The Category $\text{VRel}(H)$

Pyung Ki Lim, Sun Ho Kim and Kul Hur1

Division of Mathematics and Informational Statistics and Nanoscale Science and Technology Institute
Wonkwang University, Iksan
Chonbuk, Korea 570-749
pklim@wonkwang.ac.kr
sigel1999@hanmail.net
kulhur@wonkwang.ac.kr

Abstract

We introduce the new category $\text{VRel}(H)$ consisting of H-fuzzy relation spaces and H-fuzzy mappings between them satisfying a certain condition, where the concept of H-fuzzy mapping is the modification of one of fuzzy mapping introduced by Demirci[6]. And we investigate $\text{VRel}(H)$ in the sense of a topological universe and show that $\text{VRel}(H)$ is Cartesian closed over Set. Moreover, we construct the category $\text{VFRel}(H)$ consisting of all H-fuzzy relational spaces over H-fuzzy sets and relation preserving mappings between them, and we find some properties of the category $\text{VFRel}(H)$. And we study the relations between the categories $\text{Rel}(H)$ and $\text{VRel}(H)$.

Mathematics Subject Classification: 04A72, 18B10

Keywords: H-fuzzy mapping, H-fuzzy relation, Cartesian closed, topological universe, topos

1. Introduction

Nel[18] introduced the concept of a topological universe which implies concrete guasitopos[1]. Thus every topological universe satisfies all the conditions

1This paper was supported by Wonkwang University in 2009.
of a topos except one condition of the subobject classifier. The notion of a topological universe has already been put to effective use in several areas of mathematics\[16,17,19\].

Zadeh\[21\] introduced the notion of a fuzzy relation naturally as a generalization of crisp relations in fuzzy set theory. After that time, Cerruti\[4\] made categories of L-fuzzy relations and studies their some properties. In particular, Hur\[11\] introduced the category \(\text{Rel}(H) \) consisting of \(H \)-fuzzy relations and proved that \(\text{Rel}(H) \) is topological universe and Cartesian closed.

Up to now, almost all the researchers studying the categories of fuzzy relations have used morphisms between fuzzy relations as crisp mappings satisfying a certain condition. Recently, Demirci\[6\] introduced the notion of fuzzy mappings and obtained many results. In particular, Hur et al.\[12\] studied relations between a fuzzy mapping and a fuzzy equivalence relation. Furthermore, also Hur et al.\[13\] investigated the category \(\text{VSet}(H) \) consisting of \(H \)-fuzzy spaces and \(H \)-fuzzy mappings between them satisfying a certain condition. In this paper, we introduce the new category \(\text{VRel}(H) \) consisting of \(H \)-fuzzy spaces and \(H \)-fuzzy mappings between them satisfying a certain condition, where the concept of \(H \)-fuzzy mapping is the modification of one of fuzzy mapping introduced by Demirci\[6\]. And we investigate \(\text{VRel}(H) \) in the sense of a topological universe and show that \(\text{VRel}(H) \) is Cartesian closed over \(\text{Set} \). And we study the relations between the categories \(\text{Rel}(H) \) and \(\text{VRel}(H) \).

2. Preliminaries

In this section, we will introduce some basic definitions and well-known results from\[2,8,15,18,20\] which are needed in the next section.

Definition 2.1[15]. Let \(A \) be a concrete category and \(((Y_\alpha, \xi_\alpha))_\Gamma \) a family of objects in \(A \) indexed by a class \(\Gamma \). For any set \(X \), let \((f_\alpha : X \to Y_\alpha)_\Gamma \) be a source of maps indexed by \(\Gamma \). An \(A \)-structure \(\xi \) on \(X \) is called *initial with respect to* \((X, (f_\alpha), ((Y_\alpha, \xi_\alpha))) \) provided that the following conditions hold:

1. For each \(\alpha \in \Gamma \), \(f_\alpha : (X, \xi) \to (Y_\alpha, \xi_\alpha) \) is an \(A \)-morphism.
2. If \((Z, \rho) \) is an \(A \)-object and \(g : Z \to X \) is a map such that for each \(\alpha \in \Gamma \), the map \(f_\alpha \circ g : (Z, \rho) \to (Y_\alpha, \xi_\alpha) \) is an \(A \)-morphism, then \(g : (Z, \rho) \to (X, \xi) \)
The category \(\text{VRel}(H) \)

is an \(A \)-morphism. In this case, \((f_{\alpha} : (X, \xi) \rightarrow (Y_{\alpha}, \xi_{\alpha}))_{\Gamma} \) is called an initial source in \(A \).

Dual notions: final structure ; final sink.

Definition 2.2[15]. A concrete category \(A \) is called topological over \(\text{Set} \) provided that for each set \(X \), for any family \(((Y_{\alpha}, \xi_{\alpha}))_{\Gamma} \) of \(A \)-objects, and for any source \((f_{\alpha} : X \rightarrow Y_{\alpha})_{\Gamma} \) of maps, there exists a unique \(A \)-structure \(\xi \) on \(X \) which is initial with respect to \((X, (f_{\alpha}), ((Y_{\alpha}, \xi_{\alpha}))) \).

Dual notion: cotopological category.

Result 2.A[15, Theorem 1.5]. A concrete category \(A \) is topological if and only if \(A \) is cotopological.

Result 2.B[15, Theorem 1.6; 9, Proposition in Section 1]. Let \(A \) be a topological category over \(\text{Set} \). Then \(A \) is complete and cocomplete.

Definition 2.3[15]. Let \(A \) be a concrete category.

1. The \(A \)-fibre of a set \(X \) is the class of all \(A \)-structure on \(X \).
2. \(A \) is called properly fibred over \(\text{Set} \) provided that the following conditions hold:
 - (Fibre-smallness) For each set \(X \), the \(A \)-fibre of \(X \) is a set.
 - (Terminal separator property) For each singleton set \(X \), the \(A \)-fibre of \(X \) has precisely one element.
 - If \(\xi, \eta \) and are \(A \)-structures on a set \(X \) such that \(1_{X} : (X, \xi) \rightarrow (X, \eta) \) and \(1_{X} : (X, \eta) \rightarrow (X, \xi) \) are \(A \)-morphisms, then \(\xi = \eta \).

Definition 2.4[8]. A category \(A \) is called Cartesian closed provided that the following conditions hold:

1. For any \(A \)-objects \(A \) and \(B \), there exists a product \(A \times B \) in \(A \).
2. Exponential objects exist in \(A \), i.e., for any \(A \)-object \(A \), the functor \(A \times - : A \rightarrow A \) has a right adjoint, i.e., for any \(A \)-object \(B \), there exist an \(A \)-object \(B^{A} \) and a \(A \)-morphism \(e_{A,B} : A \times B^{A} \rightarrow B \) (called the evaluation)
such that for any \(A \)-object \(C \) and any \(A \)-morphism \(f : A \times C \to B \), there exists a unique \(A \)-morphism \(\overline{f} : C \to B^A \) such that the diagram

\[
\begin{array}{ccc}
A \times B^A & \xrightarrow{e_{A,B}} & B \\
\downarrow \exists 1_{A \times f} & & \downarrow f \\
A \times C & \xrightarrow{e} &
\end{array}
\]

commutes.

