On the Positive Correlations in Wiener Space via Fractional Calculus

T. Guendouzi

Laboratory of Mathematics, Djillali Liabes University
P.O.Box 89, 22000 Sidi Bel Abbes, Algeria
tf.guendouzi@gmail.com

Abstract

In this paper we study the correlation inequality in the Wiener space using the Malliavin and the fractional calculus. Under positivity and monotonicity conditions, we give a proof of the positive correlation between two random functionals F and G which are assumed smooth enough. The main argument is the Itô-Clark representation formula for the functionals of a fractional Brownian motion.

Mathematics Subject Classifications: 60E15, 60F15, 60G05, 60G10, 60H07, 60J60

Keywords: Wiener space, Positive correlations, Malliavin calculus, Clark formula, FKG inequality, Fractional Brownian motion

1 Introduction

It is well-known that the correlations inequalities are one of the most powerful tools of the stochastic analysis due to its vast range of applications. So, the theoretical study of these inequalities has matured tremendously since the seminal work of Fortuin, Kasteleyn and Ginibre [5]. In general, several authors have been interested in finding applications of these inequalities in some areas including statistical mechanics (see, for instance, Bakry and Michel [1], Preston [15]).

Recently, Mayer-Wolf, Üstünel, Zakai obtained general covariance inequalities in an abstract Wiener space, they consider such inequalities for functionals satisfying either monotonicity or convexity properties [13]. Hence Houdré and the second author in [9] used Malliavin calculus techniques to obtain covariance identities and inequalities for functionals of the Wiener and the Poisson processes.
The purpose of this paper is to use the Malliavin calculus techniques to study the positive correlations between two functionals on the Wiener space via fractional calculus. Our proofs rely in general on the Itô-Clark representation formula for the functionals of a fractional Brownian motion and the monotonicity condition for F and G on the Wiener space. Here, the fractional Brownian motion of index $H \in (0, 1)$ is the centred Gaussian process whose covariance kernel is given by

$$R_H(s, t) = \mathbb{E}_H[W_s^H W_t^H],$$

and for f given in $[a, b]$, each of the expressions

$$(D_{a+}^\alpha f)(x) = \left(\frac{d}{dx}\right)^{\lceil\alpha\rceil + 1} I_{a+}^{-\{\alpha\}} f(x), \quad (D_{b-}^\alpha f)(x) = \left(-\frac{d}{dx}\right)^{\lceil\alpha\rceil + 1} I_{b-}^{\{\alpha\}} f(x),$$

are respectively called right and left fractional derivative where $\lceil\alpha\rceil$ denotes the integer part of α, $\{\alpha\} = \alpha - \lceil\alpha\rceil$ and $(I_{a+}^\alpha f(x))(x), (I_{b-}^\alpha f(x))(x)$ are right and left fractional integral of the order $\alpha > 0$ (see [3]). Hence for $H \in (0, 1)$ the integral transform $K_H f$ is defined as

$$K_H f = I_{0+}^{2H} x^{1/2-H} I_{0+}^{1/2-H} x^H f, \quad H \leq 1/2$$

$$K_H f = I_{0+}^{1} x^{H-1/2} I_{0+}^{1/2} x^{1/2-H} f, \quad H \geq 1/2,$$

K_H is an isomorphism from $L^2([0, 1])$ onto $I_{0+}^{H+1/2}(L^2([0, 1]))$. If $H \geq 1/2$, $r \rightarrow K_H(t, r)$ is continuous on $(0, t]$.

The organization of this paper is as follows: in Section 2, we shall give some preparation and state main results. we begin by recalling the basic notions of Malliavin calculus, the gradient operator and Sobolev-type space $D_{2,1}$, the Ornstein-Uhlenbeck semigroup, the Itô-Clark representation formula for functional of Brownian motion. In section 3, we shall study the positive correlation between two functionals of the Wiener space satisfying monotonicity property.

