Abstract

In this article, variational iteration method, a well-known method for solving functional equations, has been employed to solve linear and nonlinear Fredholm integrodifferential-difference equations. Results are compared with the exact solutions, which reveal that variational iteration method is very effective and convenient.

Mathematics Subject Classification: 47G20

Keywords: variational iteration method; Fredholm integrodifferential-difference equation

1 Introduction

In recent years, variational iteration method [1–4], has been favorably applied to various kinds of problems, for example, autonomous ordinary differential equation [5], Nonlinear partial differential equations with variable coefficients [6], Schrödinger–Kdv, generalized Kdv and shallow water equations [7], Burger’s and coupled Burger’s equations [8], Linear Helmholtz partial differential equation [9], and others [10,11].
In this article, we apply the method to solve the following mth-order linear and nonlinear Fredholm integrodifferential-difference equation [12].

\[\sum_{k=0}^{m} p_k(x)u^{(k)}(x) + \sum_{r=0}^{n} p^*_r(x)u^{(r)}(x - \tau) = f(x) + \int_{a}^{b} k(x, t)G(u(t - \tau))dt \quad \tau \geq 0, \]

Where \(p_k(x), p^*_r(x), k(x, t) \) and \(f(x) \) are functions defined on \(a \leq x \leq b. \)

To illustrate the method, consider the following general functional equation

\[Lu(t) + N(t) = g(t), \]

(1)

Where \(L \) is a linear operator, \(N \) is a non-linear operator and \(g(t) \) is a known analytical function. According to the variational iteration method, we can construct the following correction functional

\[u_{n+1}(t) = u_n(t) + \int_{0}^{\xi} \lambda(\xi) \{ Lu_n(\xi) + N\bar{u}_n(\xi) - g(\xi) \} d\xi, \]

(2)

Where \(\lambda \) is a general Lagrange multiplier which can be identified optimally via variational theory, \(u_0 \) is an initial approximation with possible unknowns, and \(\bar{u}_n \) is considered as restricted variation, i.e., \(\delta\bar{u}_n = 0 \)

2 Application

In this section, we present examples of linear and nonlinear Fredholm integrodifferential-difference equation and results will be compared with the exact solutions.

Example 1. Let us consider the second-order linear Fredholm integrodifferential-difference equation

\[u^*(x) + xu'(x) + xu(x) + u'(-1) + u(x - 1) = e^{-x} + e + \int_{-1}^{0} t u(t - 1)dt, \]

(3)

With the following initial conditions

\[u(0) = 1, \quad u'(0) = -1. \]

The exact solution is \(u(x) = e^{-x}. \)

In the view of the variational iteration method, we construct a correction functional in the following form

\[u_{n+1}(x) = u_n(x) + \int_{0}^{\xi} \lambda(\xi) \{ u^*_n(\xi) + \tilde{F}[u_n(\xi)] \} d\xi, \]

(4)
where

\[F\left[u(x)\right] = x u'(x) + x u(x) + u'(x - 1) + u(x - 1) - e^{-x} - e - \int_{-1}^{0} u(t - 1) dt. \]

\(\bar{F}\left[u_0(\xi)\right] \) is considered as restricted variation, i.e., \(\delta \bar{F}\left[u_0(\xi)\right] = 0. \)

To find the optimal \(\lambda(s)\), calculation variation with respect to \(u_n\), we have the following stationary conditions

\[
\begin{align*}
\lambda'(\xi) &= 0, \\
1 - \lambda'(\xi)|_{\xi=x} &= 0, \\
\lambda(\xi)|_{\xi=x} &= 0.
\end{align*}
\]

(5)

The Lagrange multiplier, therefore, can be identified as

\[\lambda = \xi - x. \]

(6)

Substituting the identified multiplier into Eq(4), we have the following iteration formula

\[u_{n+1}(x) = u_n(x) + \int_{0}^{\xi} (\xi - x) \left\{ u''_n(\xi) + \bar{F}[u_n(\xi)] \right\} d\xi, \]

(7)

We begin with

\[u_0(x) = 1 - x. \]

Now suppose that \(u(x) \approx u_3(x)\). Some numerical results of these solutions are presented in Table1.
Example 2. Consider the following third–order linear Fredholm integro-differential-difference equation with boundary conditions

\[u(0) = 0, \quad u'(0) = 1, \quad u''(0) = 0. \]

With the exact solution \(u(x) = \sin x \).

\[
u'''(x) - xu'(x) + u''(x) - xu(x) = -(x+1)(\sin(x-1) + \cos(x)) - \cos 2 + 1 + \int_{-1}^{1} u(t-1) dt,
\]

We can construct the following correction functional

\[
u_{n+1}(x) = u_n(x) + \int_0^1 \lambda(\xi) \left[u''(\xi) + F[u_n(\xi)] \right] d\xi,
\]

Where

\[
F[u(\xi)] = -xu'(x) + u''(x) - xu(x) + (x+1)(\sin(x-1) + \cos(x)) + \cos 2 - 1 - \int_{-1}^{1} u(t-1) dt.
\]

This yields the stationary conditions

\[
\lambda'''(\xi) = 0,
1 + \lambda''(\xi) \bigg|_{\xi=x} = 0,
\lambda'(\xi) \bigg|_{\xi=x} = 0,
\lambda(\xi) \bigg|_{\xi=x} = 0.
\]

This in turn gives

\[
\lambda = -\frac{1}{2} (\xi - x)^2.
\]
Substituting this value of the Lagrange multiplier into the functional (9) gives

\[u_{n+1}(x) = u_n(x) - \frac{1}{2} \int_0^x (\xi - x)^2 \{ u_n^{(\nu)}(\xi) + F[u_n(\xi)] \} d\xi, \quad (12) \]

We select the initial value \(u_0(x) = x \).