Definition 2.5[18]. A category \(A \) is called a *topological universe over* \(\text{Set} \) provided that the following conditions hold:

1. \(A \) is well-structured over \(\text{Set} \), i.e., (i) \(A \) is a concrete category; (ii) \(A \) has the fibre-smallness condition; (iii) \(A \) has the terminal separator property.
2. \(A \) is cotopological over \(\text{Set} \).
3. Final episinks in \(A \) are preserved by pullbacks, i.e., for any final episink \((g_\lambda : X \to Y)_\Gamma\) and any \(A \)-morphism \(f : W \to Y \), the family \((e_\lambda : U_\lambda \to W)_\Gamma\), obtained by taking the pullback of \(f \) and \(g_\lambda \), for each \(\lambda \), is again a final episink.

Definition 2.6[20]. A category \(A \) is called a *topos* provided that the following conditions hold:

1. There is a terminal object \(U \) in \(A \).
2. \(A \) has equalizers.
3. \(A \) is Cartesian closed.
4. There is a subobject classifier in \(A \), i.e., there is an object \(\Omega \) and morphism \(v \) from \(U \) to \(\Omega \) such that for each monomorphism \(m \) from \(A' \) to \(A \), there exists a unique morphism \(\emptyset_m \) from \(A \) to \(\Omega \) such that the following diagram is a pullback:

\[
\begin{array}{ccc}
A' & \xrightarrow{m} & U \\
\downarrow \phi_m & & \downarrow v \\
A & \xrightarrow{\phi} & \Omega.
\end{array}
\]
Remark. Let \(A \) be any category with a subobject classifier. If \(f \) is any biomorphism in \(A \), then \(f \) is an isomorphism in \(A \) (cf. [3]).

Definition 2.7[2]. A lattice \(H \) is called a complete Heyting algebra, if \(H \) satisfies the following conditions hold:

1. \(H \) is a complete lattice.
2. For any \(a, b \in H \), the set \(\{ x \in H : x \land a \leq b \} \) has a greatest element denoted by \(a \rightarrow b \) (called the relative pseudo-complement of \(a \) in \(b \)), i.e., \(x \land a \leq b \) if and only if \(x \leq (a \rightarrow b) \).

In particular, if \(H \) is a complete Heyting algebra with the least element \(0 \), then for each \(a \in H \), \(N(a) = a \rightarrow 0 \) is called the negation or the pseudo-complement of \(a \).

Throughout this paper, we will use \(H \) as a complete Heyting algebra with the least element \(0 \) and the largest element \(1 \).

3. The category \(\text{VRel}(H) \)

In this section, we introduce the category \(\text{VRel}(H) \) of fuzzy relational spaces and show that it has structures similar to those of \(\text{VSet}(H) \) (see [13]).

Definition 3.1[6,13]. A mapping \(E_X : X \times X \rightarrow H \) is called an \(H \)-fuzzy equality on \(X \) if it satisfies the following conditions:

(i) \(E_X(x, y) = 1 \iff x = y \ \forall x, y \in X \),
(ii) \(E_X(x, y) = E_X(y, x) \ \forall x, y \in X \),
(iii) \(E_X(x, y) \land E(y, z) \leq E_X(x, z) \ \forall x, y, z \in X \).

We will denote the set of all \(H \)-fuzzy equalities on \(X \) as \(E_H(X) \).

Definition 3.2[6,13]. A \(H \)-fuzzy relation \(f \) on \(X \times Y \) is called an \(H \)-fuzzy mapping w.r.t. \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \), denoted by \(f : X \rightarrow Y \), if it satisfies the following conditions:

(i) \(\forall x \in X, \exists y \in Y \) such that \(f(x, y) > 0 \),
(ii) \(\forall x, y \in X, \forall z, w \in y, f(x, z) \land f(y, w) \land E_X(x, y) \leq E_Y(z, w) \).
Definition 3.3[6,13]. The identity H-fuzzy mapping I_X on X is a H-fuzzy relation on $X \times X$ defined by

$$I_X(x,y) = \begin{cases}
1, & \text{if } x=y, \\
0, & \text{if } x \neq y, \ \forall x,y \in X.
\end{cases}$$

It is clear that $I_X \in E_H(X)$. Also, if $f : X \rightarrow Y$ is an (ordinary) mapping, then it is an H-fuzzy mapping w.r.t. $I_X \in E_H(X)$ and $I_Y \in E_H(Y)$.

Definition 3.4[6,13]. Let $f : X \rightarrow Y$ be an H-fuzzy mapping w.r.t. $E_X \in E_H(X)$ and $E_Y \in E_H(Y)$. Then f is said to be:

(i) strong if $\forall x \in X, \exists y \in Y$ such that $f(x,y) = 1$,
(ii) surjective if $\forall y \in Y, \exists x \in X$ such that $f(x,y) > 0$,
(iii) strong surjective if $\forall y \in Y, \exists x \in X$ such that $f(x,y) = 1$,
(iv) injective if $f(x,z) \land f(y,w) \land E_Y(z,w) \leq E_X(x,y)$, $\forall x,y \in X$, $\forall z,w \in Y$,
(v) bijective if it surjective and injective,
(vi) strong bijective if it is strong surjective and injective.

In particular, if $f(x,y) = 1$, then we will write $y = f(x)$. It is clear that I_X is a strong H-fuzzy mapping w.r.t. $E_X \in E_H(X)$. Moreover, it is strong bijective w.r.t. $E_X \in E_H(X)$.

Definition 3.5[11]. Let X be a set. R is called an H-fuzzy relation (or simply, a fuzzy relation) on X if $\mu_R : X \times X \rightarrow H$ is a mapping. In this case, (X,R) is called an H-fuzzy relational space (or, simply, a fuzzy relational space).

Definition 3.6[6,13]. Let R and S be H-fuzzy relations on $X \times Y$ and $Y \times Z$, respectively. Then

(i) the sup-min composition of R and S, denoted by $S \circ R$, is a H-fuzzy relation on $X \times Z$ defined by

$$S \circ R(x,z) = \bigvee_{y \in Y} [R(x,y) \land S(y,z)] \ \forall x \in X, \ \forall z \in Z,$$

(ii) the inverse of R, denoted by R, is a H-fuzzy relation on $Y \times X$ defined by
\[R^{-1}(y, x) = R(x, y), \forall x \in X, \forall y \in Y. \]

Result 3.A[13, Proposition 3.6]. Let \(f : X \to Y \) and \(g : Y \to Z \) be \(H \)-fuzzy mapping w.r.t. \(E_X \in E_H(X) \), \(E_Y \in E_H(Y) \) and \(E_Z \in E_H(Z) \). Then the sup-min composition \(g \circ f \) is an \(H \)-fuzzy mapping \(g \circ f : X \to Z \) w.r.t. \(E_X \in E_H(X) \) and \(E_Z \in E_H(Z) \).

