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Abstract

In this paper we introduce a expansion method for solution of car-
leman’s equation, in this method we expand the known function as a
Maclaurin series and convert the solution into linear combination of
some elements. we proved this linear combination is uniformly conver-
gence to the analytic solution. If the known function be a polynomial
then we have exact solution.
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1 Introduction

In the theory of scattering of acoustic, electromagnetic, and earthquake waves
by cylinders, infinite strips, and slits there arises a kind of weakly singular
integral equations which is easily inverted as [§]

a

/m o —t|g()dt = f(z) |o| <a, a2 (1)
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Where ¢(¢) is unknown and f(x) is known functions. Solution of (1) is[9],[2]

@ = [t 1 [ )
/ 22 t—x +7T21H( Wa? — 22 o \/7 @)

Integral equations with logarithmic kernels also arise in the boundary value
problems for two-dimensional configurations [4, 5, 6, 7] and arised in plane elas-
ticity crack problem, the dislocation distribution is taken as unknown function,
and resultant force as the right hand term [1].

In this paper we consider f(z) € C*[—a,al, and after expanding it in the form
of Maclaurin series, substitute in equation (2) and split that integrals into some
elements. In section 2 we evaluated these elements. Analytic and approximate
solution in the form of series are obtained in section 3. Convergence of the
mentioned series are discussed in section 4. Exact solution when the known
function be a polynomial found in section 5.

2 Recurrence relations

a

t"dt

Let w, = | ———, then obviousl

V& Y

a\2k (2k

=1 (5) (k)“ n =2k, 3)
0, n=2k+1.
[t
Lemma 1 Let [,,(x) = then

J Vaz —12(z —t)

SR

J=1

In(z) = =

Where m = § —1 forn even, and m = ”T_l formn odd. and recurrence relations
Logia(z) = 2l () — way,

Lyp(x) = xlop—q(x).

Proof: I,(z) can be written as

a

In(x) =

v —
R
xr —t)

i x"dt
J Va—# _[m(x_ty
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It is known that (see [3]),

/ dt 1 1 't\/a2—x2—x\/a2—t2
= n

Va2 —t2(x —t) Va2 —t2 Va2 — 2?4+ Va? — 2

From (5) it follows that the second integral is zero for z € (—a,a). Now using

(3) and factorizing (z — t) in the first integral of (4) we get

+c (5)

; B o dt [ tdt
(1) = —|= v/aQ—t2+I ‘/a2—t2+

" 2dt " ldt

+x +
V-2 | V-2

— o (x”_lwo 4 xn—?,u}l 44 TWy_9 + wn_l) X (6)

For finding the recurrence relations between I 1(z) and Iy (x) we consider
two cases:
First let n = 2k, then

2!
Lp(x) = —7 (x%_l + a24(1‘)2x2k_3 + -

+a

2k—4 (Qk — 4)' 3 2k—2 (Qk — 2)‘
e )

2k—1 — [a\¥ 2j 2k—2j—1
= —7 |z +Z<§) (j)x

j=1
Secondly, let n = 2k + 1

2!
Dy (x) = —7 (x% + a2—4(1!>2x2k—2 4o
o2 (2k=2)1 5 o (2k)!
T 4"7_1((16—1)!)2]: ta AR (k12

= —7

k o
2% 2)2] 27\ ok—2; E—=1.92 ...
43 (3 (7)a | k=2,

Hence comparing these two equalities we obtain the recursive for I,, which are

Lyi1(x) = xlop () — wog,

ng(ZL’) = I]Qk_l(l’).
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Combining of two above equations get the desirable result. With some

manipulations we can get the results of Gakhov [2]

=132k —1) Y
n—1 2k _n—2k—1
. +; 24 2k ©°

3 Analytical approximate solution

Write (2) as

00) =~ [A00) + IJ%B]
where
o [ g
and
g [_fB)dt

(9)

We consider f(z) € C*[—a,a] so it is possible to expand f(z) as Maclaurin

series

, ‘ ()
f(z)=f(0)+ f(0)x + fz—(!()>x2 + f3(!0)m3 +---+ f n'(()) "
3.1 Evaluation of A(x)
Write
(= a)f () =~ O)a? — 'Ot + (7 (0) - T2

(n=1)(0 (n+1)

@A)+
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Substituting in (8) yields

AWw) =~ OaLo(@) — 1 O)ah() + (£ 0) - L1V

+( — @) (@) + - (10)
Where I,,(z) is defined in (6).