2 Preliminaries

This section gives some basic notions of analysis on the Wiener space $(W, \mathcal{F}_t^H, \mathbb{P}_H)$. The reader can consult [14] for a complete survey on this topic. Let W represented as $C_0([0, 1], \mathbb{R})$ of continuous function $\omega : [0, 1] \rightarrow \mathbb{R}$ with $w(0) = 0$, equipped with the $||\cdot||_\infty$-norm i.e W is also a (separable) Banach-space, W^* be its topological dual and $(W_t)_{t \in [0, 1]}$ be a canonical Brownian motion generating the filtration $(\mathcal{F}_t^H)_{t \in [0, 1]}$. Random-variables on W are called Wiener functionals and the coordinate process $\omega(t)$ is a Brownian motion under P_H. So we
write \(\omega(t) = W(t, \omega) = W(t) \). Recall that \(\mathbb{P}_H \) is the unique probability measure on \(W \) such that the canonical process \((W(t))_{t \in \mathbb{R}}\) is a centered Gaussian process with the covariance Kernel \(R_H \):

\[
\mathbb{E}_H[W(t)W(s)] = R_H(t, s).
\]

The Cameron-Martin space \(\mathcal{H}_H \) is an subspace of \(W \) defined as

\[
\mathcal{H}_H = \{K_H \dot{h}; \; \dot{h} \in L^2([0, 1], dt)\},
\]

i.e., any \(h \in \mathcal{H}_H \) can be represented as \(h(t) = K_H \dot{h}(t) = \int_0^1 K_H(s, t)\dot{h}(s)ds \), \(\dot{h} \) belongs to \(L^2([0, 1]) \). The scalar product on the space \(\mathcal{H}_H \) is given by \((h, g)_{\mathcal{H}_H} = (K_H \dot{h}, K_H \dot{g})_{\mathcal{H}_H} = (\dot{h}, \dot{g})_{L^2([0, 1])}\).

We note that for any \(H \in (0, 1) \), \(R_H(t, s) \) can be written as

\[
R_H(t, s) = \int_0^1 K_H(t, r)K_H(s, r)dr,
\]

and \(R_H = K_H K_H^* \), where \(K_H \) is the Hilbert-Schmidt operator introduced in the first section. \(R_H \) is also the injection from \(W^* \) into the space \(\mathcal{H}_H \) and it can be decomposed as \(R_H \eta = K_H(K_H^* \eta) \), for any \(\eta \) in \(W^* \) (see, [18]). The restriction of \(K_H^* \) to \(W^* \) is the injection from \(W^* \) into \(L^2([0, 1]) \).

If \(y \) is an \(\mathcal{H}_H \)-valued random variable, we denote by \(\dot{y} \) the \(L^2([0, 1], \mathbb{R}) \)-valued random variable such that \(y(\omega, t) = \int_0^t K_H(t, s)\dot{y}(\omega, s)ds \). Here, for \(F \in \mathcal{S}(\chi) \) the \(H \)-Gross-Sobolev derivative of \(F \), denoted by \(\nabla F \) and is the \(\mathcal{H}_H \otimes \chi \)-valued mapping defined by

\[
\nabla F(\omega) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\langle l_1, \omega \rangle, \ldots, \langle l_n, \omega \rangle)R_H(l_i) \otimes x,
\]

where \(\chi \) be a separable Hilbert space, \(\mathcal{S}(\chi) \) is the set of \(\chi \)-valued smooth cylindric functionals, and for each \(1 \leq i \leq n \), \(l_i \) is in \(W^* \) and \(x_i \) belongs to \(\chi \). Hence, for any \(R_H \eta \in \mathcal{H}_H \) we have by the Cameron-Martin theorem

\[
\mathbb{E}_H[F(\omega + R_H \eta)] = \int F(\omega) \exp\left(\langle \eta, \omega \rangle - \frac{1}{2}R_H \eta_{\mathcal{H}_H} \right) d\mathbb{P}_H(\omega).
\]

The Ornstein-Uhlenbeck semigroup \(\{T_t^H, t \geq 0\} \) of bounded operators wch acts on \(L^p(\mathbb{P}_H, \chi) \) for any \(p \geq 1 \) can be described by the Mehler formula:

\[
(T_t^H F)(\omega) = \int_W F(e^{-t}\omega + \sqrt{1 - e^{-2t}}\omega') \mathbb{P}_H(d\omega').
\]
The directional derivative of $F \in S(\chi)$ in the direction $R_H \eta \in \mathcal{H}_H$ is given by
\[
(\nabla F, R_H \eta)_{\mathcal{H}_H} = \frac{d}{dt}F(\omega + t R_H \eta)|_{t=0},
\]
and from (2) we have ∇F depends only on the equivalence classes with respect to \mathbb{P}_H and $\mathbb{E}_H((\nabla F, R_H \eta)_{\mathcal{H}_H}) = \mathbb{E}_H(F(\omega, \eta))$.