Result 3.B[13, Corollary 3.6]. Let \(f : X \to Y \) and \(g : Y \to Z \) be \(H \)-fuzzy mappings w.r.t. \(E_X \in E_H(X) \), \(E_Y \in E_H(Y) \) and \(E_Z \in E_H(Z) \). If \(f \) and \(g \) are strong [resp. surjective, strong surjective, injective, bijective and strong bijective], then \(g \circ f \) is strong [resp. surjective, strong surjective, injective, bijective and strong bijective].

Definition 3.7[13]. Let \(f : X \to Y \) be an \(H \)-fuzzy mapping w.r.t. \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \), let \(A \in H^X \) and let \(B \in H^X \).

(i) The **image of \(A \) under \(f \)**, denoted by \(f(A) \), is an \(H \)-fuzzy set in \(Y \) defined as follows:

\[
 f(A)(y) = \bigvee_{x \in X} [A(x) \wedge f(x, y)] \quad \forall y \in Y.
\]

(ii) The **preimage of \(B \) under \(f \)**, denoted by \(f^{-1}(B) \), is an \(H \)-fuzzy set in \(X \) defined as follows:

\[
 f^{-1}(B)(x) = \bigvee_{y \in Y} [B(y) \wedge f(x, y)] \quad \forall x \in X.
\]

Definition 3.8[13, Proposition 3.10]. Let \(f : X \to Y \) be an \(H \)-fuzzy mapping \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \). Then \(f^2 = f \times f : X \times X \to Y \times Y \) is called the **fuzzy product mapping of \(f \) w.r.t.** \(E_{X \times X} = E_X \times E_X \in E_H(X \times X) \) and \(E_{Y \times Y} = E_Y \times E_Y \in E_H(Y \times Y) \) if \(f^2 : (X \times X) \times (Y \times Y) \to H \) is the mapping defined as follows:

\[
 f^2((x, x'), (y, y')) = f(x, y) \wedge f(x', y'), \quad \forall (x, x') \in X \times X, \forall (y, y') \in Y \times Y.
\]

Definition 3.9. Let \((X, R_X)\) and \((Y, R_Y)\) be \(H \)-fuzzy relational spaces and let \(f : X \to Y \) be an \(H \)-fuzzy mapping w.r.t. \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \).
Then $f : (X, R_X) \to (Y, R_Y)$ is called a *relation preserving mapping* if $R_X \subset f^{-1}(R_Y)$, where $f^{-2} = (f \times f)^{-1}$. In particular, a relation preserving mapping $f : (X, R_X) \to (Y, R_Y)$ is called an *epimorphism* [resp. a *monomorphism*, an *isomorphism*] if it is surjective [resp. injective and bijective].

The following is the immediate result of Result 3.A and Definitions 3.7, 3.8 and 3.9.

Proposition 3.10. Let (X, R_X), (Y, R_Y) and (Z, R_Z) be H-fuzzy relational spaces, and let $f : X \to Y$ and $g : Y \to Z$ be H-fuzzy mappings w.r.t. $E_X \in E_H(X)$, $E_Y \in E_H(Y)$ and $E_Z \in E_H(Z)$.

(a) The identity H-fuzzy mapping $I_X : (X, R_X) \to (X, R_X)$ w.r.t. $E_X \in E_H(X)$ is a relation preserving mapping.

(b) If $f : (X, R_X) \to (Y, R_Y)$ and $g : (Y, R_Y) \to (Z, R_Z)$ are relation preserving mappings, then $g \circ f : (X, R_X) \to (Z, R_Z)$ is a relation preserving mapping.

From Result 3.B and Proposition 3.10, we can form the concrete category $\mathbf{VRel}(H)$ consisting of H-fuzzy relational spaces and strong relation preserving mappings between them. Every $\mathbf{VRel}(H)$ strongmorphism will be called a $\mathbf{VRel}(H)$-mapping.

Lemma 3.11. The category $\mathbf{VRel}(H)$ is topological over \mathbf{Set}.

Proof. Let X be any set and let $((X_\alpha, R_\alpha))_\Gamma$ be any family of H-fuzzy relational spaces indexed by a class Γ. Suppose $(f_\alpha : X \to X_\alpha)_\Gamma$ is a source of strong H-fuzzy mappings w.r.t. $E_X \in E_H$ and $E_{X_\alpha} \in E_H(X_\alpha)$. Define $R_X : X \times X \to H$ by $R_X(R)(x, x') = \bigcap_{\alpha \in \Gamma} f_\alpha^{-2}(R_\alpha)(x, x')$, $\forall (x, x') \in X \times X$.

Then clearly (X, R_X) is a H-fuzzy relational space and each $f_\alpha : (X, R_X) \to (X_\alpha, R_\alpha)$ is a $\mathbf{VRel}(H)$-mapping. Let (Y, R_Y) be any H-fuzzy relational space and suppose $g : Y \to X$ is any strong H-fuzzy mapping w.r.t. $E_Y \in E_H(Y)$ and E_X for which $f_\alpha \circ g : (Y, R_Y) \to (X_\alpha, R_\alpha)$ is a $\mathbf{VRel}(H)$-mapping for each $\alpha \in \Gamma$. Then, for each $\alpha \in \Gamma$

$$R_Y \subset (f_\alpha \circ g)^{-2}(R_\alpha) = g^{-2}(f_\alpha^{-2}(R_\alpha)) = g^{-2}(f_\alpha^{-2}(R_\alpha)).$$
Thus $R_Y \subset g^{-2}\left(\bigcap_{\alpha \in \Gamma} f^{-2}(R_{\alpha})\right) = g^{-2}(R_X)$. So $g : (Y, R_Y) \to (X, R_X)$ is a VRel(H)-mapping. Hence $(f_\alpha : (X, A_X) \to (X, A_{\alpha}))_{\Gamma}$ is an initial source in VRel(H). This completes the proof.

Example 3.11. (1) The inverse image of a H-fuzzy relation structure. Let X be a set, let (Y, R_Y) be a H-fuzzy relational space and let $f : X \to Y$ be a strong H-fuzzy mapping w.r.t. $E_X \in E_H$ and $E_Y \in E_H(Y)$. Then there exists a unique H-fuzzy relation R_X in X for which $f : (X, R_X) \to (Y, R_Y)$ is a VRel(H)-mapping. Hence $(f_\alpha : (X, A_X) \to (X, A_{\alpha}))_{\Gamma}$ is an initial source in VRel(H). This completes the proof.