3.2 Evaluation of B

Substituting Maclaurin series of f(¢) in (9) and using Lemma 1 gives

T I A1) B L)

B:f(O)wo—l—f/(O)w1+ ol Wy + - (2]6)' Wap + (2k+1)!w2k+1+-~-
or
f” 0 F@(0 @80
B=m f(O)—i—4(1(!)1(12—1-42(2(!)2a4+---+ 4k(k§)2)a2k+ } (11)
3.3 Approximation solution
The approximation solution is:
1 1
gn(z) = Ny o— Ap(z) + ln—an (12)
where
Ay(x) = ~£ k(@) — 1 O (2) + (7 0) ~ T 0a?) 1) +
D) pe
g~ ) (13)
and
" (0) F®(0) F#9(0)
Bn =T f(O) + 4(1‘)2(12 + 42(2!)2a4 4+ 4/€(k|)2 (14)

where n = 2k + 1 or n = 2k.
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4 Error analysis
In the following convergence of A, (z) to A(x) and B,, to B are proved respec-
tively.

4.1 Error of A,(x)

We are going to prove A, (x) is uniformly convergence to A(z). From (10)
and (13) it follows that

|A(z) = An(2)|

:'((f(" <10)>' f((ni)f)of) fn+1<x>+(f(”+nlf © J”((;f;)) ) In+2(x)+---‘

f) (0) fnt2) (0) ) fntD) (0) Fnt3) (0)
< |a ((n_l). (n+1)!)fn+1($)+a ( . (n+2)!)]”+2(x)+”"
1

< e K(n—l)!_(nim!)unﬂ( ”*(;, ﬁ) |In+z(x>|+--l
(nim o) 00 (G ) (D

1
(n+1)a” + 7 (n+2) ”+1+~-l

(n—2. nfl)!)“"ﬂL((n_ll)ﬁ%)aww...}

a
(n—1)!
Since |f™(z)| < M, and |I,(z)] < na""! for n € N. After using Taylor

theorem we have

&n—l a”
A —A < Ma Z e . —
46— Ao < 0 [ st D] e (o
Since
lim & =0
n—>oon|

so A, (z) is uniformly convergence to A(x).
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4.2 Error of B,

We are going to prove B, is convergence to B. From (11) and (14) it follows
that

4ntl(n + 1) 4n+2 (n + 2)!
T g2nt2 g2n+a
< M e
S Py s R ey s T }
i n+1 n+2
o[ @

D (it 2)
= M 6“2—<1+a2+(a2) ---+(a2)n>]

21 n!

since

2)2 2\
lim [ea2—<1+a2+—(a) ...+(&)>]:O

B,, is convergence to B.

5 Exact solutions for polynomials

Let f(x) = By + iz + fox? + -+ - + B,2", then

An(z) = =230211 () + (B1 = 3B30°) [ao(x) + -+ + (Bor — (0 + 1) B10®) ()
and

B, = Bowo + Bowa + - - - + Bagway

where n = 2k + 1 or n = 2k. Now we can obtain the solution from (12).

6 Conclusion

In this paper we use a polynomial as the known function of right hand side
of Carleman’s equation and find analytic solution for related integral equation
also we found for class of infinite derivable function an approximate solution.
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Appendix

List of some [,,(x) are as below:
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I3(z) = —m(2? + (1,)2(1 2).

Ii(z) = —7(2® + ﬁa%).

Is(z) = —m(z* + &:)2 a’z? + 42(2,)2 at).
Is(z) = —m(2® + 4(35)2 a’z® + ﬁa%).

I (z) = -7 (x + 4(1:)2 a*zt + 42(42")”4952 T 43(3')2a6)

Iy(z) = -7 (x + 4(1:)2 a’z® + 42(2',)2 a*z* + 43f;,)2a6x2 + 44(4|) aS) :
Lo (z)=—7 <x + (1:)2 a’r” + 42(42',)2 a*z® + 43(?1,)2 abz3 + 5 ( )2 a8x> )
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