On $W\beta-I^*P$-Open Sets via Pre Local Functions

I. Arockia Rani and A. A. Nithya

Department of Mathematics
Nirmala College, Coimbatore-641 018, India
aanithyajerry@gmail.com

Abstract

The aim of this paper is to introduce the new concepts namely, $W\beta-I^*P$-open set, $\beta-I^*P$-open set, $\beta-I^*$-open set, weakly-$\beta-I^*P$-open set, β-IP-open set and β-IP*-open set. Some properties and several characterizations are investigated. The relationships between these classes of sets are also obtained.

Mathematics Subject Classification: 54C08, 54A20

Keywords: $W\beta-I^*P$-open set, $\beta-I^*P$-open set, $\beta-I^*$-open set, weakly-$\beta-I^*P$-open set, β-IP-open set, β-IP*-open set

1. Introduction and Preliminaries

In 1983, M.E.Abd El Monsef, S.N.EL-Deeb and R.A.Mahmoud[1], introduced β-open sets and β-continuous mapping in general topology. In 1992, Jankovic and Hamlett [6] introduced the notion of I - open sets in topological spaces. El - Monsef [2], investigated I -open sets and I - continuous functions. In 1996, Dontchev [4] introduced the notion of pre - I - open sets and obtained a decomposition of I -continuity. In 2002 E.Hatir and T.Noiri[7] introduced the concepts of β-I-open and β-I- continuous function. In this paper, the notions of pre local functions,$W\beta-I^*P$-open set, $\beta-I^*P$-open set, β-IP-open set, β-IP*-open set, weakly-β-I*P-open set, β-IP-open set and β-IP*-open sets are introduced. The fundamental properties of such functions are studied. Throughout this paper, $\text{cl}(A)$ and $\text{int}(A)$ denote the closure of A and the interior of A respectively. An ideal topological space denoted by (X, τ, I) is a topological space (X, τ) with an ideal I on X. For a subset A of X, $A^*(I) = \{x \in X : U \cap A \notin I$ for each neighbourhood U of $x\}$ is called the local function of A with respect to I and τ. For every ideal topological space (X, τ, I), there exists a topology $\tau^*(I)$, finer...
than τ, generated by the base $B(\tau, I) = \{U \setminus G : U \in \tau \text{ and } G \in I\}$. Additionally, $\text{cl}^* (A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$. If (X, τ, I) is a space, we denote by $\tau^* P(I)$ the topology on X generated by the subbasis $\{U \setminus E : U \in PO(X) \text{ and } E \in I\}$. The closure operator in $\tau^* P(I)$ denoted by $\text{cl}^* P$, can be described as follows; for $A \subset X$, $\text{cl}^* P(A) = A \cup A^* P(I)$.

Definition 1.1. A subset S of a space (X, τ) is said to be pre-open [5] (semi-open [7], α-open [9], b-open [10], β-open [1]) if $S \subset \text{int(} \text{cl}(S)\text{)}(S \subset \text{cl(} \text{int}(S)\text{)}), \text{S} \subset \text{int(} \text{cl(} \text{int}(S)\text{)}\text{)} \cup \text{int(} \text{cl}(S)\text{)), } S \subset \text{cl(} \text{int}(S)\text{)}\text{)}$).

Definition 1.2. A subset S of an ideal topological space (X, τ, I) is said to be pre-I-open [4](semi-I-open [7], α-I-open [7], β-I-open [7], b-I-open [10], weakly-semi-I-open [8]) if $S \subset \text{int(} \text{cl}(S)\text{)}(S \subset \text{cl(} \text{int}(S)\text{)}), S \subset \text{int(} \text{cl}(S)\text{)}), S \subset \text{cl(} \text{int}(S)\text{)} \cup \text{int(} \text{cl}(S)\text{)), S \subset \text{cl}(S)\text{)}\text{)}$).

2.W-β-I^P-open set

Definition 2.1. Given a space (X, τ, I), a set operator $(\ast)^P : P(X) \to P(X)$ called the pre local function of I with respect to τ is defined as follows; for $A \subset X$, $A^*(\tau, I) = \{x \in X : U_x \cap A \notin I\}$, for every $U_x \in PN(x)$, where $PN(x) = \{U \in PO(X) : x \in U\}$. When there is no ambiguity, we will simply write $A^P(\tau, I)$ or $A^*(\tau, I)$.