(2) The H-fuzzy product structure. Let $((X_\alpha, R_{\alpha}))_{\Gamma}$ be any family of H-fuzzy spaces, let $X = \prod_{\alpha \in \Gamma} X_\alpha$ and for each $\alpha \in \Gamma$, let $pr_\alpha : X \to X_\alpha$ be the H-fuzzy projection w.r.t. $E_X \in E_H(X)$ and $E_{X_\alpha} \in E_H(X_\alpha)$. Then there exists a unique H-fuzzy relation R_X in X w.r.t. $(X, (pr_\alpha)_{\alpha \in \Gamma}, ((X_\alpha, R_{\alpha}))_{\alpha \in \Gamma})$. In this case, R_X is called the H-fuzzy product of H-fuzzy relation structures in the X_α and denoted by $R_X = \prod_{\alpha \in \Gamma} R_{\alpha}$, and $(\prod_{\alpha \in \Gamma} X_\alpha, \prod_{\alpha \in \Gamma} R_{\alpha})$ is called the H-fuzzy product relational space of $((X_\alpha, R_{\alpha}))_{\Gamma}$. In fact, $\prod_{\alpha \in \Gamma} R_{\alpha} = \bigcap_{\alpha \in \Gamma} pr^{-2}_\alpha(R_{\alpha})$. In particular, if $\Gamma = \{1, 2\}$, then $(R_1 \times R_2)((x_1, y_1), (x_2, y_2)) = R_1(x_1, x_2) \land R_2(y_1, y_2)$ for any $(x_1, y_1), (x_2, y_2) \in X_1 \times X_2$.

The following is the immediate result of Lemma 3.11 and Result 2.B

Corollary 3.11. The category VRel(H) is complete and cocomplete.

It is well-known[15] that a category is topological if and only if it is cotopological. However, we show directly that VRel(H) is cotopological.

Lemma 3.12. The category VRel(H) is cotopological over Set.

Proof. Let X be any set and let $((X_\alpha, R_{\alpha}))_{\Gamma}$ be any family of H-fuzzy relational spaces indexed by a class Γ. Suppose $(f_\alpha : X_\alpha \to X)_{\Gamma}$ is a sink of strong H-fuzzy mappings w.r.t. $E_{X_\alpha} \in E_H(X_\alpha)$ and $E_X \in E_H(X)$. We define
\(R_X : X \times X \to H \) by \(R_X = \bigcup_{\alpha \in \Gamma} f_\alpha^2(R_\alpha) \). Then clearly \(R_X \) is well-defined and each \(f_\alpha : (X_\alpha, R_\alpha) \to (X, R_X) \) is a \(\text{VRel}(H) \)-mapping. For each \(\text{H-fuzzy relational space} (Y, R_Y) \), let \(g : X \to Y \) be a strong \(\text{H-fuzzy mapping} \) w.r.t. \(E_X \) and \(E_Y \in E_H(Y) \) such that each \(g \circ f_\alpha : (X_\alpha, R_\alpha) \to (Y, R_Y) \) is a \(\text{VRel}(H) \)-mapping. Then \(R_\alpha \subset (g \circ f_\alpha)^{-2}(R_Y), \ \forall \alpha \in \Gamma \). Thus, for each \((x_\alpha, x'_\alpha) \in X_\alpha \times X_\alpha\),

\[
R_\alpha(x_\alpha, x'_\alpha) \leq (g \circ f_\alpha)^{-2}(R_Y)(x_\alpha, x'_\alpha)
= f_\alpha^{-2}(g^{-2}(R_Y))(x_\alpha, x'_\alpha)
= \bigvee_{(x, x') \in X \times X} [g^{-2}(R_Y)(x, x') \land f_\alpha(x_\alpha, x) \land f_\alpha(x'_\alpha, x')]
\leq \bigvee_{(x, x') \in X \times X} g^{-2}(R_Y)(x, x'),
\]
i.e., \(R_\alpha(x_\alpha, x'_\alpha) \leq g^{-2}(R_Y)(x, x'), \ \forall (x, x') \in X \times X \). So

\[
R_X(x, x') = \left(\bigcup_{\alpha \in \Gamma} f_\alpha^2(R_\alpha) \right)(x, x') \leq g^{-2}(R_Y)(x, x') \ \forall (x, x') \in X \times X.
\]
i.e., \(R_X \subset g^{-2}(R_Y) \). Hence \(g : (X, R_X) \to (Y, R_Y) \) is a \(\text{VRel}(H) \)-mapping. Therefore \(\text{VRel}(H) \) is cotopological over \(\text{Set} \).

Result 3.C[13, Proposition 3.11]. Let \(f : X \to Y \) be a strong \(\text{H-fuzzy mapping} \) w.r.t. \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \), and let \(g : Z \to Y \) be a strong \(\text{H-fuzzy mapping} \) w.r.t. \(E_Z \in E_H(Z) \) and \(E_Y \). Let \(U = \{ (x, z) \in X \times Z : \exists y \in Y \text{ such that } f(x, y) = 1 = g(z, y) \} \). Then the restriction \(E_U = (E_X \times E_Z) |_{U \times U} : U \times U \to H \) is a \(\text{H-fuzzy equality} \) on \(U \). Moreover, \(\text{pr}_X : U \to X \) and \(\text{pr}_Z : U \to Z \) are projections w.r.t. \(E_U \) and \(E_X \), and \(E_U \) and \(E_Z \), respectively.

Lemma 3.13. Final episinks in \(\text{VRel}(H) \) are preserved by pullbacks.

Proof. Let \((g_\alpha : (X_\alpha, R_\alpha) \to (Y, R_Y))_{\Gamma}\) be any final episink in \(\text{VRel}(H) \) w.r.t. \(E_\alpha \in E_H(X_\alpha) \) and \(E_Y \in E_H(Y) \), and let \((f, W, R_W) \to (Y, R_Y)\) be any \(\text{VRel}(H) \)-mapping w.r.t. \(E_W \in E_H(W) \) any \(E_Y \). For each \(\alpha \in \Gamma \), let

\[
U_\alpha = \{ (w, x_\alpha) \in W \times X_\alpha : \exists y \in Y \text{ such that } f(w, y) = 1 = g_\alpha(x_\alpha, y) \}
\]
and let \(R_{U_\alpha} = (R_W \times R_\alpha) |_{U_\alpha \times U_\alpha} \). Then clearly \((U_\alpha, R_{U_\alpha}) \) is a \(\text{H-fuzzy relational space} \). By Result 3.C, for each \(\alpha \in \Gamma \), \(e_\alpha : U_\alpha \to W \) and \(p_\alpha : U_\alpha \to X_\alpha \) are projections of \(U_\alpha \) w.r.t. \(E_{U_\alpha} \) and \(E_W \), and \(E_{U_\alpha} \) and \(E_X \), respectively. Furthermore, for each \(\alpha \in \Gamma \), \(e_\alpha : (U_\alpha, R_{U_\alpha}) \to (W, R_W) \) and \(p_\alpha : (U_\alpha, R_{U_\alpha}) \to (X_\alpha, R_\alpha) \)
are \(\text{VRel}(H) \)-mappings and the following diagram is a pullback square in \(\text{VRel}(H) \):

\[
\begin{array}{ccc}
(U_{\alpha}, R_{U_{\alpha}}) & \xrightarrow{\alpha} & (X_{\alpha}, R_{\alpha}) \\
\downarrow e_{\alpha} & & \downarrow g_{\alpha} \\
(W, R_W) & \xrightarrow{f} & (Y, R_Y).
\end{array}
\]

Let \(w \in W \). Since \(f : W \to X \) is a strong \(H \)-fuzzy mapping, \(\exists y_{o} \in Y \) such that \(f(w, y_{o}) = 1 \). Since \((g_{\alpha})_{\Gamma} \) is a final episink, for each \(\alpha \in \Gamma \), and for \(y_{o} \in Y \), \(\exists x_{\alpha_{o}} \in X_{\alpha} \) such that \(g_{\alpha}(x_{\alpha_{o}}, y_{o}) = 1 \).

