebra is weakly amenable.

Let G be a locally compact group, a *mean* on $L^\infty(G)$ is a positive functional $m \in L^\infty(G)^*$ such that
$$\langle 1, m \rangle = \|m\| = 1.$$
A mean m on $L^\infty(G)$ is called *left invariant* if
$$\langle \delta_x \ast \phi, m \rangle = \langle \phi, m \rangle \quad (x \in G, \ \phi \in L^\infty(G)).$$
A locally compact group G is called *amenable* if there exists a left invariant mean on $L^\infty(G)$. Note that G is amenable if and only if $L^1(G)$ is an amenable Banach algebra.

A derivation $D : \mathcal{A} \to X$ is called *approximately inner* if there exists net $(\xi_\alpha) \subseteq X$ such that for every $a \in A$,
$$D(a) = \text{norm} \lim_{\alpha} (a \cdot \xi_\alpha - \xi_\alpha \cdot a).$$
Recall from [3] that a Banach algebra \mathcal{A} is called *approximately amenable* if for any \mathcal{A}-bimodule X, any derivation $D : \mathcal{A} \to X^*$ is approximately inner.

2 Approximate amenability of weighted group algebras

Recently, Ghahramani and Loy in [3] proved that for a locally compact group G the Banach algebra $L^1(G)$ is approximately amenable if and only if G is amenable. In this section we prove that if $\omega \geq 1$ is any weight function on G and $L^1(G, \omega)$ is approximately amenable, then G is amenable. Through an example we show that the converse is not valid in general.

Theorem 2.1. Let G be a locally compact group, and let ω be a weight function on G such that $\omega(x) \geq 1 \ (x \in G)$. If $L^1(G, \omega)$ is approximately amenable, then G is amenable.

Proof. By the following operations, $L^\infty(G, \omega^{-1})$ is a Banach $M(G, \omega)$-bimodule;
$$\langle f, \phi, \mu \rangle = \langle \mu \ast f, \phi \rangle, \quad \mu \cdot \phi = \mu(G)\phi,$$
where $\mu \in M(G, \omega)$, $\phi \in L^\infty(G, \omega^{-1})$ and $f \in L^1(G, \omega)$. Note that we have
$$\langle \mu \ast f, \phi \rangle = \int_G f(y^{-1}x)d\mu(y).$$
for $\mu \in M(G, \omega)$, $f \in L^1(G, \omega)$ and $x \in G$. Since for every $\mu \in M(G, \omega)$ and $f \in L^\infty(G, \omega^{-1})$

$$\langle f, 1, \mu \rangle = \langle \mu \ast f, 1 \rangle = \int (\mu \ast f)(x)dx$$

$$= \int \int f(y^{-1}x)d\mu(y)dx$$

$$= \int \int f(x)d\mu(y)$$

$$= \mu(G) \int f(x)dx$$

$$= \mu(G) \langle f, 1 \rangle.$$

Thus $1, \mu = \mu(G).1 \in C1$; and by definition we have $\mu.1 \in C1$, that is the space $C1$ is a submodule of $M(G, \omega)$. If we set $Z = L^\infty(G, \omega^{-1})/C1$ then Z is a $M(G, \omega)$-bimodule, with $Z^* = \{ m \in L^\infty(G, \omega^{-1})^* | m(1) = 0 \}$. By Hahn Banach Theorem there is $\nu \in L^\infty(G, \omega^{-1})^*$ such that $\nu(1) = 1$. It is easy to prove that the mapping $\tilde{D} : M(G, \omega) \rightarrow Z^*$, defined by

$$\tilde{D}(\mu)(\phi + C1) = (\mu.\nu - \mu(G)\nu)(\phi) \quad (\mu \in M(G, \omega), \phi \in L^\infty(G, \omega^{-1})),$$

is a well-defined derivation. If the restriction \tilde{D} to $L^1(G, \omega)$ is denoted by D, then form the approximate amenability of $L^1(G, \omega)$ it follows that there is a net (m_i) in Z^* such that for every $\mu \in L^1(G, \omega)$ we have

$$D(\mu) = \mu.\nu - \nu\mu(G) = \lim_i (\mu.m_i - m_i\mu(G)).$$

For $\mu \in L^1(G, \omega)$ with $\mu(G) = 1$ and $\phi \in L^\infty(G, \omega^{-1})$, $\mu.\phi = \phi$. Hence for every $x \in G$, $\phi \in L^\infty(G, \omega^{-1})$ we have

$$\langle \phi + C1, D(\delta_x).\mu \rangle = \langle \mu(\phi + C1), D(\delta_x) \rangle$$