Definition 2.2. A subset S of a space (X, τ, I) is said to be W-β-I^P-open (β-$I^*\text{-open}, \beta$-$I^P\text{-open}, \text{weakly } \beta$-$I^*\text{-open}, \beta$-$IP^*\text{-open}, \beta$-$IP\text{-open}, \text{pre-}I^P\text{-open}, \text{semi-}I^P\text{-open, } \alpha$-$I^P\text{-open} [3]$) if $S \subset \text{cl}(S)(S \subset \text{cl}(S)), S \subset \text{cl}(S)(S \subset \text{cl}(S)), S \subset \text{cl}(S)(S \subset \text{cl}(S)), S \subset \text{cl}(S)(S \subset \text{cl}(S))\}$.

Theorem 2.3. Let (X, τ, I) be a space and $A \subset X$, then the following hold: 1) Every semi-$I^*\text{-open set is } W\beta$-$I^P\text{-open set.}$. 2) Every pre-$I^P\text{-open set is } W\beta$-$I^P\text{-open set.}$. 3) Every $W\beta$-$I^P\text{-open set is } \beta$-$I\text{-open set.}$. 4) Every α-$I^P\text{-open set is } W\beta$-$I^P\text{-open set.}$

Proof. It is obvious.

Remark 2.4. The converses are not true in general is shown by the following example.

Example 2.5. Let $X = \{a, b, c, d\}, \tau = \{X, \phi\}, \{c, d\}, \{b, c, d\}, I = \{\phi\}, \{d\}$ and $A = \{a, c, d\}$. Then A is $W\beta$-$I^P\text{-open but not } \alpha$-$I^P\text{-open.}$
Proposition 2.6. For a subset of an ideal topological space, the following conditions hold. 1) Every $W\beta \Gamma^P$-open set is $\beta \Gamma^P$-open set. 2) Every $W\beta$ I^P-open set is weakly-βI^*P-open set. 3) Every βI^P-open set is β-I^*-open set. 4) Every β-I^*P-open set is βI^P-open set. 5) Every $\beta - I^*$-open set is weakly-$\beta -I^*P$-open set. 6) Every weakly-βI^*P-open set is weakly-semi-I-open set. 7) Every βI^*-open set is $\beta -I$-open set. 8) Every βI^*-open set is $\beta \Gamma^P$-open set. 9) Every βI^*-open set is βI^*-open set. 10) Every weakly semi-I-open set is β-I-open set. 11) Every βI^*-open set is β-open set.

Proof. It is obvious.

Remark 2.7. The results in Proposition 2.16. is shown in the following figure.

Proposition 2.8. Let S be a b-I-open set such that int $S = \phi$. Then S is β-I-open set.

Proof. Since $S \subset cl^*(int(S)) \cup int(cl^*(S)) = cl^*(\phi) \cup int(cl^*(S)) = int(cl^*(S)) \subset cl(int(cl^*(S)).$

By $W\beta I^P O(X, \tau)$ we denote the family of all $W\beta I^P$-open sets of space (X, τ, I).

Lemma[3] 2.9. Let A and B be subsets of space (X, τ, I) then, 1) If $A \subset B$, then $A^*P \subset B^*P$. 2) If $U \in PO(X)$, then $U \cap A^*P \subset (U \cap A)^*P$. 3) A^*P is pre-closed in (X, τ).

Proof. Obvious.

Theorem 2.10. Let (X, τ, I) be an ideal topological space and A, B are subsets of X. 1) If $U_a \in W\beta I^P O(X, \tau)$ for each $a \in \Delta$ then $\cup \{U_a : a \in \Delta\} \in W\beta I^P O(X, \tau)$. 2) If $A \in W\beta I^P O(X, \tau) and B \in PO(X)$ then $A \cap B \notin W\beta I^P O(X, \tau)$.

Proof. 1) Let $U_a \in W\beta I^P O(X, \tau)$, we have $U_a \subset cl^P(int(cl^P(U_a)))$ for every $a \in \Delta$. $\cup_{a \in \Delta} U_a \subset cl^P(int(cl^P(U_a)))$

\[\substack{\subset \cup_{a \in \Delta}(int(cl^P(U_a))) \cup (int(cl^P(U_a)))^*P \\
\subset \{\cup_{a \in \Delta}(int(cl^P(U_a))) \cup (\cup_{a \in \Delta}(int(cl^P(U_a))))^*P \}
\subset \{(\cup_{a \in \Delta} int(U_a \cup (U_a)^*P)) \cup (\cup_{a \in \Delta} int(U_a \cup (U_a)^*P))\}
\subset \{(\cup_{a \in \Delta} int(U_a) \cup (\cup_{a \in \Delta} (U_a)^*P))\}
\subset \{(\cup_{a \in \Delta} int(U_a)) \cup (U_a)^*P\) \cup (int((\cup_{a \in \Delta} U_a) \cup (\cup_{a \in \Delta} (U_a)^*P))\}
\subset \{(\cup_{a \in \Delta} int(U_a)) \cup (U_a)^*P\) \cup (int((\cup_{a \in \Delta} U_a) \cup (\cup_{a \in \Delta} (U_a)^*P))\)
\]
\[
\{ \text{cl}^P(\text{int}(\bigcup_{a \in \Delta} U_a) \cup (\bigcup_{a \in \Delta} U_a)^*P) \}
\]

\[
= \text{cl}^P(\text{int}(\text{cl}^P(\bigcup_{a \in \Delta} U_a)))
\]

which implies, \(\bigcup_{a \in \Delta} U_a \in W\beta P\text{O}(X, \tau) \).