Thus \((w, x_{\alpha_{o}}) \in U_{\alpha} \) and \(e_{\alpha}((w, x_{\alpha_{o}}), w) = 1 \). So \((e_{\alpha})_{\Gamma} \) is an episink in \(\text{VRel}(H) \).

Moreover \((e_{\alpha})_{\Gamma} \) is final. Let \(R_{W}^{*} \) be the final structure on \(W \) w.r.t. \((e_{\alpha})_{\Gamma} \) and let \((w, w') \in W \times W \). Then

\[
R_{W}(w, w') = R_{W}(w, w') \land R_{W}(w, w')
\]

\[
\leq R_{W}(w, w') \land f^{-2}(R_{Y})(w, w')
\]

[Since \(f : (W, R_{W}) \to (Y, R_{Y}) \) is a \(\text{VRel}(H) \)-mapping]

\[
= R_{W}(w, w') \land \left(\bigvee_{(y, y') \in Y \times Y} [R_{Y}(y, y') \in Y \times Y \land f(w, y) \land f(w', y')] \right)
\]

\[
= R_{W}(w, w') \land \left(\bigvee_{(y, y') \in Y \times Y} \bigvee_{\alpha \in \Gamma} [g_{\alpha}^{2}(R_{\alpha})(y, y') \land f(w, y) \land f(w', y')] \right)
\]

[Since \((g_{\alpha})_{\Gamma} \) is final]

\[
= \bigvee_{(x_{\alpha}, y_{\alpha}) \in X_{\alpha} \times X_{\alpha}} [R_{W}(w, w') \land R_{\alpha}(x_{\alpha}, y_{\alpha}) \land \left(\bigvee_{(y, y') \in Y \times Y} g_{\alpha}(x_{\alpha}, y) \land g_{\alpha}(y_{\alpha}, y') \land f(w, y) \land f(w', y') \right)]
\]

\[
= \bigvee_{(x, y, w') \in U_{\alpha} \times U_{\alpha}} [R_{U_{\alpha}}(w, x_{\alpha}) \land R_{U_{\alpha}}(w', y_{\alpha}) \land e_{\alpha}((w, x_{\alpha}), (w', y_{\alpha}), w')]
\]

[Since \(R_{U_{\alpha}} = (R_{W} \times R_{\alpha}) |_{U_{\alpha} \times U_{\alpha}} \)]

\(f \) is strong and \(g \) is strong surjective

\[
= R_{W}^{*}(w).
\]

Thus \(R_{W} \subset R_{W}^{*} \). On the other hand, since \((e_{\alpha} : (U_{\alpha}, R_{U_{\alpha}}) \to (W, R_{W}^{*}))_{\Gamma} \) is final, \(I_{W} : (W, R_{W}^{*}) \to (W, R_{W}) \) is a \(\text{VRel}(H) \)-mapping. So \(R_{W}^{*} \subset R_{W} \). Hence \(A_{W} = A_{W}^{*} \). This completes the proof. \(\square \)
For any singleton set \{a\}, since the \(H\)-fuzzy relation structure \(R_{\{a\}}\) on \{a\} is not unique, the category \(\text{VRel}(H)\) is not properly fibred over \(\text{Set}\). Hence, by Lemmas 3.11 and 3.13, we obtain the following result.

Theorem 3.14. The category \(\text{VRel}(H)\) satisfies all the conditions of a topological universe over \(\text{Set}\) except the terminal separator property.

Theorem 3.15. The category \(\text{VRel}(H)\) is Cartesian closed over \(\text{Set}\).

Proof. It is obvious that \(\text{VRel}(H)\) has products by Corollary 3.11. Then it is sufficient to show that \(\text{VRel}(H)\) has exponential objects.

For any \(H\)-fuzzy spaces \(X = (X, R_X)\) and \(Y = (Y, R_Y)\), let \(Y^X\) be the set of all strong \(H\)-fuzzy mappings from \(X\) to \(Y\). We define a mapping \(R_{Y^X} : Y^X \times Y^X \rightarrow H\) as follows: for each \((f, g) \in Y^X \times Y^X\),

\[
R_{Y^X}(f, g) = \bigvee \{ h \in H : R_X \cap h \subseteq (f^{-1} \times g^{-1})(R_Y) \} = \bigvee \{ h \in H : R_X(x, x') \wedge h \leq \bigvee_{(y, y') \in Y \times Y} [R_Y(y, y') \wedge f(x, y) \wedge g(x', y')] \}
\]

where \(h(x) = h, \forall x \in X\). Since \(f\) and \(g\) are strong,

\[
R_{Y^X}(f, g) = \bigvee \{ h \in H : R_X(x, x') \wedge h \leq \bigvee_{f(x,y)=1,g(x',y')=1} R_Y(y, y') \}.
\]

Then clearly \((Y^X, R_{Y^X}) \in \text{VRel}(H)\). Let \(Y^X = (Y^X, R_{Y^X})\). Then, by the definition of \(R_{Y^X}\),

\[
R_X(x, x') \wedge R_{Y^X}(f, g) \leq \bigvee_{f(x,y)=1,g(x',y')=1} R_Y(x, y), \forall (f, g) \in Y^X \times Y^X,
\]

\(\forall (x, x') \in X \times X\).

We define a mapping \(e_{X, Y^X} : (X \times Y^X) \times Y \rightarrow H\) by

\[
e_{X, Y^X}((x, f), y) = f(x, y) \quad \forall (x, f) \in X \times Y^X, \forall y \in Y.
\]

Then clearly \(e_{X, Y^X}\) is an \(H\)-fuzzy relation on \((X \times Y^X) \times Y\). Now we define a mapping \(E_{X \times Y^X} : (X \times Y^X) \times (X \times Y^X) \rightarrow H\) as follows: For any \((x, f), (x', g) \in X \times Y^X\),

\[
E_{X \times Y^X}((x, f), (x', g)) = (\bigwedge_{y \in Y} f(x, y) \wedge \bigwedge_{y' \in Y} g(x', y')) \wedge E_X(x, x') \wedge E'_X(x, x'),
\]

where \(f : X \rightarrow Y\) and \(g : X \rightarrow Y\) are strong \(H\)-fuzzy mappings w.r.t. \(E_X \in E_H(X)\) and \(E_Y \in E_H(Y)\), and \(E'_X \in E_H(X)\) and \(E'_Y \in E_H(Y)\), respectively.
Thus, by the process of the proof of Theorem 4.8 in [13], $e_{XY} : X \times Y \to Y$ is a strong H-fuzzy mapping w.r.t. $E_{X \times Y}$ and $E \in E_H(Y)$, where $E = E_Y \times E_Y$, is an H-fuzzy equality on Y. Let $((x, f), (x', g)) \in (X \times Y) \times (X \times Y)$. Then

$$e_{XY}^{-2}(R_Y)((x, f), (x', g)) = \bigvee_{(y, h') \in Y \times Y} [R_Y(y, h') \land e_{XY}((x, f), y) \land e_{XY}((x', g), h')]$$

$$= \bigvee_{(y, h') \in Y \times Y} [R_Y(y) \land f(x, y) \land g(x', y')]$$

$$= \bigvee_{\substack{f(x,y) = 1, g(x',y') = 1 \quad \text{[Since } f \text{ and } g \text{ are strong]}}} R_Y(y, h') \quad \text{[Since } f \text{ and } g \text{ are strong]}$$

$$\geq R_X(x, x') \land R_{Y \times X}(f, g) \quad \text{[Since } f \text{ and } g \text{ are strong]}$$

$$= (R_X \times R_{Y \times X})((x, f), (x', g)).$$

Thus $R_X \times R_{Y \times X} \subset e_{XY}^{-2}(R_Y)$. So $e_{XY} : X \times Y \to Y$ is a $\mathbf{VRel}(H)$-mapping.