$$= \langle \mu.\phi + C1, D(\delta_x) \rangle$$

$$= \langle \phi + C1, D(\delta_x) \rangle.$$

Thus $D(\delta_x).\mu = D(\delta_x)$. Therefore for every $x \in G$ and $\mu \in L^1(G, \omega)$ with $\mu(G) = 1$ we have

$$\delta_x.\nu - \nu = D(\delta_x) = D(\delta_x).\mu$$

$$= D(\delta_x \ast \mu) - \delta_x D(\mu)$$

$$= \lim_i [(\delta_x \ast \mu).m_i - m_i(\delta_x \ast \mu) - \delta_x(\mu.m_i - m_i.\mu)]$$

$$= \lim_i [(\delta_x \ast \mu).m_i - m_i - \delta_x(\mu.m_i - m_i)]$$

$$= \lim_i (\delta_x m_i - m_i).$$
Thus
\[\lim_i \delta_x(\nu - m_i) - (\nu - m_i) = 0. \quad (\star) \]
Since \(\langle \nu - m_i, 1 \rangle = 1 \), it follows that \(\lim_i \| \nu - m_i \| \neq 0 \), so there exists a subnet \((m_j)\) of \((m_i)\) such that \(\| \nu - \tilde{m}_j \| \neq 0 \). For every \(j \) if we set
\[\tilde{n}_j = \frac{\nu - \tilde{m}_j}{\| \nu - \tilde{m}_j \|}, \]
then \(\tilde{n}_j \in L^\infty(G, \omega^{-1}) \). If for each \(j \) the restriction of \(\tilde{n}_j \) to \(L^\infty(G) \) is denoted by \(n_j \), then \(\| n_j \| = 1 \) and by \((\star)\) we have norm-lim \(\| \delta_x.n_j - n_j \| = 0 \), for every \(x \in G \). Since the space \(L^\infty(G) \) is a commutative \(C^* \)-algebra with identity \(1 \), so there is a compact space \(T \) such that \(L^\infty(G)^* = M(T) \). Since for each \(x \in G \) and \(m \in M(T) \), we have \(|\delta_x.m| = \delta_x|m| \), therefore
\[|\delta_x.n_j - |n_j|| = |\delta_x.n_j - |n_j|| \leq |\delta_x.n_j - n_j| \quad (x \in G), \]
and since \(\lim_j |\delta_x.n_j - n_j| = 0 \), thus for each \(x \in G \)
\[\text{norm - lim}_j (\delta_x.n_j - |n_j|) = 0. \quad (\star\star) \]
Let \(n \) be a weak\(^*\) - cluster point of \((n_j)\). Clearly \(n \) is positive, and by \((\star\star)\) for each \(x \in G \) we have
\[\delta_x.n = n, \]
and
\[n(1) = \lim_j |n_j|(1) = |n_j|(G) = \| n_j \| = 1. \]
Therefore \(n \) is a left invariant mean on \(L^\infty(G) \), and thus \(G \) is an amenable group.

In the following lemma we show that an approximately amenable commutative Banach algebra is weakly amenable.

Lemma 2.2. Let \(A \) be a commutative Banach algebra. If \(A \) is approximately amenable, then \(A \) is weakly amenable.

Proof. Suppose \(D : A \to A^* \) is a derivation; we show that \(D \) is inner. Since \(A \) is approximately amenable and commutative, so there exists a net \((\xi_i)\) in \(A^* \) such that for each \(a \in A \)
\[D(a) = \text{norm - lim}_i (a.\xi_i - \xi_i.a) = 0. \]
On the other hand since \(A \) is commutative, every inner derivation on \(A \) is zero; so \(D \) is inner. Therefore \(A \) is weakly amenable. \(\square \)
The Example 6.2 of [3] shows that an approximately amenable Banach algebra need not be weakly amenable.

The following example shows that the converse of Theorem 2.1 is not true in general.

Example 2.3. If we define the weight function ω on $(\mathbb{Z}, +)$ by $\omega(n) = 1 + |n|$ for every $n \in \mathbb{Z}$, then the Banach algebra $l^1(\mathbb{Z}, \omega)$ is not approximately amenable.

