Multi-Fuzzy Sets

Sabu Sebastian
Department of Mathematical Sciences, Kannur University
Mangattuparamba, Kerala-670567, India
sabukannur@gmail.com

T. V. Ramakrishnan
Department of Mathematical Sciences, Kannur University
Mangattuparamba, Kerala-670567, India

Abstract

Multi-fuzzy set theory is an extension of fuzzy set theory, L-fuzzy set theory and Atanassov intuitionistic fuzzy set theory. In this paper we study the relation between Atanassov intuitionistic fuzzy and the proposed extension called Multi-fuzzy. Also we present the notion of Multi-fuzzy mappings and Atanassov Intuitionistic Fuzzy Sets Generating Maps.

Mathematics Subject Classification: MSC: 03E72; 47S40; 08A72

Keywords: Multi-fuzzy, Intuitionistic fuzzy, \(p \)-complement, Multi-fuzzy mapping, Atanassov intuitionistic fuzzy sets generating map

1 Introduction

We propose the theory of multi-fuzzy sets in terms of multi dimensional membership functions. Multi-fuzzy set theory is an extension of theories of fuzzy sets[5], L-fuzzy sets[2] and intuitionistic fuzzy sets[1]. Also we introduce the concept of multi-fuzzy mappings and conduct a study on multi-fuzzy mappings which produces intuitionistic fuzzy sets from multi-fuzzy sets called Atanassov Intuitionistic Fuzzy Sets Generating Maps. Our other papers [3,4] dealt with \(T \), \(S \) operations and their \(p \)-conjugates of Multi-fuzzy sets, the \(p \)-complements of multi-fuzzy sets and their relations with \(p \)-conjugates of multi-fuzzy sets. In this paper an intuitionistic fuzzy set means Atanassov intuitionistic fuzzy set.
2 Preliminary

Throughout this paper, we will use the following notations. P, X, I and I^X stand for the set of all positive integers, the universal set, the unit interval $[0, 1]$ and the set of all functions from X to I respectively.

Definition 2.1 An Atanassov Intuitionistic Fuzzy Set on X is a set $A = \{(x, \mu_A(x), \nu_A(x)) : x \in X\}$, where $\mu_A(x) \in I$ denotes the membership degree and $\nu_A(x) \in I$ the non-membership degree of x in A and $\mu_A(x) + \nu_A(x) \leq 1$ for all $x \in X$.

Definition 2.2 Let X be a nonempty set and let $\{L_i : i \in P\}$ be a family of complete lattices. A multi-fuzzy set A in X is a set of ordered sequences:

$$A = \{(x, \mu_1(x), \mu_2(x), ..., \mu_i(x), ...) : x \in X\},$$

where $\mu_i \in L_i^X$, for $i \in P$.

Remark 2.3 If the sequences of the membership functions have only k-terms (finite number of terms), k is called the dimension of A. If $L_i = [0, 1]$ (for $i = 1, 2, ..., k$), then the set of all multi-fuzzy sets in X of dimension k is denoted by $\mathbb{M}^k\text{FS}(X)$. The multi-membership function μ_A is a function from X to I^k such that for all x in X, $\mu_A(x) = (\mu_1(x), \mu_2(x), ..., \mu_k(x))$. For the sake of simplicity we denote the multi fuzzy set $A = \{(x, \mu_1(x), \mu_2(x), ..., \mu_k(x)) : x \in X\}$ as $A=(\mu_1, \mu_2, ..., \mu_k)$. In this paper $L_i = [0, 1]$ (for $i = 1, 2, ..., k$) and we will study some properties of Multi-fuzzy sets of dimension k.