For any $p \geq 1$ we define Sobolev space $\mathcal{D}^H_{p,k}(\chi)$, $k \in \mathbb{Z}$, as the completion of $S(\chi)$ with respect to the norm
\[
||F||_{p,k,H} = ||F||_{L^p_H} + ||\nabla^k F||_{L^p(\mathbb{P}_H; \chi)},
\]
hence the operator ∇ can be extended as continuous linear operator from $\mathcal{D}^H_{p,k}(\chi)$ to $\mathcal{D}^H_{p,k-1}(\mathcal{H}_H \otimes \chi)$ for any $p > 1$ and $k \in \mathbb{Z}$ (see,[18]). Thus $\nabla : \mathcal{D}^H_{p,k}(\chi) \rightarrow \mathcal{D}^H_{p,k-1}(\mathcal{H}_H \otimes \chi)$; its formal adjoint with respect to \mathbb{P}_H is the operator δ_H in the sense that $\forall F \in S$, $\forall y \in S(\mathcal{H}_H)$, $\mathbb{E}_H[F \delta_H y] = \mathbb{E}_H(F(\nabla F, y)_{\mathcal{H}_H})$, and since ∇ has continuous extensions, δ_H has also a continuous linear extension from $\mathcal{D}^H_{p,k}(\mathcal{H}_H)$ to $\mathcal{D}^H_{p,k-1}$ for any $p > 1$ and $k \in \mathbb{N}$.

Recall the following, unique, Wiener-Itô chaos expansion for all \mathbb{P}_H-square integrable function F from W to \mathbb{R}
\[
F = \mathbb{E} F + \sum_{n \geq 0} J^H_n F,
\]
where J^H_n is the n-fold iterated Itô integrals of F. If $y \in \mathcal{H}_H$ and $\vartheta^y_1 = \exp(\delta_H y - 1/2 ||y||^2_{\mathcal{H}_H})$, then we have
\[
J^H_n \vartheta^y_1 = \frac{1}{n!} \delta^{(n)}_H y^\otimes n.
\]
More precisely, if $F \in \bigcup_{k \in \mathbb{Z}} \mathcal{D}^H_{2,k}$,
\[
J^H_n F = \frac{1}{n!} \delta^{(n)}_H \left(\mathbb{E}_H \nabla^{(n)} F \right).
\]
For $H \in (0,1)$, let $\{\pi^H_t : t \in [0,1]\}$ be the family of orthogonal projection in \mathcal{H}_H defined by
\[
\pi^H_t(K_H y) = K_H(y1_{[0,1]}), \ y \in L^2([0,1]).
\]
The operator $\Upsilon(\pi^H_t)$ is the second quantization of π^H_t from $L^2(\mathbb{P}_H)$ into itself defined by
\[
F = \sum_{n \geq 0} \delta^{(n)}_H f_n \mapsto \Upsilon(\pi^H_t)(F) = \sum_{n \geq 0} \delta^{(n)}_H \left((\pi^H_t)^{\otimes n} f_n \right).
\]
Thus we have, for \(y \in \mathcal{H} \),
\[
\Upsilon(\pi_t^H)(\vartheta^y_1) = \exp(\delta_H(\pi_t^H y) - 1/2\|\pi_t^H y\|^2_{\mathcal{H}}) = \vartheta^y_1,
\]
hence the bijectivity of the operator \(K_H \) has the following consequence
\[
\mathcal{F}_t^H = \sigma\{\delta_H(\pi_t^H y), y \in \mathcal{H}\} \vee \mathcal{N}_H,
\]
where \(\mathcal{N}_H \) is the set of the \(\mathbb{P}_H \)-negligible events.

We also note that for any \(F \in L^2(\mathbb{P}_H) \),
\[
\Upsilon(\pi_t^H) F = \mathbb{E}_H[F|\mathcal{F}_t^H],
\]
and in particular
\[
\mathbb{E}_H[W_t|\mathcal{F}_t^H] = \int_0^t K_H(t, s)\mathbb{1}_{[0,1]}(s)\delta_H W_s,
\]

\[
\mathbb{E}_H[\exp(\delta_H y - 1/2\|y\|^2_{\mathcal{H}})|\mathcal{F}_t^H] = \exp(\delta_H(\pi_t^H y) - 1/2\|\pi_t^H y\|^2_{\mathcal{H}}),
\]
for any \(y \in \mathcal{H} \).