2) Let \(X = \{a, b, c, d\} \), \(\tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\} \), \(I = \{\phi, \{d\}\} \) then \(A = \{a, c, d\} \) is \(W\beta P\text{I}^P \)-open set and \(\{d\} \) is a preopen set but \(A \cap \text{PO}(X) = \{d\} \) is not a \(W\beta P\text{I}^P \)-open set.

Definition 2.11. A subset \(S \) is said to be \(W\beta P\text{I}^P \)-closed if its complement is \(W\beta P\text{I}^P \) open.

Theorem 2.12. A subset \(A \) of a space \((X, \tau, I)\) is \(W\beta P\text{I}^P \)-closed if and only if \(\text{int}^P(\text{cl}(\text{int}^P(A))) \subseteq A \).

Proof. Let \(A \) be \(W\beta P\text{I}^P \)-closed set of \((X, \tau, I)\). Then \(X - A \) is \(W\beta P\text{I}^P \) open and hence \(X - A \subseteq \text{cl}^P(\text{int}(\text{cl}^P(X - A))) = A \supseteq \text{int}^P(\text{cl}(\text{int}^P(A))). \)

There- \(\text{int}^P(\text{cl}(\text{int}^P(A))) \subseteq A. \) Conversely, let \(\text{int}^P(\text{cl}(\text{int}^P(A))) \subseteq A \) then \(X - A \subseteq X - \text{int}^P(\text{cl}(\text{int}^P(A))) = \text{cl}^P(\text{int}(\text{cl}^P(X - A))). \) (i.e) \(X - A \) is \(W\beta P\text{I}^P \)-open. Therefore, \(A \) is \(W\beta P\text{I}^P \)-closed.

Remark 2.13. For a subset \(A \) of a space \((X, \tau, I)\) we have \(X - \text{int}(\text{cl}^P(\text{int}(A))) \neq \text{cl}^P(\text{int}(\text{cl}^P(X - A))) \) is shown by the following.

Example 2.14. Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\} \), \(I = \{\phi, \{a\}\} \) and \(A = \{b, c\}. \)

Then, \(X - \text{int}(\text{cl}^P(\text{int}(A))) = X, \) but \(\text{cl}^P(\text{int}(\text{cl}^P(X - A))) = \{a\}. \) Hence \(X - \text{int}(\text{cl}^P(\text{int}(A))) \neq \text{cl}^P(\text{int}(\text{cl}^P(X - A))). \)

Theorem 2.15. If \(A \subseteq (X, \tau, I) \) is \(W\beta P\text{I}^P \)-closed then \(\text{int}(\text{cl}^P(\text{int}(A))) \subseteq A. \)

Proof. Obvious.

Corollary 2.16. Let \(A \) be a subset of a space \((X, \tau, I)\) such that \(X - \text{int}(\text{cl}^P(\text{int}(A))) = \text{cl}^P(\text{int}(\text{cl}^P(X - A))). \) Then \(A \) is \(W\beta P\text{I}^P \)-closed if and only if \(\text{int}(\text{cl}^P(\text{int}(A))) \subseteq A. \)

Proof. This is an immediate consequence of Theorem 2.15.

Definition 2.17. A subset \(A \) of a space \((X, \tau, I)\) is called 1) Strong \(W\beta P\text{I}^P \)-set if \(\text{cl}^P(\text{int}(\text{cl}^P(A))) = \text{int}(A). \) 2) \(W\beta P\text{I}^P \)-set if \(\text{cl}^P(\text{int}(A)) = \text{int}(A). \)

Definition 2.18. A subset of an ideal topological space \((X, \tau, I)\) is called 1) Strong \(W\beta P\text{I}_I^P \)-set if \(A = U \cap V, \) where \(U \in \tau \) and \(V \) is Strong \(W\beta P\text{I}^P \)-set. 2) \(W\beta P\text{I}_I^P \)-set if \(A = U \cap V, \) where \(U \in \tau \) and \(V \) is \(W\beta P\text{I}^P \)-set.