Now suppose that \(u(x) \approx u_j(x) \), some numerical results of these solutions are presented in Table 2.

Table 2

<table>
<thead>
<tr>
<th>x</th>
<th>(u_{exact}(x))</th>
<th>(u_j(x))</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.09983342</td>
<td>0.09989900</td>
<td>0.00006558</td>
</tr>
<tr>
<td>0.2</td>
<td>0.19866933</td>
<td>0.19991167</td>
<td>0.00044736</td>
</tr>
<tr>
<td>0.3</td>
<td>0.29552021</td>
<td>0.29681400</td>
<td>0.00129379</td>
</tr>
<tr>
<td>0.4</td>
<td>0.38941834</td>
<td>0.39197579</td>
<td>0.00255745</td>
</tr>
<tr>
<td>0.5</td>
<td>0.47942554</td>
<td>0.48350200</td>
<td>0.00407646</td>
</tr>
<tr>
<td>0.6</td>
<td>0.56464247</td>
<td>0.57019899</td>
<td>0.00555652</td>
</tr>
<tr>
<td>0.7</td>
<td>0.64421769</td>
<td>0.65084730</td>
<td>0.00662961</td>
</tr>
<tr>
<td>0.8</td>
<td>0.71735609</td>
<td>0.72418399</td>
<td>0.0082790</td>
</tr>
<tr>
<td>0.9</td>
<td>0.78332691</td>
<td>0.78897800</td>
<td>0.00565109</td>
</tr>
<tr>
<td>1.0</td>
<td>0.84147098</td>
<td>0.84399269</td>
<td>0.00252171</td>
</tr>
</tbody>
</table>

Example 3. Let us consider the third-order nonlinear Fredholm integro-differential-difference equation

\[u''''(x) + \frac{1}{2} u''(x) + xu'(x) + 2u'(x-1) + \frac{1}{2} xu(x) + u(x-1) = e + \int_{-1}^0 t u^2(t-1) dt, \quad (13) \]

With the following initial conditions

\[u(0) = 1, \quad u'(0) = -\frac{1}{2}, \quad u''(0) = \frac{1}{4}. \]

The exact solution is \(u(x) = e^{-\frac{x^2}{2}} \).

We can construct the following correction functional

\[u_{n+1}(x) = u_n(x) + \int_0^x \lambda(\xi) \{ u_n^{(\nu)}(\xi) + F[u_n(\xi)] \} d\xi, \quad (14) \]

where
\[F[u(\xi)] = \frac{1}{2} u''(x) + x u'(x) + 2 u'(x-1) + \frac{1}{2} x u(x) + u(x-1) - e - \int_1^0 t u^2(t-1) dt. \]

To solve Eq. (13) by means of He’s VIM; we construct a correction functional (see (12)),

\[u_{n+1}(x) = u_n(x) - \frac{1}{2} \int_0^x (\xi - x)^2 \left(u_n''(\xi) + F\left[u_n(\xi)\right]\right) d\xi, \]

We begin with

\[u_0(x) = 1 - \frac{1}{2} x + \frac{1}{8} x^2, \]

Now suppose that \(u(x) \approx u_3(x) \), some numerical results of these solutions are presented in Table 3.

Table 3

<table>
<thead>
<tr>
<th>x</th>
<th>(u_{exact}(x))</th>
<th>(u_3(x))</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.05127110</td>
<td>1.05125025</td>
<td>0.00002085</td>
</tr>
<tr>
<td>-0.2</td>
<td>1.10517092</td>
<td>1.10500923</td>
<td>0.00016169</td>
</tr>
<tr>
<td>-0.3</td>
<td>1.16183424</td>
<td>1.16130692</td>
<td>0.00052732</td>
</tr>
<tr>
<td>-0.4</td>
<td>1.22140276</td>
<td>1.22019906</td>
<td>0.00120370</td>
</tr>
<tr>
<td>-0.5</td>
<td>1.28402542</td>
<td>1.28176983</td>
<td>0.00225559</td>
</tr>
<tr>
<td>-0.6</td>
<td>1.34985881</td>
<td>1.34613436</td>
<td>0.00372445</td>
</tr>
<tr>
<td>-0.7</td>
<td>1.41906755</td>
<td>1.41344099</td>
<td>0.00562656</td>
</tr>
<tr>
<td>-0.8</td>
<td>1.49182470</td>
<td>1.48387299</td>
<td>0.00795171</td>
</tr>
<tr>
<td>-0.9</td>
<td>1.56831218</td>
<td>1.55764981</td>
<td>0.01066237</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.64872127</td>
<td>1.63502746</td>
<td>0.01369381</td>
</tr>
</tbody>
</table>

3 Conclusions

In this paper, He's Variational iteration method has been used for finding the solutions for linear and nonlinear Fredholm integro-differential-difference equations.

In Examples 1, 2 and 3, we derive very good approximations to the solutions, the obtained solution shows that the method is a vary convenient and effective to solve wide classes of problems.

The computations associated with the examples in this paper were performed using Maple 10.
References

Received: June, 2009