Definition 2.4 Let k be a positive integer and let μ and ν in $\mathbb{M}^k\text{FS}(X)$, that is $\mu = (\mu_1, ..., \mu_k) = \{(x, \mu_1(x), ..., \mu_k(x)) : x \in X\}$ and $\nu = (\nu_1, ..., \nu_k) = \{(x, \nu_1(x), ..., \nu_k(x)) : x \in X\}$, then we have the following relations and operations:

1. $\mu \subseteq \nu$ if and only if $\mu_i \leq \nu_i$, for all $i = 1, 2, ..., k$;
2. $\mu = \nu$ if and only if $\mu_i = \nu_i$, for all $i = 1, 2, ..., k$;
3. $\mu \sqcap \nu = (\mu_1 \sqcap \nu_1, ..., \mu_k \sqcap \nu_k) = \{(x, \max(\mu_1(x), \nu_1(x)), ..., \max(\mu_k(x), \nu_k(x))) : x \in X\}$;
4. $\mu \sqcup \nu = (\mu_1 \sqcup \nu_1, ..., \mu_k \sqcup \nu_k) = \{(x, \min(\mu_1(x), \nu_1(x)), ..., \min(\mu_k(x), \nu_k(x))) : x \in X\}$;
5. $\mu + \nu = (\mu_1 + \nu_1, ..., \mu_k + \nu_k) = \{(x, \mu_1(x) + \nu_1(x) - \mu_1(x) \cdot \nu_1(x), ..., \mu_k(x) + \nu_k(x) - \mu_k(x) \cdot \nu_k(x)) : x \in X\}$.

Multi-fuzzy sets

Definition 2.5 Let \(\mu = (\mu_1, ..., \mu_k) \) be a multi-fuzzy set and let \(\mu'_i \) be the classical fuzzy complement of the ordinary fuzzy set \(\mu_i \), for \(i = 1, 2, ..., k \). The Classical Multi-fuzzy Complement of the multi-fuzzy set \(\mu \) is a multi-fuzzy set \((\mu'_1, ..., \mu'_k) \) and it is denoted by \(C(\mu) \).

That is \(C(\mu) = \{ (x, c(\mu_1(x)), ..., c(\mu_k(x))) : x \in X \} = \{ (x, 1 - \mu_1(x), ..., 1 - \mu_k(x)) : x \in X \} \), where \(c \) is the classical fuzzy complement operation.

3 Multi-fuzzy Mappings

In this section we introduce the concept of mappings from \(M^k FS(X) \) into \(M^n FS(X) \), for every positive integers \(k \) and \(n \).

Definition 3.1 Let \(\mu = (\mu_1, ..., \mu_k) \), \(\nu = (\nu_1, ..., \nu_n) \) be multi-fuzzy sets in \(X \) of dimension \(k \) and \(n \) respectively. A multi-fuzzy mapping is a mapping \(F \) from \(M^k FS(X) \) into \(M^n FS(X) \), which maps each \(\mu \in M^k FS(X) \) into a unique multi-fuzzy set \(\nu \in M^n FS(X) \).

Example 3.2 The mapping \(F : M^k FS(X) \rightarrow M^n FS(X) \) defined by \(F(\mu_1, \mu_2, ..., \mu_k) = (\frac{1}{k} \sum_{i=1}^{k} \mu_i, \frac{1}{k} \sum_{i=1}^{k} \mu_i^2, ..., \frac{1}{k} \sum_{i=1}^{k} \mu_i^n) \) is a multi-fuzzy mapping, where \(\mu_i^m(x) = (\mu_i(x))^m, \forall x \in X \) and for \(m = 1, 2, ..., n \).

Example 3.3 The following mappings are multi-fuzzy mappings from \(M^k FS(X) \) into \(M^k FS(X) \). Let \(\mu = (\mu_1, \mu_2, ..., \mu_k) \) be multi-fuzzy set of dimension \(k \) and let \(p \in \{1, 2, ..., k\} \).