Remark 2.19. For a subset \(A \) of a space \((X, \tau, I)\) we have a) Every Strong \(W\beta P\text{I}^P \)-set is \(W\beta P\text{I}^P \)-set. b) Every Strong \(W\beta P\text{I}_I^P \)-set is \(W\beta P\text{I}_I^P \) - set.
c) Every open set is Strong $W\beta P_{I,*P}$ set.

Proof. a) Let A be a Strong $W\beta P_{I,*P}$-set then $\text{cl}^{*P}(\text{int}(\text{cl}^{*P}(A))) = \text{int}(A)$. $\text{cl}^{*P}(\text{int}(A)) \subseteq \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(A))) \subset \text{int}(A)$, (i.e) (by using definition), But $\text{cl}^{*P}(\text{int}(A)) = \text{int}(A) \cup (\text{int}(A))^{*P}$ and so $\text{cl}^{*P}(\text{int}(A)) \cup (\text{int}(A))^{*P}$ is Strong $W\beta P_{I,*P}$-open. Then by Remark 2.19 c), every open set is Strong $W\beta P_{I,*P}$-set. Therefore, $\text{cl}^{*P}(\text{int}(A)) = \text{int}(A)$. (i.e) A is a Strong $W\beta P_{I,*P}$-set. b) Every Strong $W\beta P_{I,*P}$-set is $W\beta P_{I,*P}$-set. Let A be a Strong $W\beta P_{I,*P}$-set, then $A = U \cap V$, where $U \in \tau$ and V is a Strong $W\beta P_{I,*P}$-set (by using (a) above) V is $W\beta P_{I,*P}$-set. Thus A is a $W\beta P_{I,*P}$ set. c) Every open set is Strong $W\beta P_{I,*P}$-set. Let A be an open set Then $A = A \cap X$, where $A \in \tau$ and X is a Strong $W\beta P_{I,*P}$-set Therefore, A is a Strong $W\beta P_{I,*P}$-set.

Proposition 2.20. For a subset (X, τ, I) the following conditions are equivalent a) A is open. b) A is $W\beta I_{*P}$-open and Strong $W\beta P_{I,*P}$-open. c) A is semi-I_{*P}-open and $W\beta P_{I,*P}$-open.

Proof. a) \rightarrow b) Let A be open set, then by Remark 2.19(c), A is Strong $W\beta P_{I,*P}$-set Given $A = \text{int} A$ which implies, $A = \text{int} \subset \text{int}(\text{cl}^{*P}(A)) \subset \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(A)))$ Therefore, A is $W\beta I_{*P}$-open. b) \rightarrow a) Let A be $W\beta I_{*P}$-open and Strong $W\beta P_{I,*P}$-set Then $A = U \cap V$, where $U \in \tau$, V is Strong $W\beta P_{I,*P}$-set, and $A \subset \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(A)))$ Therefore, $A \subset \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(U \cap V)))$.

Since $A \subset U \cap A$, we get $A \subset U \cap [\text{cl}^{*P}(\text{int}(\text{cl}^{*P}(U))) \cap \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(V)))]$ But $U = \text{int} U \subset \text{int}(\text{cl}^{*P}(U)) \subset \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(U)))$ and $\text{cl}^{*P}(\text{int}(\text{cl}^{*P}(V))) \subset \text{int}(\text{cl}^{*P}(V)) = \text{int} V$ we get $A \subset U \cap \text{int} V = \text{int} U \cap \text{int} V = \text{int}(U \cap V) = \text{int} A$. Thus A is open. a) \rightarrow c) Let A be open, then $A = \text{int}(A) \subset \text{cl}^{*P}(\text{int}(A))$. Therefore A is semi-I_{*P}-open. Then by Remark 2.19 c), every open set is $W\beta P_{I,*P}$-set. Therefore, A is both semi-I_{*P}-open and $W\beta P_{I,*P}$-set. c) \rightarrow a) Let A be semi-I_{*P}-open and $W\beta P_{I,*P}$-set Then $A \subset \text{cl}^{*P}(\text{int}(A))$ and $A = U \cap V$, where $U \in \tau$ and V is $W\beta P_{I,*P}$-set. $A \subset U \cap [\text{cl}^{*P}(\text{int} U) \cap \text{cl}^{*P}(\text{int} V)] \subset U \cap \text{cl}^{*P}(\text{int}(\text{cl}^{*P}(V))) = U \cap \text{int} V = \text{int} A$. Therefore, A is open.

References

[3] I.Arockia Rani and A.A.Nithya, on α-I_{*P}-open sets via pre local functions, communicated.

Received: June, 2010