On 3-Bézout Rings

Chahrazade Bakkari

Department of Mathematics, Faculty of Science and Technology of Fez
Box 2202, University S. M. Ben Abdellah Fez, Morocco
cbakkari@hotmail.com

Abstract

In this paper, we study the notion of “3-Bézout ring”. We establish the transfer of this notion to homomorphic image and trivial ring extensions and provide a class of 3-Bézout rings which are not 2-Bézout rings.

Mathematics Subject Classification: 16S50

Keywords: 3-Bézout ring, homomorphic image, trivial ring extension

1 Introduction

All rings considered below are commutative with unit and all modules are unital. Let R be a commutative ring, and let M be an R-module. For any positive integer n, we say that M is n-presented whenever there is an exact sequence:

$$F_n \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_0 \rightarrow M \rightarrow 0$$

of R-modules in which each F_i is a finitely generated free R-module. In particular, 0-presented and 1-presented R-modules are respectively finitely generated and finitely presented R-modules. See for instance [4].

Recall that a ring R is called Bézout if every finitely generated ideal I of R is principal. For a positive integer $n > 0$, we introduce a new concept of a “n-Bézout” ring. A ring R is called n-Bézout if every $(n-1)$-presented ideal of R is principal. 1-Bézout rings are exactly Bézout rings. Clearly, an $(n-1)$ Bézout ring is also an n-Bézout ring.

Let A be a ring, E be an A-module and $R := A \times E$ be the set of pairs (a, e) with pairwise addition and multiplication given by: $(a, e)(b, f) = (ab, af + be)$. R is called the trivial ring extension of A by E. Considerable work, part of it summarized in Glaz’s book [4] and Huckaba’s book [5], has been concerned
Chahrazade Bakkari

with trivial ring extensions. These have proven to be useful in solving many open problems and conjectures for various contexts in (commutative and non-commutative) ring theory. See for instance [1, 4, 5, 6].

In this paper, we establish the transfer of the ”3-Bézout” notion to homomorphic image and trivial ring extensions and provide a class of 3-Bézout rings which are not 2-Bézout rings.

2 Main Results

First, we study the homomorphic image of 3-Bézout rings which is a first main result in this paper.

Theorem 2.1 Let \(R \) be a 3-Bézout ring and \(I \) be a finitely presented ideal of \(R \). Then \(R/I \) is a 3-Bézout ring.

To prove this Theorem we need the following Lemma.

Lemma 2.2 Let \(R \) be a ring, \(I \) be a finitely generated ideal of \(R \), and let \(E \) be a finitely presented \(R/I \)-module. Then \(E \) is a finitely presented \(R \)-module.

Proof. Let \(E \) be a finitely presented \(R/I \)-module. Consider the exact sequence of \(R/I \)-modules:

\[
0 \rightarrow K \rightarrow F_0 \rightarrow E \rightarrow 0\quad (\ast)
\]

where \(F_0 \) is a finitely generated free \(R/I \)-module and \(K \) is a finitely generated \(R/I \)-module. Hence, \(K \) is a finitely generated \(R \)-module since \(K \) is a finitely generated \(R/I \)-module and \(R/I \) is a finitely generated \(R \)-module. On the other hand, \(F_0 \) is a finitely presented \(R \)-module since \(F_0 \) is a finitely generated free \(R/I \)-module and \(R/I \) is a finitely presented \(R \)-module (by the exact sequence of \(R \)-modules \(0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0 \) and since \(I \) is a finitely generated ideal of \(R \)). Therefore, \(E \) is a finitely presented \(R \)-module by the exact sequence \((\ast) \).

Proof of Theorem 2.1. Let \(J/I \) be a 2-presented ideal of \(R/I \), where \(I \subseteq J \) are ideals of \(R \). We claim that \(J/I \) is a 2-presented \(R \)-module. Indeed, consider the exact sequence of \(R/I \)-modules:

\[
0 \rightarrow E \rightarrow F_0 \rightarrow J/I \rightarrow 0\quad (\ast)
\]
where F_0 is a finitely generated free R/I-module and E is a finitely presented R/I-module. Hence, E is a finitely presented R-module by Lemma 2.2. On the other hand, F_0 is a 2-presented R-module since F_0 is a finitely generated free R/I-module and R/I is a 2-presented R-module (by the exact sequence of R-modules $0 	o I 	o R 	o R/I 	o 0$ and since I is a finitely presented ideal of R). Therefore, J/I is a 2-presented R-module by the exact sequence (\ast). Hence, E is a finitely presented R/I-module by Lemma 2.2. On the other hand, F_0 is a 2-presented R-module since F_0 is a finitely generated free R/I-module and R/I is a 2-presented R-module (by the exact sequence $0 	o I 	o R 	o R/I 	o 0$ and since I is a finitely presented ideal of R). Therefore, J/I is a 2-presented R-module by the exact sequence (\ast). Now, the exact sequence of R-modules:

\[0 \to I \to J \to J/I \to 0 \]

shows that J is a 2-presented ideal of R since I is a finitely presented ideal of R and J/I is a 2-presented R-module. Hence, J is a principal ideal of R since R is a 3-Bézout ring; let $J := Ra$ for some $a \in J$. Therefore, $J/I = (R/I)(a + I)$ is a principal ideal of R/I and this completes the proof of Theorem 2.1.