Proof. Since $(\mathbb{Z}, +)$ is a commutative group, so is amenable. Let

$$l^1(\mathbb{Z}, \omega) = \{a = (a(n) : n \in \mathbb{Z}) | \sum_{-\infty}^{\infty} |a(n)|\omega(n) \leq \infty\}.$$

Then $l^1(\mathbb{Z}, \omega)$ is a commutative Banach algebra with respect to convolution multiplication

$$(a * b)(n) = \sum_{k=-\infty}^{\infty} a(n-k)b(k) \quad (n \in \mathbb{Z}, a, b \in l^1(\mathbb{Z}, \omega)), $$

and the norm

$$\|a\| = \sum_{-\infty}^{\infty} |a(n)|\omega(n) < \infty \quad (a \in l^1(\mathbb{Z}, \omega)).$$

We show that $l^1(\mathbb{Z}, \omega)$ is not approximately amenable. To see this note that

$$\sup\{\frac{\omega(n+m)}{\omega(n)\omega(m)} \cdot \frac{1 + |n|}{1 + |n + m|} | n, m \in \mathbb{Z}\} = \sup\{\frac{1}{1 + |m|} | m \in \mathbb{Z}\} = 1.$$

So by Theorem 2.3 of [1], $l^1(\mathbb{Z}, \omega)$ is not weakly amenable. On the other hand since $l^1(\mathbb{Z}, \omega)$ is a commutative Banach algebra; and if it is approximately amenable, so by Lemma 2.2 is weakly amenable; and this is a contradiction. So $l^1(\mathbb{Z}, \omega)$ is not approximately amenable.

Let ω be a weight function on G, for $x \in G$ we the define $\omega^*(x) = \omega(x)\omega(x^{-1})$. In the following theorem we prove that if ω^* is bounded on G then the converse of Theorem 2.1 is true.

Theorem 2.4. Suppose that ω a weight function on a locally compact group G such that $\omega \geq 1$ and ω^* is bounded. Then G is amenable if and only if $L^1(G, \omega)$ is approximately amenable.

Proof. Since G is amenable, and ω^* is bounded on G, by Theorem 0 of [4] $L^1(G, \omega)$ is amenable, so $L^1(G, \omega)$ is approximately amenable. \qed
3 Approximate amenability \(M(G, \omega) \) and \(L^1(G, \omega)^{**} \) of a locally compact group \(G \)

It is standard that \(L^1(G) \) always has a bounded approximate identity which is a net consisting of continuous functions of compact support, and this net is clearly also a bounded approximate identity for \(L^1(G, \omega) \).

Let \(\omega \) be a weight function on \(G \) with \(\omega(x) \geq 1 \) (\(x \in G \)), then with the convolution product \(*\) given by

\[
\langle \phi, \mu * \nu \rangle = \int_G \int_G \phi(st) d\mu(s) d\nu(t) \quad (\mu, \nu \in M(G, \omega), \ \phi \in C_0(G, \omega)),
\]

the Banach space \(M(G, \omega) \) defines a unital convolution Banach algebra for which \(L^1(G, \omega) \) is a closed ideal.

In the following lemma we show that if \(M(G, \omega) \) is approximately amenable then \(G \) is amenable.

Theorem 3.1. Let \(G \) be a locally compact group. If \(M(G, \omega) \) is approximately amenable, then \(G \) is amenable.

Proof. Since \(L^1(G, \omega) \) is a closed two ideal of \(M(G, \omega) \) and has an approximate identity, from Corollary 2.3 of [3] it follows that \(L^1(G, \omega) \) is approximately amenable. So by Theorem 2.1, \(G \) is amenable. \(\square\)

It is well known (c.f. [6]) that if \(G \) is amenable and \(\omega^* \) is bounded on \(G \), then there is a continuous positive character \(\phi \) on \(G \) such that

\[
\phi \leq \omega \leq c\phi \quad \text{that} \quad c = \sup\{\omega^*(x) | x \in G\}.
\]

In particular

\[
L^1(G, \omega) = L^1(G, \phi) \simeq L^1(G), \quad \text{and} \quad M(G, \omega) = M(G, \phi) \simeq M(G).
\]

Theorem 3.2. Let \(G \) be a discrete amenable group and \(\omega^* \) be bounded, then \(M(G, \omega) \) is approximately amenable.

Proof. Since \(G \) is amenable and \(\omega^* \) is bounded, it follows that \(M(G, \omega) \simeq M(G) \). Since \(G \) is discrete, from Theorem 1.1 of [2], it follows that \(M(G) \) is amenable and therefore is approximately amenable. So \(M(G, \omega) \) is approximately amenable. \(\square\)

Proposition 3.3. If \(M(G, \omega) \) is approximately amenable and \(\omega^* \) bounded on \(G \), then \(G \) is a discrete group.

Proof. Since \(M(G, \omega) \) is approximately amenable, from Theorem 3.1 we conclude that \(G \) is amenable. Using the fact that \(\omega^* \) is bounded, we infer that \(M(G, \omega) \simeq M(G) \). So by Theorem 1.1 of [2], \(G \) is discrete. \(\square\)
References

Received: June, 2010