For any $Z = (Z, R_Z) \in \mathbf{VRel}(H)$, let $h : X \times Z \to Y$ be a $\mathbf{VRel}(H)$-mapping w.r.t. $E_{X \times Z} = E_X \times E_Z \in E_H(X \times Z)$ and $E_Y \in E_H(Y)$. We define a mapping $\bar{h} : Z \times (X \times Y) \to H$ as follows: $\forall z \in Z, \ \forall x \in X, \ \forall y \in Y$,

$$\bar{h}(z)(x, y) = h((x, z), y),$$

where $\bar{h}(z)(x, y) = \bar{h}(z, (x, y)).$

Since h is strong, it is clear that $\bar{h}(z)$ is strong. Thus $\bar{h}(z) \in \mathcal{Y}^X, \forall z \in Z$. So $\bar{h} : Z \to \mathcal{Y}^X$ is a strong H-fuzzy mapping. Let $z, z' \in Z$ and let $x, x' \in X$.

Then

$$R_X(x, x') \land R_Z(z, z') = (R_X \times R_Z)((x, z), (x', z'))$$

$$\leq h^{-2}(R_Y)((x, z), (x', z')) \quad \text{[Since } h : X \times Z \to Y \text{ is a } \mathbf{VRel}(H)-\text{mapping]}$$

$$= \bigvee_{(y, h') \in Y \times Y} [R_Y(y, h') \land h((x, z), y) \land h((x', z'), y')]$$

$$= \bigvee_{\substack{f(x,y) = 1, g(x',y') = 1 \quad \text{[Since } h \text{ is strong]}}} R_Y(y, h') \quad \text{[Since } h \text{ is strong]}$$

Thus, by the definition of $R_{Y \times X}$,

$$R_Z(z) \leq \bar{h}^{-2}(R_{Y \times X})(z).$$

So $R_Z \subset \bar{h}^{-2}(R_{Y \times X})$. Hence $\bar{h} : Z \to \mathcal{Y}^X$ is a $\mathbf{VRel}(H)$-mapping. Moreover, \bar{h} is unique $\mathbf{VRel}(H)$-mapping such that $e_{XY} \circ (I_X \times \bar{h}) = h$. This completes the proof. \qed
4. The category $\mathbf{VFRel}(H)$

Definition 4.1[13]. The concrete category $\mathbf{VSet}(H)$ is defined by: Objects (X, A_X), called an H-fuzzy space, where X is any set and $A_X \in H^X$. A morphism $f : (X, A_X) \to (Y, A_Y)$ is a strong H-fuzzy mapping w.r.t. $E_X \in E_H(X)$ and $E_Y \in E_H(Y)$ satisfying $A_X \leq f^{-1}(A_Y)(x)$, $\forall x \in X$. Every $\mathbf{VSet}(H)$-morphism is called a $\mathbf{VSet}(H)$-mapping.

Definition 4.2[10]. An H-fuzzy relation R on an H-fuzzy space (X, A_X) is an H-fuzzy set in $X \times X$ satisfying $R(x, y) \leq A_X(x) \land A_X(y)$ for any $x, y \in X$. In this case, the triple (X, A_X, R) is called an H-fuzzy relational space over (X, A_X).

Definition 4.3. An H-fuzzy mapping $f : (X, A_X, R_X) \to (Y, A_Y, R_Y)$ w.r.t. $E_X \in E_H(X)$ and $E_Y \in E_H(Y)$ is called a relation preserving mapping if it satisfies the following conditions:

(i) $f : (X, A_X) \to (Y, A_Y)$ is a $\mathbf{VSet}(H)$-mapping,

(ii) $f : (X, R_X) \to (Y, R_Y)$ is a $\mathbf{VRel}(H)$-mapping.

We denote the category of all H-fuzzy relational spaces over H-fuzzy spaces and relation preserving strong H-fuzzy mappings between them by $\mathbf{VFRel}(H)$, and the mixture of the categories $\mathbf{VSet}(H)$ and $\mathbf{VRel}(H)$ by $\mathbf{VSet}(H) \land \mathbf{VRel}(H)$(cf [14]). Since $\mathbf{VSet}(H)$ and $\mathbf{VRel}(H)$ are topological over \mathbf{Set} by Lemma 4.4 in [13] and Lemma 3.11, so is the mixture $\mathbf{VSet}(H) \land \mathbf{VRel}(H)$ with natural structures by Proposition 2 in [14].

Lemma 4.4. $\mathbf{VFRel}(H)$ is a bi(co)reflective subcategory of $\mathbf{VSet}(H) \land \mathbf{VRel}(H)$.

Proof. Let (X, A, R) be an object in $\mathbf{VSet}(H) \land \mathbf{VRel}(H)$. We define a mapping $A_X : X \to H$ as follows: For each $x \in X$, $A_X(x) = A(x) \lor \left[\bigvee_{y \in X} R(x, y) \right]$. Then it is easily seen that $I_X : (X, A, R) \to (X, A_X, R)$ is a $\mathbf{VFRel}(H)$-reflection of (X, A, R). Now we define a mapping $R_X : X \times X \to H$ as follows: For any $x, y \in X$, $R_X(x, y) = R(x, y) \land A(x) \land A(y)$.

Then \(I_X : (X, A, R_X) \to (X, A, R) \) is a \(\text{VFRel}(H) \)-coreflection of \((X, A, R)\). This completes the proof. \(\square \)

The following is the immediate result of Lemma 4.4 and Theorems 2.6 and 2.8 in [14].

Theorem 4.5. (a) The category \(\text{VFRel}(H) \) is topological over \(\text{Set} \).

(b) Final episinks in \(\text{VFRel}(H) \) are preserved by pullbacks.