Corollary 2.3 Let R be a ring and $R[X]$ be the polynomial ring over R. If $R[X]$ is a 3-Bézout ring, then so is R.

Proof Clear by Theorem 2.1 since $R := R[X]/(X)$ and (X) is infinitely presented ideal of $R[X]$.

The condition "I is a finitely presented ideal of R" is necessary in Theorem 2.1 (see Example 2.6).

Now, we study a particular trivial ring extension and provide a class of 3-Bézout rings which are not 2-Bézout rings; and give then the second main result in this paper.

Theorem 2.4 Let (A, M) be a local ring and let $R := A \propto (A/M)$ be the trivial ring extension of A by A/M. Then:
1) R is a 3-Bézout ring provided M is not a finitely generated ideal of A.
2) R is not a 2-Bézout ring provided A is not a 2-Bézout ring.

Proof. 1) Assume that M is not a finitely generated ideal of A. We claim that there exists no proper 2-presented ideal of R and this suffices to show that R is a 3-Bézout ring. Deny. Let J be a 2-presented proper ideal of R. Hence, R/J is a 3-presented R-module by the exact sequence of R-modules $0 \to J \to R \to R/J \to 0$. Therefore, R/J is a projective R-module by [6, Theorem 1.1(1)] and so R/J is a free R-module since R is local, a contradiction since $J(R/J) = 0$. Hence, there is no proper 2-presented ideal of R and so R
is a 3-Bézout ring.

2) Assume that A is not a 2-Bézout ring and let $I := \sum_{i=1}^{n} Ab_i$ be a finitely presented proper ideal of A which is not a principal ideal. Set $J := \sum_{i=1}^{n} R(b_i, 0)(= I \propto 0)$ and consider the exact sequence of R-modules:

$$0 \to \text{Ker}(u) \to R^n \xrightarrow{u} J \to 0(*)$$

where $u((a_i, e_i)_{i=1,...,n}) = \sum_{i=1}^{n} (a_i, e_i)(b_i, 0) = (\sum_{i=1}^{n} a_i b_i, 0)$. Hence, $\text{Ker}(u) = V \propto (A/M)^n$, where $V = \{(a_i)_{i=1,...,n} \in A^n/\sum_{i=1}^{n} a_i b_i = 0\}$. Clearly, V is a finitely generated A-module since I is a finitely presented ideal and by the exact sequence of R-modules:

$$0 \to V \to A^n \xrightarrow{v} I \to 0(*)$$

where $v((a_i)_{i=1,...,n}) = \sum_{i=1}^{n} a_i b_i$. Therefore, $\text{Ker}(u)(= V \propto (A/M)^n)$ is a finitely generated R-module and so J is a finitely presented ideal of R by the exact sequence $(*)$. But J is not principal ideal of R since I is not a principal ideal of A and $J = I \propto 0$. Hence, R is not a 2-Bézout ring and this completes the proof of Theorem 2.4.

Now, we are able to construct the first class of non-2-Bézout rings which are 3-Bézout rings.

Example 2.5 Let $A = K[[X_1,\ldots,X_n,\ldots]] = K + M$ be the formal power series, where K is a field, $(X_i)_{i=1,\ldots,\infty}$ are indeterminates over K and $M = \sum_i AX_i$ and let $R := A \propto (A/M)$ be the trivial ring extension of A by A/M. Then:

1) R is a 3-Bézout ring.
2) R is not a 2-Bézout ring.

Proof. 1) By Theorem 2.4(1) since the maximal ideal $M = \sum_i AX_i$ of A is not finitely generated.

2) By Theorem 2.4(2) since for example $AX_1 + AX_2$ is an infinitely presented ideal of A (since A is a coherent ring) but it is not a principal ideal of A.

The condition ”I is a finitely presented ideal of R” is necessary in Theorem 2.1 as the following example shows.
Example 2.6 Let \((A, M)\) and \(R\) as in Example 2.5 and let \(I := 0 \otimes (A/M) = R(0,1)\). Then:

1) \(R\) is a 3-Bézout ring by Example 2.5(1).

2) \(I\) is a finitely generated ideal of \(R\) which is not finitely presented since \(M\) is not finitely generated and by the exact sequence of \(R\)-modules:

\[0 \to M \otimes (A/M) \to R \xrightarrow{u} I := R(0,1) \to 0.\]

3) \(R/I(= A)\) is not 3-Bézout ring since \(AX_1 + AX_2\) is an infinitely presented ideal of \(A\) (since \(A\) is coherent) which is not a principal ideal of \(A\).

References

Received: October, 2009