Asymptotic Formulas for the Number of Negative Eigenvalues of a Differential Operator with Operator Coefficent

Ehliman ADIGÜZELOV and Serpil Şengül KARAYEL

Department of Mathematics
Faculty of Arts and Science, Yıldız Technical University
(34210), Davutpasa, İstanbul, Turkey

Abstract

In this work, we find some asymptotic formulas for the number $N(\varepsilon)$ of eigenvalues smaller than $-\varepsilon$ ($\varepsilon > 0$) of a self adjoint operator L which is formed by differential expression

$$(Ly)(x) = -(p(x)y'(x))' - Q(x)y(x)$$

and with the boundary condition

$$y(0) = 0$$

as $\varepsilon \to 0$, in the space $L_2(0,\infty; H)$

Mathematics Subject Classification: 47A10, 34L20

Keywords: Hilbert Space, Self Adjoint Operator, Semi-bounded Operator, Discrete Spectrum

1 INTRODUCTION

Let H be a separable Hilbert space with infinite dimension and Q(x) be a self adjoint operator from H to H for all x in $[0,\infty)$. Moreover, we consider Q(x) as a continuous operator function in the interval $[0,\infty)$ with respect to the norm on the space B(H). We suppose that there are positive constants c_1 , c_2 such that

$$c_1 \le p(x) \le c_2.$$

Let us denote the set of all functions $y = y(x) \in L_2(0, \infty; H)$ which satisfy the following conditions by D(L);

- a) y(x) and y'(x) are absolutely continuous with respect to the norm on the space H in every finite interval [0, a].
 - b) $l(y) = -(p(x)y'(x))' Q(x)y(x) \in L_2(0, \infty; H)$
 - c) y(0) = 0.

Let us consider that self adjoint operator $L: D(L) \longrightarrow L_2(0,\infty; H)$ defined by

$$(Ly)(x) = -(p(x)y'(x))' - Q(x)y(x).$$

The operator L is formed by differential expression

$$l(y) = -(p(x)y'(x))' - Q(x)y(x)$$
(1.1)

and the boundary condition

$$y(0) = 0.$$

In this work, we have find some asymptotic formulas for the number $N(\varepsilon)$ of eigenvalues smaller than $-\varepsilon$ ($\varepsilon > 0$) of the operator L as $\varepsilon \to 0$. In the work [6], asymptotic behavior of the number of negative eigenvalues of a scalar differential operator with high order has been investigated. In the work [1] and work [5], the asymptotic formulas for the number of negative eigenvalues of differential operators with unbounded operator coefficient have been found.

2 SOME INEQUALITIES FOR THE NUM-BER OF NEGATIVE EIGENVALUES

In this part, we have find some inequalities for the number of negative eigenvalues of the operator L.

Let us suppose that following conditions are satisfied:

- 1) $Q(x): H \longrightarrow H$ is an absolutely continuous, self adjoint and positive operator, for all $x \in [0, \infty)$.
 - 2) Q(x) is monotonous decreasing.
 - 3) Q(x) is continuous with respect to the norm on the space B(H) and

$$\lim_{x \to \infty} \|Q(x)\| = 0$$

- 4) There are positive constants c_1 and c_2 such that $c_1 \leq p(x) \leq c_2$.
- 5) The function p(x) has continuous and bounded derivative.
- 6) The function p(x) is not decreasing.

If the conditions 1, 3, 4 and 5 are satisfied the operator L is bounded from below and negative part of the spectrum is discrete.

Let $\alpha_1(x) \geq \alpha_2(x) \geq \cdots \geq \alpha_j(x) \geq \cdots$ be eigenvalues of the operator $Q(x): H \longrightarrow H$. Since Q(x) > 0 for every $x \in [0, \infty)$, we have $\alpha_j(x) > 0$ $(j = 1, 2, \cdots)$. Furthermore, since

$$\alpha_1(x) = \sup_{\|f\|=1} (Q(x)f, f)$$

[2] and

$$||Q(x)|| = \sup_{||f||=1} |(Q(x)f, f)| = \sup_{||f||=1} (Q(x)f, f),$$

[4], we have $\alpha_1(x) = ||Q(x)||$. Since Q(x) is continuous, the function $\alpha_1(x)$ is continuous in the interval $[0, \infty)$. Since Q(x) is monotonous decreasing, it can be shown that the functions $\alpha_1(x), \alpha_2(x), \dots, \alpha_j(x), \dots$ are monotonous decreasing. On the other hand

$$\lim_{x \to \infty} \alpha_1(x) = 0$$

so, the imagine set of the function α_1 is the interval $(0, \alpha_1(0)]$. Therefore, the function α_1 has an inverse function which is continuous in $(0, \alpha_1(0)]$. Let us denote this inverse function by ψ_1 . Let us consider following operators where $\varepsilon \in (0, \alpha_1(0))$:

1) Let L_1 and L_2 be operators which are formed by expression (1.1) and with the boundary conditions

$$y(0) = y(\psi_1(\varepsilon)) = 0$$

$$y'(0) = y'(\psi_1(\varepsilon)) = 0$$

respectively, in the space $L_2(0, \psi_1(\varepsilon); H)$.