Remark 4.6. (a) Let \(X \) be a set and let \((f_\alpha : X \to (X_\alpha, A_\alpha, R_\alpha))_{\alpha \in \Gamma} \) be a source, where \((X_\alpha, A_\alpha, R_\alpha) \in \text{VFRel}(H)\) for each \(\alpha \in \Gamma \). We define two mappings \(A_X : X \to H \) and \(R_X : X \times X \to H \) as follows, respectively:

\[
A(x) = \bigcap_{\alpha \in \Gamma} f^{-1}(A_\alpha)(x), \, \forall x \in X
\]

and

\[
R_X(x, y) = \bigcap_{\alpha \in \Gamma} f^{-2}(R_\alpha)(x, y), \, \forall x, y \in X.
\]

Then \((X, A_X, R_X)\) is equipped with the initial structure w.r.t. \((f_\alpha)_{\Gamma} \) in \(\text{VFRel}(H) \).

(b) Let \(X \) be a set and let \((f_\alpha : (X_\alpha, A_\alpha, R_\alpha) \to X)_{\alpha \in \Gamma} \) be a sink, where \((X_\alpha, A_\alpha, R_\alpha) \in \text{VFRel}(H)\), \(\forall \alpha \in \Gamma \). We define two mappings \(A_X : X \to H \) and \(R_X : X \times X \to H \) as follows, respectively:

\[
A_X(x) = \bigvee_{\alpha \in \Gamma} f_\alpha(A_\alpha)(x), \, \forall x \in X
\]

and

\[
R_X(x, y) = \bigvee_{\alpha \in \Gamma} f_\alpha(x, y), \, \forall x, y \in X.
\]

Then \((X, A_X, R_X)\) is equipped with the final structure w.r.t. \((f_\alpha)_{\Gamma} \).

(c) Since both \(H \)-fuzzy set structures and \(H \)-fuzzy relational structures on a singleton set are not unique, \(\text{VFRel}(H) \) is not properly fibred.

(d) Let \((g_\alpha : (X_\alpha, A_\alpha, R_\alpha) \to (Y, A_Y, R_Y))_{\alpha \in \Gamma} \) be any final episink in \(\text{VFRel}(H) \) and \(f : (W, A_W, R_W) \to (Y, A_Y, R_Y) \) be any \(H \)-fuzzy mapping w.r.t. \(E_W \in E_H(W) \) and \(E_Y \in E_H(Y) \) in \(\text{VFRel}(H) \). For each \(\alpha \in \Gamma \), let

\[
U_\alpha = \{(w, x_\alpha) \in W \times X_\alpha : \exists y \in Y \text{ such that } f(w, y) = 1 = g_\alpha(x_\alpha, y)\},
\]

let \(A_{U_\alpha} = (A_W \times A_\alpha) \big|_{U_\alpha \times U_\alpha} \) and let \(R_{U_\alpha} = (R_W \times R_\alpha) \big|_{U_\alpha \times U_\alpha} \). Then, for each \(\alpha \in \Gamma \), \(e_\alpha : (U_\alpha, A_{U_\alpha}, R_{U_\alpha}) \to (W, A_W, R_W) \) is the pullback of \(g_\alpha \) along \(f \) in \(\text{VFRel}(H) \), where \(e_\alpha : U_\alpha \to W \) is the \(H \)-fuzzy projection of \(U_\alpha \) w.r.t. \(E_{U_\alpha} \in E_H(U_\alpha) \) and \(E_W \). Moreover, \((e_\alpha : (U_\alpha, A_{U_\alpha}, R_{U_\alpha}) \to (W, A_W, R_W))_{\alpha \in \Gamma} \)
is a final episink in $\text{VFRel}(H)$.

Remark 4.7. (a) The category $\text{VFRel}(H)$ is topological over $\text{VSet}(H)$: Let (X, A_X) be any H-fuzzy space and let $((X_a, A_a, R_a))_{a \in \Gamma}$ be any family of H-fuzzy relational spaces. Let $(f_a : (X, A_X) \rightarrow (X_a, A_a))_{a \in \Gamma}$ be any mapping in $\text{VSet}(H)$. We define a mapping $R_X : X \times X \rightarrow H$ as follows: For any $x, y \in X$,
$$R_X(x, y) = (\bigwedge \alpha \in \Gamma f_a^{-2}(R_a)(x, y)) \wedge A_X(x) \wedge A_X(y).$$
Then R_X is the initial structure on (X, A_X) w.r.t. $(f_a)_{\Gamma}$.

(b) The category $\text{VFRel}(H)$ is cotopological over $\text{VSet}(H)$: Let (X, A_X) be any H-fuzzy space and let $((X_a, A_a, R_a))_{a \in \Gamma}$ be any family of H-fuzzy relational spaces. Let $(f_a : (X_a, A_a) \rightarrow (X, A_X))_{a \in \Gamma}$ be any mapping in $\text{VSet}(H)$. We define a mapping $R_X : X \times X \rightarrow H$ as follows: For any $x, y \in X$,
$$R_X(x, y) = \bigvee_{\alpha \in \Gamma} f^2(R_a).$$
Then R_X is the final structure on (X, A_X) w.r.t. $(f_a)_{\Gamma}$.

Theorem 4.8. The category $\text{VFRel}(H)$ is Cartesian closed.

Proof. Since $\text{VFRel}(H)$ has finite products by Theorem 4.5, it is enough to show that $\text{VFRel}(H)$ has exponentials.

For any H-fuzzy relational spaces $X = (X, A_X, R_X)$ and $Y = (Y, A_Y, R_Y)$, let Y_X be the set of all morphisms from X to Y in $\text{VFRel}(H)$. We define two mappings $A_{Y} : Y^X \rightarrow H$ and $R_{Y} : Y_X \times Y_X \rightarrow H$ as follows, respectively:

$$A_{Y}(f) = \bigvee \{ h \in H : A_X(x) \wedge h \leq \bigvee_{y \in Y} [A_Y(y) \wedge f(x, y)], \forall x \in X \}, \forall f \in Y^X$$

and

$$R_{Y}(f, g) = \bigvee \{ h \in H : R_X(x, x') \wedge h \leq \bigvee_{(y, y') \in Y \times Y} [R_Y(y, y') \wedge f(x, y) \wedge g(x', y')] \wedge (A_{Y}(f) \wedge A_{Y}(g)) \forall x, y \in X \}. \forall (f, g) \in Y_X \times Y_X.$$

Then clearly R_{Y} is an H-fuzzy relation on (Y^X, A_{Y}). Let $Y^X = (Y_X, A_{Y}, R_{Y})$. We define a mapping $\epsilon_{X,Y} : (X \times Y^X) \times Y \rightarrow H$ as follows:

$$\epsilon_{X,Y}((x, f), y) = f(x, y) \forall (x, f) \in X \times Y^X, \forall y \in Y.$$

Then, by the proofs of Theorem 4.8 in [13] and Theorem 3.15, it can be easily seen that $\epsilon_{X,Y} : X \times Y^X \rightarrow Y$ is a $\text{VFRel}(H)$-mapping.