We shall recall the following results

Theorem 2.1 (\([3]\)) Let \(F \) be \(\mathcal{D}_{2,1}^H \). Then \(F \) belongs to \(\mathcal{F}_t^H \) iff \(\nabla F = \pi_t^H \nabla F \).

Theorem 2.2 (Itô-Clark representation formula) For any \(F \in \mathcal{D}_{2,1}^H \),
\[
F - \mathbb{E}_H[F] = \int_0^1 \mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H]\delta_H W_s
= \delta_H\left(K_H\left(\mathbb{E}_H[K_H^{-1}(\nabla F)(.)|\mathcal{F}_s]\right)\right).
\]

3 Monotonicity and positive correlations

In this section we prepare the basic tools. Our method relies on the Itô-Clark formula which plays an crucial role to establish positive correlation between two random functionals under some hypotheses. Thus we recall here the following correlation identity, in the first lemma, which is based on the Clark formula and the Itô isometry. We refer to [3] and [9] for tutorial references on this identity.

Lemma 3.1 For any \(F, G \in L^2(\mathbb{P}_H) \) we have
\[
\text{Cov}(F, G) = \mathbb{E}_H\left[\int_0^1 \mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H]\mathbb{E}_H[K_H^{-1}(\nabla G)(s)|\mathcal{F}_s^H]ds\right].
\]
Proposition 3.2 Let G be a \mathcal{F}_t^H-measurable element of $\mathcal{D}_{2,1}^H$. Then the identity (9) can be written as

$$
\begin{align*}
\text{Cov}(F, G) &= \mathbb{E}_H \left[(F - \mathbb{E}_H[F])(G - \mathbb{E}_H[G]) \right] \\
&= \mathbb{E}_H \left[\int_0^1 \mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H]\delta_HW_s \int_0^1 \mathbb{E}_H[K_H^{-1}(\nabla G)(s)|\mathcal{F}_s^H]\delta_HW_s \right] \\
&= \mathbb{E}_H \left[\int_0^1 \mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H](\nabla G)(s)|\mathcal{F}_s^H)ds \right].
\end{align*}
$$

□

Lemma 3.3 Let $F, G \in L^2(\mathbb{P}_H)$ such that

$$
\mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H]|\mathbb{E}_H[K_H^{-1}(\nabla G)(s)|\mathcal{F}_s^H] \geq 0, \quad ds \times d\mathbb{P} - a.s.
$$

Then F and G are positively correlated and we have $\text{Cov}(F, G) \geq 0$.

The main results of this section is the following:

Corollary 3.4 If $F, G \in \mathcal{D}_{2,1}^H$ satisfy $K_H^{-1}[\nabla F](t) \geq 0, K_H^{-1}[\nabla G](t) \geq 0 a.s.$, then F and G are positively correlated.

Corollary 3.5 If $G \in \mathcal{D}_{2,1}^H$, and if $\mathbb{E}_H[K_H^{-1}(\nabla F)(s)|\mathcal{F}_s^H] \geq 0$, $K_H^{-1}[\nabla G](t) \geq 0 a.s.$, then F and G are positively correlated.

The next lemma studies the positivity of $K_H^{-1}[\nabla F](t)$, for any functional $F \in \mathcal{D}_{2,1}^H$ under the monotonicity assumption.