2) Let $L_{(1)i}$ and $L_{(2)i}$ be operators which are formed by expression (1.1) and with the boundary conditions

$$y(x_{i-1}) = y(x_i) = 0$$

$$y'(x_{i-1}) = y'(x_i) = 0$$

respectively, in the space $L_2(x_{i-1}, x_i; H)$.

Divide the interval $[0, \psi_1(\varepsilon)]$ into the intervals at the length

$$\delta = \frac{\psi_1(\varepsilon)}{[|\psi_1^k(\varepsilon)|] + 1}.$$
 (2.1)

Here k is a constant which belongs to the interval (0,1) and ε is any positive number which satisfies the inequality $\psi_1^k(\varepsilon) \geq 2$. Let the partition points of the interval $[0, \psi_1(\varepsilon)]$ be

$$0 = x_0 < x_1 < x_2 < \cdots < x_M = \psi_1(\varepsilon).$$

Let us take

$$\psi_j(\varepsilon) = \sup\{x \in [0, \infty) : \alpha_j(x) \ge \varepsilon\}.$$
 (2.2)

Let $N(\varepsilon)$, $N_1(\varepsilon)$, $N_2(\varepsilon)$, $n_{1(i)}$ and $n_{2(i)}$ be number of the eigenvalues smaller than $-\varepsilon$ ($\varepsilon > 0$) of the operators L, L_1 , L_2 , $L_{1(i)}$ and $L_{2(i)}$ respectively. When the conditions 1)-6) are satisfied, it can be shown that

$$N_1(\varepsilon) \le N(\varepsilon) \le N_2(\varepsilon),$$
 (2.3)

$$n_{(1)i} > \sum_{\substack{j \\ \alpha_j(x_i) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - 1 \right], \tag{2.4}$$

$$n_{(2)i} < \sum_{\substack{j \\ \alpha_j(x_{i-1}) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + 1 \right].$$
 (2.5)

Here, $\varphi_{i,j}(\varepsilon) = min\{x_{i+1}, \psi_j(\varepsilon)\}$ $(i = 1, 2, \dots, M-1).$

Theorem 2.1 If the conditions 1)-6) are satisfied then we have

$$N(\varepsilon) > \frac{1}{\pi} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - const.l_{\varepsilon} \int_{0}^{\delta} \sqrt{\alpha_{1}(x)} dx - const.l_{\varepsilon} \psi_{1}^{k}(\varepsilon)$$

for small values of ε .

Here,

$$l_{\varepsilon} = \sum_{\alpha_j(0) \ge \varepsilon} 1.$$

Proof: From the variation principles of R. Courant [3], we have

$$N_1(\varepsilon) \ge \sum_{i=1}^M n_{(1)i}$$

By using this inequality and the inequality (2.4), we obtain

$$N_1(\varepsilon) \ge \sum_{i=1}^{M-1} n_{(1)i} > \sum_{i=1}^{M-1} \sum_{\substack{j \\ \alpha_j(x_i) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - 1 \right]. \tag{2.6}$$

Here, the sum

$$\sum_{i=1}^{M-1} \sum_{\substack{\alpha_j(x_i) > \varepsilon \\ \alpha_j(x_i) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - 1 \right]$$
 (2.7)

is the sum of expressions

$$\frac{1}{\pi} \int_{x_{i}}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - 1 \qquad (i, j = 1, 2, ...)$$

for natural numbers $i \geq 1$ and $j \geq 1$ satisfying the condition $\alpha_j(x_i) > \varepsilon$. If we consider monotonous decreasing functions $\alpha_j(x)$ (j = 1, 2, ...), we can write

$$\sum_{i=1}^{M-1} \sum_{\substack{\alpha_j(x_i) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - 1 \right] = \sum_{\substack{\alpha_j(x_1) > \varepsilon \\ \alpha_j(x_1) > \varepsilon}} \sum_{\substack{i \ge 1 \\ \alpha_j(x_i) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - 1 \right]$$

$$(2.8)$$

for the sum (2.7). By using the expression

$$\varphi_{i,j}(\varepsilon) = \min\{x_{i+1}, \psi_j(\varepsilon)\}$$
 $(i = 1, 2, ..., M - 1)$

we obtain

$$\sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \sum_{\substack{i \ge 1 \\ \alpha_j(x_i) > \varepsilon}} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx = \sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \left[\int_{x_1}^{x_2} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx \right]$$

$$+ \int_{x_2}^{x_3} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + \dots + \int_{x_{i_0}}^{\psi_j(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx \Big]$$

$$= \sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \int_{x_1}^{\psi_j(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx.$$
 (2.9)

Here, i_0 is a natural number satisfying the condition

$$x_{i_0} < \psi_i(\varepsilon) \le x_{i_0+1}$$
.