1. \(U_p(\mu) = (\mu_1, \mu_2, ..., \mu_{p-1}, 1, \mu_{p+1}, ..., \mu_k) \).
2. \(C_p(\mu) = (\mu_1, \mu_2, ..., \mu_{p-1}, \mu'_p, \mu_{p+1}, ..., \mu_k) \), where \(\mu'_p \) is the classical fuzzy complement of \(\mu_p \).
3. The identity mapping \(I(\mu) = (\mu_1, \mu_2, ..., \mu_k) \).
4. The classical multi-fuzzy complement operation \(C(\mu) = (\mu'_1, \mu'_2, ..., \mu'_k) \).
5. \(F(\mu)(x) = (t(\alpha, \mu_1(x)), t(\alpha, \mu_2(x)), ..., t(\alpha, \mu_k(x))) \), \(\forall x \in X \), where \(t \) is a \(t \)-norm and \(\alpha \) is a constant in \([0, 1] \).

Remark 3.4 Let \(F \) and \(G \) be multi-fuzzy mappings from \(M^k FS(X) \) into \(M^n FS(X) \). For the sake of simplicity we use the notations \(FG(\mu) \) and \((F + G)(\mu) \) instead of \(F(G(\mu)) \) and \(F(\mu) + G(\mu) \) respectively.
Note 3.5 Let $\mu = (\mu_1, \mu_2)$ be multi-fuzzy set of dimension 2 and let $\mu_1(x)$, $\mu_2(x)$ are the grade membership and grade nonmembership values of x in μ respectively. If $\mu_1(x) + \mu_2(x) \leq 1$, then μ is an intuitionistic fuzzy set. Therefore every intuitionistic fuzzy set in X is a multi-fuzzy set in X of dimension 2 and every intuitionistic fuzzy operation is a multi-fuzzy mapping on multi-fuzzy sets. But multi-fuzzy set need not be an intuitionistic fuzzy set, for example the multi-fuzzy set $\mu = \{(x, \mu_1(x), \mu_2(x)) : \mu_1(x) = .9, \mu_2(x) = .8, x \in X\}$ is not an intuitionistic fuzzy set.

Proposition 3.6 Let ‘\subseteq’ and ‘\subseteq’ be the subset symbols in multi-fuzzy sets and intuitionistic fuzzy sets respectively. If $\mu = (\mu_1, \mu_2)$ and $\nu = (\nu_1, \nu_2)$ are intuitionistic fuzzy sets in X, then

1. $C_2(\mu) \subseteq C_2(\nu) \iff \mu \subseteq \nu$;
2. $C_2(\mu \cup C_2(\nu)) = \mu \cup \nu$;
3. $C_2(\mu \cap C_2(\nu)) = \mu \cap \nu$,

where $C_2(\mu) = (\mu_1, \mu_2)$.

Definition 3.7 A mapping $F : M^kFS(X) \rightarrow M^2FS(X)$ is said to be an Atanassov Intuitionistic Fuzzy Sets Generating Map (AIFSGM), if $F(\mu)$ is an intuitionistic fuzzy set in $M^2FS(X)$, for every $\mu \in M^kFS(X)$.

Example 3.8 Let m, k be positive integers and let $\mu^m_i(x) = (\mu_i(x))^m$ for all x in X. The mapping $F : M^kFS(X) \rightarrow M^2FS(X)$ is an AIFSGM, if $F(\mu_1, \mu_2, ..., \mu_k) = \left(\frac{1}{k} \sum_{i=1}^{k} \mu^m_i(x), \frac{1}{k} \sum_{i=1}^{k} (1 - \mu_i)^m\right)$. We know that for every $x \in X$, $\frac{1}{k} \sum_{i=1}^{k} (\mu_i(x))^m + \frac{1}{k} \sum_{i=1}^{k} (1 - \mu_i(x))^m \leq \frac{1}{k} \sum_{i=1}^{k} (\mu_i(x)) + \frac{1}{k} \sum_{i=1}^{k} (1 - \mu_i(x)) = \frac{1}{k} \sum_{i=1}^{k} [\mu_i(x) + (1 - \mu_i(x))] = 1$, since $\mu_i(x), 1 - \mu_i(x) \in [0, 1]$ and $m \geq 1$.

