\textbf{\textit{\textbf{\textit{\mathcal{X}-Gorenstein Projective Modules}}}}

Driss Bennis

Department of Mathematics, Faculty of Science and Technology of Fez
Box 2202, University S. M. Ben Abdellah Fez, Morocco
driss_bennis@hotmail.com

Khalid Ouarghi

Department of Mathematics, Faculty of Sciences, King Khaled University
PO Box 9004, Abha, Saudi Arabia
ouarghi.khalid@hotmail.fr

Abstract

In this paper, we generalize the notion of Gorenstein projective modules. Namely, we introduce \mathcal{X}-Gorenstein projective modules, where \mathcal{X} is a class of modules that contains all projective modules. We show that the principal results on Gorenstein projective module remain true for the \mathcal{X}-Gorenstein projective modules.

Mathematics Subject Classification: 13D02, 13D07

Keywords: Gorenstein projective modules, \mathcal{X}-Gorenstein projective modules

1 Introduction

Throughout this paper, R denotes a non-trivial associative ring with identity, and all modules are left R-modules.

In 1967-69, Auslander and Bridger [1, 2] introduced the G-dimension for finitely generated R-modules when R is Noetherian, denoted by $G \dim(M)$ where M is a finitely generated R-module. As the classical case, the G-dimension of modules is defined in terms of resolutions by modules of G-dimension 0, which are defined as follows:

A finitely generated R-module M has G-dimension 0, if:

- $\text{Ext}^m_R(M, R) = 0 = \text{Ext}^m_R(\text{Hom}_R(M, R), R)$ for every $m > 0$; and
• \(M \) is reflexive, that is, the canonical map \(M \to \text{Hom}_R(\text{Hom}_R(M, R), R) \) is an isomorphism.

In [1], Auslander proved that a finitely generated \(R \)-module \(M \) has G-dimension 0 if and only if there exists an exact sequence of finitely generated free \(R \)-modules \(L = \cdots \to L_1 \to L_0 \to L^0 \to L^1 \to \cdots \) such that \(M \cong \text{Im}(L_0 \to L^0) \) and the complex \(\text{Hom}_R(L, R) \) is exact.

In [5, 6], Enochs and Jenda defined, over arbitrary rings, the Gorenstein projective modules as follows:

Definition 1.1 An \(R \)-module \(M \) is said to be Gorenstein projective, if there exists an exact sequence of projective \(R \)-modules
\[
P = \cdots \to P_1 \to P_0 \to P^0 \to P^1 \to \cdots
\]

such that \(M \cong \text{Im}(P_0 \to P^0) \) and such that \(\text{Hom}_R(\cdot, Q) \) leaves the sequence \(P \) exact whenever \(Q \) is a projective \(R \)-module.

The exact sequence \(P \) is called a complete projective resolution.

Over a Noetherian ring \(R \), Avramov, Buchweitz, Martsinkovsky, and Reiten proved that a finitely generated \(R \)-module \(M \) is Gorenstein projective if and only if \(\text{G} - \dim(M) = 0 \) (see [4, Theorem 4.2.6] and [4, notes p. 99]). So, the notion of Gorenstein projective modules is an extension of the notion of modules of G-dimension 0. Furthermore, the Gorenstein projective modules share many nice properties of the classical projective module (see, for instance, [4, 8, 7]). In this paper, we show that some of these results remain true whenever we consider, in Definition 1.1, \(Q \) to be in any class of modules containing all projective modules. Namely, we define \(\mathcal{X} \)-Gorenstein projective modules, where \(\mathcal{X} \) is a class of \(R \)-modules that contains all projective \(R \)-modules (see Definition 2.1). In Proposition 2.2 we characterize the \(\mathcal{X} \)-Gorenstein projective modules. Our main result is Theorem 2.3, in which, we study the behavior of the notion of \(\mathcal{X} \)-Gorenstein projective modules in short exact sequences. We end the paper with a characterization of rings over which every \(R \)-module is \(\mathcal{X} \)-Gorenstein projective. These rings are particular cases of the well-known quasi-Frobenius rings.

2 \(\mathcal{X} \)-Gorenstein projective modules

In this paper we investigate the following generalization of Gorenstein projective modules.

Definition 2.1 Let \(\mathcal{X} \) be a class of \(R \)-modules that contains all projective \(R \)-modules. An \(R \)-module \(M \) is called \(\mathcal{X} \)-Gorenstein projective, if there exists
an exact sequence of projective R-modules $P = \cdots \to P_1 \to P_0 \to P^0 \to P^1 \to \cdots$ such that $M \cong \text{Im}(P_0 \to P^0)$ and $\text{Hom}_R(P, F)$ is exact whenever $F \in \mathcal{X}$.

The sequence P is called an \mathcal{X}-complete projective resolution.

We start with the following characterization of an \mathcal{X}-Gorenstein projective module.

Proposition 2.2 For an R-module M, the following conditions are equivalent:

1. M is \mathcal{X}-Gorenstein projective.
2. i) $\text{Ext}^i_R(M, F) = 0$ for every $F \in \mathcal{X}$ and every $i > 0$;

 ii) There exists an exact sequence of R-modules $Q = 0 \to M \to P_0 \to P_1 \to \cdots$, where each P_i is projective, such that $\text{Hom}_R(Q, F)$ is exact for every $F \in \mathcal{X}$.

3. There exists a short exact sequence of R-modules $0 \to M \to P \to N \to 0$, where P is projective and N is \mathcal{X}-Gorenstein projective.