From (2.2), we obtain

$$\psi_i(\varepsilon) \ge x_1$$

for $j \in \mathbf{N}$ satisfying the condition $\alpha_j(x_1) > \varepsilon$. It can be easily shown that $\alpha_j(x_0) > \varepsilon$ for every $x_0 \in [0, \psi_j(\varepsilon))$. Therefore, we have

$$\alpha_i(x_1) > \varepsilon$$

for $j \in \mathbf{N}$ satisfying the condition $\psi_j(\varepsilon) \geq x_1$. Hence, from (2.9), we find

$$\sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \sum_{\substack{i \ge 1 \\ \alpha_j(x_j) > \varepsilon}} \int_{x_i}^{\varphi_{i,j}(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx = \sum_{\psi_j(\varepsilon) \ge x_1} \int_{x_1}^{\psi_j(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx$$

$$= \sum_{\psi_j(\varepsilon) \ge x_1} \int_0^{\psi_j(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx - \sum_{\psi_j(\varepsilon) \ge x_1} \int_0^{x_1} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx$$

$$= \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - \sum_{\psi_{j}(\varepsilon) < x_{1}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx$$

$$-\sum_{\psi_j(\varepsilon)\geq x_1} \int_0^{x_1} \sqrt{\frac{\alpha_j(x)-\varepsilon}{p(x)}} dx$$

$$= \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - \sum_{j} \int_{0}^{\varphi_{0,j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx$$

$$\geq \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - \sum_{\alpha_{j}(0) \geq \varepsilon} \int_{0}^{x_{1}} \sqrt{\frac{\alpha_{1}(x) - \varepsilon}{p(x)}} dx$$

$$\geq \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - const \int_{0}^{\delta} \sqrt{\alpha_{1}(x) - \varepsilon} dx \sum_{\alpha_{j}(0) \geq \varepsilon} 1$$

$$= \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - constl_{\varepsilon} \int_{0}^{\delta} \sqrt{\alpha_{1}(x) - \varepsilon} dx. \tag{2.10}$$

We have

$$\sum_{\substack{i \ge 1 \\ \alpha_j(x_i) > \varepsilon}} 1 = \max\{i : \alpha_j(x_i) > \varepsilon\}$$

for a fixed number $j \geq 1$ satisfying the condition $\alpha_j(x_1) > \varepsilon$. Let us take $\max\{i : \alpha_j(x_i) > \varepsilon\} = m(j, \varepsilon)$. Since $\alpha_j(x_{m(j,\varepsilon)}) > \varepsilon$ from (2.2), we obtain

$$x_{m(j,\varepsilon)} \le \psi_j(\varepsilon).$$

On the other hand, since

$$m(j,\varepsilon) = \frac{x_{m(j,\varepsilon)}}{\delta}$$

we have

$$m(j,\varepsilon) \le \frac{\psi_j(\varepsilon)}{\delta}$$

or

$$\sum_{\substack{i \ge 1 \\ \alpha_j(x_j) > \varepsilon}} 1 \le \frac{\psi_j(\varepsilon)}{\delta}.$$

By using the last inequality, we find

$$\sum_{\substack{j \\ \alpha_j(x_1)>\varepsilon}} \sum_{\substack{i\geq 1 \\ \alpha_j(x_j)>\varepsilon}} 1 < \sum_{\substack{j \\ \alpha_j(x_1)>\varepsilon}} \frac{\psi_j(\varepsilon)}{\delta} < \sum_{\alpha_j(0)>\varepsilon} \frac{\psi_j(\varepsilon)}{\delta}$$

$$< \frac{\psi_1(\varepsilon)}{\delta} \sum_{\alpha_j(0)>\varepsilon} 1 = \delta^{-1} \psi_1(\varepsilon) l_{\varepsilon}.$$
 (2.11)

From (2.6), (2.8), (2.10) and (2.11), we obtain

$$N_{1}(\varepsilon) > \frac{1}{\pi} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - const.l_{\varepsilon} \int_{0}^{\delta} \sqrt{\alpha_{1}(x) - \varepsilon} dx - \delta^{-1}\psi_{1}(\varepsilon)l_{\varepsilon}.$$

$$(2.12)$$

From the relations (2.1), (2.3) and (2.12), we find

$$N(\varepsilon) > \frac{1}{\pi} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx - const.l_{\varepsilon} \int_{0}^{\delta} \sqrt{\alpha_{1}(x)} dx$$
$$- const.l_{\varepsilon} \psi_{1}^{k}(\varepsilon).\Box$$

Theorem 2.2 If the conditions 1)-6) are satisfied then we have

$$N(\varepsilon) < n_{(2)1} + \pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx + l_{\varepsilon} \delta^{-1} \psi_{1}(\varepsilon)$$

for small values of ε .