Example 3.9 If μ is an arbitrary multi-fuzzy set of dimension 2, then $G(\mu) = \{(x, \alpha \cdot \mu_1(x), (1 - \alpha) \cdot \mu_2(x)) : x \in X\}, \alpha \in [0, 1]$ is an intuitionistic fuzzy set.

Theorem 3.10 If F and G are Atanassov Intuitionistic Fuzzy Sets Generating Maps (AIFSGM) from $M^kFS(X)$ into $M^2FS(X)$ then

1. $F \wedge G$ is an AIFSGM on $M^kFS(X)$ and
2. $F \vee G$ need not be an AIFSGM on $M^kFS(X)$, where $(F \wedge G)(\mu) = F(\mu) \cap G(\mu)$ and $(F \vee G)(\mu) = F(\mu) \cup G(\mu)$.
Proof (1). For any $\mu \in M^{k}\text{FS}(X)$, we have $(F \wedge G)(\mu) = F(\mu) \cap G(\mu) = (\nu_1, \nu_2) \cap (\lambda_1, \lambda_2) = \{(x, \min(\nu_1(x), \lambda_1(x)), \min(\nu_2(x), \lambda_2(x))) : x \in X\}$, where $F(\mu) = (\nu_1, \nu_2)$ and $G(\mu) = (\lambda_1, \lambda_2)$. By the definition of intuitionistic fuzzy sets; $\forall x \in X$, we have $0 \leq \nu_1(x) + \nu_2(x) \leq 1$ and $0 \leq \lambda_1(x) + \lambda_2(x) \leq 1$, that implies $0 \leq \min(\nu_1(x), \lambda_1(x)) + \min(\nu_2(x), \lambda_2(x)) \leq 1, \forall x \in X$. Therefore $F \wedge G$ is an AIFSGM.

(2). We prove this part by a counter example. Let $F(\mu) = (\nu_1, \nu_2)$, $G(\mu) = (\lambda_1, \lambda_2)$, where $\nu_1(x) = \frac{5}{7}, \nu_2(x) = \frac{1}{7}$, $\lambda_1(x) = \frac{2}{7}$ and $\lambda_2(x) = \frac{4}{7}, \forall x \in X$. $(F \lor G)(\mu) = F(\mu) \cup G(\mu) = \{(x, \frac{5}{7}, \frac{1}{7}) : x \in X\} \cup \{(x, \frac{2}{7}, \frac{4}{7}) : x \in X\} = \{(x, \max(\frac{5}{7}, \frac{2}{7}), \min(\frac{1}{7}, \frac{4}{7})) : x \in X\} = \{(x, \frac{5}{7}, \frac{4}{7}) : x \in X\}$; $F \lor G$ is not an AIFSGM, since $\frac{5}{7} + \frac{4}{7} > 1$.

Theorem 3.11 If F and G are AIFSGM from $M^{2}\text{FS}(X)$ into $M^{2}\text{FS}(X)$ then $F \circ G$ is an AIFSGM on $M^{2}\text{FS}(X)$

Proof. Let $\mu(x) = (\mu_1(x), \mu_2(x))$ and $G(\mu) = G(\mu_1, \mu_2) = (\nu_1, \nu_2)$. That is $G(\mu_1, \mu_2)(x) = (\nu_1(x), \nu_2(x))$ and $(F \circ G)(\mu) = F(G(\mu_1, \mu_2))(x) = F(\nu_1, \nu_2)(x)$. Since F is an AIFSGM, there exists a $\gamma \in M^{2}\text{FS}(X)$ such that $F(\nu_1, \nu_2)(x) = \gamma(x) = (\gamma_1(x), \gamma_2(x))$ with $0 \leq \gamma_1(x) + \gamma_2(x) \leq 1, \forall x \in X$. Therefore $(F \circ G)(\mu) = \gamma$ is an intuitionistic fuzzy set.