For any $Z = (Z, A_Z, R_Z) \in \text{VFRel}(H)$, let $h : X \times Z \rightarrow Y$ be a
Proof. It is clear that completes the proof.

\[\text{Rel}(H) \]
\[(X \text{ mapping from } F \rightarrow R \text{ \bar{VFRel}(H)} \]
\[(X, R_X) \]
\[R \subseteq \text{VFRel}(H) \]
\[\text{VFRel}(H) \text{-mapping. Thus } (I_X \times \bar{h}) = h. \text{ This completes the proof.} \]

5. The relations between Rel(H) and VRel(H)

Definition 5.1 [11]. The concrete category Rel(H) is defined by: Objects are \((X, R_X)\), called an \(H\text{-fuzzy relational space}\)(or simply, a \(fuzzy relational sapce\), where \(X\) is any set and \(R_X \in H^{X \times X}\). A morphism \(f : (X, R_X) \rightarrow (Y, R_Y)\) is a mapping from \(X\) to \(Y\) satisfying \(R_X(x, y) \leq R_Y(f(x), f(y)), \forall (x, y) \in X \times X\), i.e., \(R_X \subseteq f^{-2}(R_Y)\) where “\(\leq\)” means the order induced by the operation “\(\land\)” or “\(\lor\)” in \(H\). Every Rel(H)-morphism is called a Rel(H)-mapping.

Lemma 5.2. Define \(F : \text{Rel}(H) \rightarrow \text{VRel}(H)\) by \(F(X, R_X) = (X, R_X)\) and \(F(f) = f\). Then \(F\) is a functor.

Proof. It is clear that \(F(X, R_X) = (X, R_X) \in \text{VRel}(H), \forall (X, R_X) \in \text{Rel}(H)\). Let \((X, R_X), (Y, R_Y) \in \text{Rel}(H)\) and let \(f : (X, R_X) \rightarrow (Y, R_Y)\) be a Rel(H)-mapping. Then \(R_X(x, y) \leq R_Y(f(x), f(y)), \forall (x, y) \in X \times X\). Since \(f : X \rightarrow Y\) is a mapping, \(f : X \rightarrow Y\) is a strong \(H\)-fuzzy mapping w.r.t. \(I_X \in E_H(X)\) and \(I_Y \in E_H(Y)\). Moreover, for each \((x, x') \in X \times X\),
\[
\begin{align*}
\text{f}^{-2}(R_Y)(x, x') &= \bigvee_{(y, y') \in Y \times Y} [R_Y(y, y') \land f(x, y) \land f(x', y')] \\
&\geq R_Y(y_o, y_o') \\
&[\text{Since } f \text{ is strong, } \exists y_o \in Y \text{ and } y_o' \in Y \text{ such that}] \\
&f(x, y_o) = 1 \text{ and } f(x', y_o') = 1] \\
&= R_Y(f(x), f(x')) \\
&\geq R_X(x, x').
\end{align*}
\]
Thus \(R_X \subseteq f^{-2}(R_Y)\). So \(F(f) = f \in \text{VRel}(H)\). Hence \(F(f) = f : (X, R_X) \rightarrow (Y, R_Y)\) is a VRel(H)-mapping. Therefore \(F\) is a functor. \(\square\)
Lemma 5.3. We define \(G : \text{VRel}(H) \rightarrow \text{Rel}(H) \) by \(G(X, R_X) = (X, R_X) \) and \(G(f) = f_\ast \), where if \(f : X \rightarrow Y \) is an \(H \)-fuzzy mapping w.r.t. \(E_X \in E_H(X) \) and \(E_Y \in E_H(Y) \), then \(f_\ast : X \times Y \rightarrow 2 = \{0,1\} \) is a mapping defined by \(f_\ast(x, y) = f(x, y), \ \forall (x, y) \in X \times Y \), and \(E_X^* \) and \(E_Y^* \) are \(H \)-fuzzy equalities on \(X \) and \(Y \) defined by \(E_X^* = I_X \) and \(E_Y^* = I_Y \), respectively. Then \(G \) is a functor.

Proof. It is clear that \(G(X, R_X) = (X, R_X) \in \text{Rel}(H), \ \forall (X, R_X) \in \text{VRel}(H) \). Let \((X, R_X), (Y, R_Y) \in \text{VRel}(H) \) and let \(f : (X, R_X) \rightarrow (Y, R_Y) \) be a \(\text{VRel}(H) \)-mapping. Then \(R_X \subset f^{-2}(R_Y) \). By the definition of \(G(f) \), \(G(f) = f_\ast : X \rightarrow Y \) is a mapping. Let \((x, x') \in X \times X \). Since \(f \) is strong, \(\exists (y_0, y'_0) \in Y \times Y \) such that \(f(x, y_0) = 1 = f(x', y'_0) \). Thus
\[
R_Y(f_\ast(x), f_\ast(x')) = R_Y(f(x), f(y)),
\]
\[
= f^{-2}(R_Y)(x, x')
\]
\[
\text{[Since } f^{-2}(R_Y)(x, x') = \bigvee_{(y, y') \in Y \times Y} [R_Y(y, y') \land f(x, y) \land f(x', y')] = R_Y(f(x), f(x')) \]\n\[
\geq R_X(x, x').
\]
So \(f_\ast : (X, R_X) \rightarrow (Y, R_Y) \) is a \(\text{Rel}(H) \)-mapping. Hence \(G \) is a functor.

Lemma 5.4. The functor \(F \) is a left adjoint of the functor \(G \).

Proof. For each \((X, R_X) \in \text{Rel}(H) \), \(I_X : (X, R_X) \rightarrow GF(X, R_X) = (X, R_X) \) is a \(\text{Rel}(H) \)-mapping. Let \((Y, R_Y) \in \text{VRel}(H) \) and let \(f : (X, R_X) \rightarrow G(Y, R_Y) \) be a \(\text{Rel}(H) \)-mapping. Then \(R_X(x, x') \leq R_Y(f(x), f(x')), \ \forall (x, x') \in X \times X \). Thus \(R_X \subset f^{-2}(R_Y) \). So \(f : F(X, R_X) = (X, R_X) \rightarrow (Y, R_Y) \) is a \(\text{VRel}(H) \)-mapping. Hence \(I_X \) is a \(G \)-universal map for \((X, R_X) \) in \(\text{Rel}(H) \). This completes the proof.

Let \(\text{VRel}_s(H) \) denote the category with \(\text{Mor}(\text{VRel}_s(H)) = \{ f_\ast : f \in \text{Mor}(\text{VRel}(H)) \} \). Then clearly \(\text{VRel}_s(H) \) is a full subcategory of \(\text{VRel}(H) \).

Theorem 5.5. Two categories \(\text{Rel}(H) \) and \(\text{VRel}_s(H) \) are isomorphic.

Proof. By Lemma 5.2, it is clear that \(F : \text{Rel}(H) \rightarrow \text{VRel}_s(H) \) is a functor. Also, By Lemma 5.3, \(G : \text{VRel}_s(H) \rightarrow \text{Rel}(H) \) is a functor. Let \((X, R_X) \in \text{Rel}(H) \). Then clearly \(F(X, R_X) = (X, R_X) \). Thus \(GF(X, R_X) = (X, R_X) \).
Thus $G \circ F = 1_{\text{Rel}(H)}$. Similarly, we can easily see that $F \circ G = 1_{\text{VRel}_*(H)}$. So $F : \text{Rel}(H) \to \text{VRel}_*(H)$ is an isomorphism. This completes the proof. □

References

Received: December, 2009