4. There exists a family of short exact sequences of R-modules $0 \to M_i \to P_i \to M_{i+1} \to 0$ $(i \in \mathbb{Z})$, where each P_i is projective and $M_0 = M$, such that $\text{Ext}^1_R(M_i, F) = 0$ for every $F \in \mathcal{X}$ and every $i \in \mathbb{Z}$.

Proof. The proof of the equivalences (1) \Leftrightarrow (2) \Leftrightarrow (4) is analogous to the ones of the Gorenstein projective counterpart (see [4, 8]).

The implication (3) \Rightarrow (4) is obvious.

To end, we prove the implication (3) \Rightarrow (2). Let $F \in \mathcal{X}$. Applying the functor $\text{Hom}_R(-, F)$ to the exact sequence $0 \to M \to P \to N \to 0$, we get the long exact sequence: $\cdots \to \text{Ext}^i_R(N, F) \to \text{Ext}^i_R(P, F) \to \text{Ext}^i_R(M, F) \to \cdots$. For every $i > 0$, we have: $\text{Ext}^i_R(N, F) = 0$ (since N is \mathcal{X}-Gorenstein projective and by the equivalent (1) \Leftrightarrow (2)). Also, we have $\text{Ext}^i_R(P, F) = 0$ (since P is projective). Then, $\text{Ext}^i_R(M, F) = 0$ for every $i > 0$.

It remains to prove (ii). Since N is \mathcal{X}-Gorenstein projective and by the equivalent (1) \Leftrightarrow (2), there exists an exact sequence of R-modules $P = 0 \to N \to P_0 \to P_1 \to \cdots$, where each P_i is projective, such that $\text{Hom}_R(P, F)$ is exact for all R-modules $F \in \mathcal{X}$. Assembling this sequence with the short exact sequence $0 \to M \to P \to N \to 0$ we get the following exact sequence $Q = 0 \to M \to P \to P_0 \to P_1 \to \cdots$ such that the sequence $\text{Hom}_R(Q, F)$ is exact for every R-module $F \in \mathcal{X}$, as desired. \qed

The following result, which investigates the behavior of \mathcal{X}-Gorenstein projective modules in short exact sequences, generalizes [8, Theorem 2.5].
Theorem 2.3

1. Let \(0 \to A \to B \to C \to 0 \) be a short exact sequences of \(R \)-modules, where \(C \) is \(\mathcal{X} \)-Gorenstein projective. Then, \(A \) is \(\mathcal{X} \)-Gorenstein projective if and only if \(B \) is \(\mathcal{X} \)-Gorenstein projective.

2. Let \((M_i)_{i \in I}\) be a family of \(R \)-modules. Then, \(\bigoplus_{i \in I} M_i \) is \(\mathcal{X} \)-Gorenstein projective if and only if \(M_i \) is \(\mathcal{X} \)-Gorenstein projective for every \(i \in I \).

Proof. The equivalences of both (1) and (2) can be proved similarly to the one of [8, Theorem 2.5]. Here, we give a new and simple proof of the “only if” part of (1). Then, assume that \(B \) is \(\mathcal{X} \)-Gorenstein projective. By Proposition 2.2 (1) \(\iff \) (3), there exists an exact sequence of \(R \)-modules \(0 \to B \to P \to G \to 0 \), where \(P \) is projective and \(G \) is \(\mathcal{X} \)-Gorenstein projective. Consider the following pushout diagram:

```
\[
\begin{array}{cccc}
0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & A & B & C & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & A & P & C' & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
G & \underarc{\rightarrow} & G \\
0 & 0 & 0 & 0 & 0
\end{array}
\]
```

Applying the “if” part to the right vertical short exact sequence, we get that \(C' \) is \(\mathcal{X} \)-Gorenstein projective. Therefore, use the equivalence (1) \(\iff \) (3) of Proposition 2.2 and the middle horizontal short exact sequence to get that \(A \) is \(\mathcal{X} \)-Gorenstein projective.

We end the paper with a characterization of rings over which every \(R \)-module is \(\mathcal{X} \)-Gorenstein projective. These rings are particular cases of the well-known quasi-Frobenius rings.

Proposition 2.4 Every \(R \)-module is \(\mathcal{X} \)-Gorenstein projective if and only if every \(R \)-module in \(\mathcal{X} \) is injective.

In particular, if the above equivalence conditions are satisfied, then \(R \) is quasi-Frobenius.

Proof. First, from [3, Theorem 2.2] and its proof, if one of the equivalence conditions are satisfied, then \(R \) is quasi-Frobenius.
Now, assume that every R-module is \mathcal{X}-Gorenstein projective. Then, from Proposition 2.2, $\text{Ext}_R^i(M, F) = 0$ for every R-module M, every $F \in \mathcal{X}$, and every $i > 0$. Then, every F in \mathcal{X} is injective.

Conversely, consider an R-module M. Let $\cdots \to P_1 \to P_0 \to M \to 0$ and $0 \to M \to I_0 \to I_1 \to \cdots$ be projective and injective resolutions of M. Since, by the reason above, R is quasi-Frobenius, every injective R-module is projective. Then, the above injective resolution is a right projective resolution of M. Now, assembling the two above resolutions, we get the following exact sequence: $\cdots \to P_1 \to P_0 \to I_0 \to I_1 \to \cdots$. Since, by hypothesis, every R-module in \mathcal{X} is injective, the above exact sequence is clearly an \mathcal{X}-complete projective resolution, as desired. \[\square\]

References

Received: August, 2009