Note 3.12 Atanassov Intuitionistic Fuzzy Sets Generating Maps (AIFSGM) and Atanassov Intuitionistic Fuzzy operations are different concepts.

Theorem 3.13 If $F : M^{2}\text{FS}(X) \rightarrow M^{2}\text{FS}(X)$ is a mapping defined by $F(\mu_1, \mu_2) = (r_1, r_2, r_2, \mu_2)$, where $r_1, r_2 \in [0, \frac{1}{2}]$, then F is an AIFSGM on $M^{2}\text{FS}(X)$. Moreover if $F^n(\mu_1, \mu_2) = F \circ F^{n-1}(\mu_1, \mu_2)$, any integer $n \geq 2$, then $\lim_{n \to \infty} F^n(\mu_1, \mu_2) = (0, 0)$

Proof. $F(\mu_1, \mu_2)$ is an intuitionistic fuzzy set, since $F(\mu_1, \mu_2)(x) = (r_1, \mu_1(x), r_2, \mu_2(x))$ and $0 \leq r_1, \mu_1(x) + r_2, \mu_2(x) \leq r_1 + r_2, \leq 1, \forall x \in X$. By the mathematical induction $F^n(\mu_1, \mu_2)(x) = (r^n_1, \mu_1(x), r^n_2, \mu_2(x)), \forall x \in X$. Since r^n_1 and r^n_2 tend to 0 as n tends to 0, $\lim_{n \to \infty} F^n(\mu_1, \mu_2)(x) = (0, 0), \forall x \in X$. Hence $\lim_{n \to \infty} F^n(\mu_1, \mu_2) = (0, 0)$.

Theorem 3.14 If F is a mapping on $M^{2}\text{FS}(X)$ defined by $F(\mu)(x) = F(\mu_1, \mu_2)(x) = (t(\mu_1(x), \mu_2(x)), t(1 - \mu_1(x), 1 - \mu_2(x)))$, where t is a t-norm, then F is an AIFSGM on $M^{2}\text{FS}(X)$.

Proof.

$t(\mu_1(x), \mu_2(x)) + t(1 - \mu_1(x), 1 - \mu_2(x)) = t(\mu_1(x), \mu_2(x)) + (1 - s(\mu_1(x), \mu_2(x)))$
=1 - [s(\mu_1(x), \mu_2(x)) - t(\mu_1(x), \mu_2(x))], where s is the dual norm of t. We obtain the inequality 0 \leq 1 - [s(\mu_1(x), \mu_2(x)) - t(\mu_1(x), \mu_2(x))] \leq 1, since both t(\mu_1(x), \mu_2(x)) and t(1 - \mu_1(x), 1 - \mu_2(x)) \in [0, 1] and t(\mu_1(x), \mu_2(x)) \leq s(\mu_1(x), \mu_2(x)) for all x in X. Therefore 0 \leq t(\mu_1(x), \mu_2(x)) + t(1 - \mu_1(x), 1 - \mu_2(x)) \leq 1 and F(\mu) is an intuitionistic fuzzy set.

Example 3.15 Let F be a mapping on \(M^2\text{FS}(X)\) defined by \(F(\mu_1, \mu_2)(x) = (\mu_1(x), \mu_2(x), (1-\mu_1(x)), (1-\mu_2(x)))\), then F is an AIFSGM on \(M^2\text{FS}(X)\).

4 Concluding Remarks

In this paper we have proposed the concept of multi-fuzzy mappings and Atanassov Intuitionistic Fuzzy Sets Generating Maps, which have the fundamental role in the study of multi-fuzzy set theory. Multi-fuzzy set theory is a direct extension of fuzzy set theory.

ACKNOWLEDGEMENTS.

The authors would like to thank Prof.T.Thrivikraman and the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

Received: February, 2010