Lemma 3.6 For any increasing functional $F \in \mathcal{D}_{2,1}^H$ we have

$$
K_H^{-1}[\nabla F](t) \geq 0, \quad dt \times d\mathbb{P}_H - a.s.
$$

Proof. Let F be increasing functional i.e. $F(\cdot + y) \geq F(\cdot)$ a.s., for all $y \in \mathcal{H}_H$ and $\{u_n, n \geq 0\}$ be an orthonormal basis of $L^2([0, 1])$, for $H \in (0, 1)$, \mathcal{V}_n^t be the σ field generated by $\{\delta_HK_Hu_i^t, i \leq n\}$. Since $\bigcup_n \mathcal{V}_n^t = \mathcal{F}_t^H$, the sequence $F_n = \mathbb{E}_H[F/\mathcal{V}_n^t]$ converge to F in $\mathcal{D}_{2,1}^H$, and from $\pi_t^H K_Hu_n^t = K_Hu_n^t$, for F_n we have $\nabla F_n = \pi_t^H \nabla F_n$ and $\nabla F = \pi_t^H \nabla F$ follows. Hence, by
the Cameron-Martin formula (2) we have for any \(\mathcal{V}^t_n \)-measurable and square-integrable random variable \(\vartheta_n \),
\[
\mathbb{E}_H[F_n(\omega + y^t_n)] = \mathbb{E}_H\left[\exp(\delta_H y^t_n - 1/2 ||y^t_n||^2_{H_H})F_n(\omega)\right] \\
= \mathbb{E}_H[\vartheta_n F_n(\omega)] \\
= \mathbb{E}_H[\vartheta_n \mathbb{E}_H[F/\mathcal{V}^t_n](\omega)] \\
= \mathbb{E}_H[\mathbb{E}_H[\vartheta_n F/\mathcal{V}^t_n](\omega)] \\
= \mathbb{E}_H[\vartheta_n F(\omega)] \\
= \mathbb{E}_H[F(\omega + y^t_n)].
\]

On the other hand, for any square-integrable function \(f \) on \([0,1]^n\) we have
\[
F_n(\omega + y) = F_n(\omega + y^t) \\
= f\left(\delta_H K_H u^t_0 + (K_H u^t_0, K_H^{-1} y^t_{L^2([0,1])}), \ldots, \delta_H K_H u^t_n + (K_H u^t_n, K_H^{-1} y^t_{L^2([0,1])})\right) \\
= f\left(\delta_H K_H u^t_0 + (K_H u^t_0, \pi_H^{t} K_H^{-1} y^t_{L^2([0,1])}), \ldots, \delta_H K_H u^t_n + (K_H u^t_n, \pi_H^{t} K_H^{-1} y^t_{L^2([0,1])})\right) \\
= F_n(\omega + y^t_n) \\
= \mathbb{E}_H[F(\omega + y^t_n)/\mathcal{V}^t_n] \\
\geq \mathbb{E}_H[F/\mathcal{V}^t_n](\omega) \\
= F_n(\omega) - a.s.
\]

Thus, we conclude that the smooth function \(F_n(\omega + \tau y) \) is increasing in \(\tau \), for any \(\tau \in \mathbb{R} \) where \(\pi_H \delta_H^{-1} y^t_n = K_H^{-1} y^t_n \) is positive, hence we have from (4) that \((\nabla F_n, K_H^{-1} y^t_{L^2([0,1])}) \) is positive. Since \(\nabla F_n \) is positive and \(\nabla F_n \rightarrow \nabla F \) then \(\nabla F \) is also positive.

To complete the proof, it suffices to use the fact that \(\delta_H(\pi_H \nabla F) = \int_0^t K_H^{-1}[\nabla F](s)\delta_H W_s \) and \(\nabla F \) positive we get \(K_H^{-1}[\nabla F](s) \geq 0, \quad a.s. \)
\]
\]

Lemma 3.7 For any increasing functional \(F \in L^2(\mathbb{P}_H) \) we have
\[
\mathbb{E}_H[K_H^{-1}(\nabla F)(s) F^H_s] \geq 0, \quad dt \times d\mathbb{P}_H - a.s.
\]

Proof. Let \(\{T^H_t, t \geq 0\} \) be a semigroup defined as in (3), and assume that \(F \) is increasing functional in \(L^2(\mathbb{P}_H) \). Taking \(t = 1/n, \forall n \geq 1 \), we have \(T^H_{1/n} F \) is also increasing from (3) and element of \(\mathcal{D}^H_{2,1} \). Hence from lemma 3.6, \(\nabla T^H_{1/n} F \) is positive and also \(K_H^{-1}[\nabla T^H_{1/n} F](s) \geq 0, \quad a.s., \) then \(\mathbb{E}_H[K_H^{-1}(\nabla T^H_{1/n} F)(t) F^H_t] \) follows. Finally, using the fact that \(T^H_{1/n} F \rightarrow F \) as \(n \) goes to infinity we get the result.
References

Positive correlations in Wiener space

Received: July, 2010