Proof: From the variation principles of R. Courant [3], we have

$$N_2(\varepsilon) \le \sum_{i=1}^M n_{(2)i}. \tag{2.13}$$

From (2.13) and (2.5), we obtain

$$N_{2}(\varepsilon) < n_{(2)1} + \sum_{i=2}^{M} \sum_{\substack{\alpha_{j}(x_{i-1}) > \varepsilon \\ \alpha_{j}(x_{i-1}) > \varepsilon}} \left[\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx + 1 \right].$$
 (2.14)

The sum

$$\sum_{i=2}^{M} \sum_{\substack{\alpha_{j}(x_{i-1})>\varepsilon\\\alpha_{j}(x_{i-1})>\varepsilon}} \left[\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_{j}(x)-\varepsilon}{p(x)}} dx + 1 \right]$$
 (2.15)

is the sum of the expressions

$$\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + 1 \qquad (i = 2, 3, ...; j = 1, 2, ...)$$

for the natural numbers $i \geq 2$ and $j \geq 1$ satisfying the condition

$$\alpha_j(x_{i-1}) > \varepsilon.$$

If we consider the functions $\alpha_j(x) \quad (j=1,2,\ldots)$ monotonous decreasing, then we obtain

$$\sum_{i=2}^{M} \sum_{\substack{\alpha_{j}(x_{i-1})>\varepsilon \\ \alpha_{j}(x_{i-1})>\varepsilon}} \left[\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_{j}(x)-\varepsilon}{p(x)}} dx + 1 \right] = \sum_{\substack{\alpha_{j}(x_{1})>\varepsilon \\ \alpha_{j}(x_{1})>\varepsilon}} \sum_{\substack{i\geq 2 \\ \alpha_{j}(x_{i-1})>\varepsilon}} \left[\frac{1}{\pi} \int_{x_{i-2}}^{x_{i-1}} \sqrt{\frac{\alpha_{j}(x)-\varepsilon}{p(x)}} dx + 1 \right]$$

$$= \sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \left[\frac{1}{\pi} \int_0^{x_1} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + \frac{1}{\pi} \int_{x_1}^{x_2} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + \dots + \right]$$

$$+\frac{1}{\pi} \int_{x_{i_0-1}}^{x_{i_0}} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + i_0$$
 (2.16)

for the sum (2.15). Here, i_0 is a natural number satisfying the conditions

$$\alpha_j(x_{i_0}) > \varepsilon, \quad \alpha_j(x_{i_0+1}) \le \varepsilon.$$

From (2.2), we find

$$x_{i_0} \leq \psi_j(\varepsilon).$$

On the other hand, if we consider

$$i_0 = \frac{x_{i_0}}{\delta},$$

from (2.14) and (2.16), we obtain

$$N_2(\varepsilon) < n_{(2)1} + \sum_{\substack{j \\ \alpha_j(x_1) > \varepsilon}} \left[\frac{1}{\pi} \int_{0}^{\psi_j(\varepsilon)} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx + \frac{\psi_j(\varepsilon)}{\delta} \right]$$

$$\leq n_{(2)1} + \sum_{j=1}^{l_{\varepsilon}} \left[\frac{1}{\pi} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx + \frac{\psi_{j}(\varepsilon)}{\delta} \right]. \tag{2.17}$$

If we consider $\psi_j(\varepsilon) \leq \psi_1(\varepsilon)$ $(j = 1, 2, ..., l_{\varepsilon})$, from (2.3) and (2.17), we obtain

$$N(\varepsilon) < n_{(2)1} + \frac{1}{\pi} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx + l_{\varepsilon} \frac{\psi_{1}(\varepsilon)}{\delta}.$$
 (2.18)

3 THE ASYMPTOTIC FORMULAS FOR THE NUMBER OF NEGATIVE EIGENVALUES OF THE OPERATOR L

In this section, we will find some asymptotic formulas for the number $N(\varepsilon)$ of eigenvalues smaller than $-\varepsilon$ ($\varepsilon > 0$) of the self adjoint operator L, as $\varepsilon \to 0$.

Let us denote the functions of the form $ln_0x = x$, $ln_nx = ln(ln_{n-1}x)$ by ln_nx (n = 0, 1, 2, ...) and suppose that the function $\alpha_1(x) = ||Q(x)||$ satisfies the following condition:

7) There are a number $\xi > 0$ and a natural number n so that the function $\alpha_1(x) - (\ln_n x)^{-\xi}$ is neither negative nor monotonous increasing in an interval $[a, \infty)$ (a > 0).

Theorem 3.1 If the conditions 1)-7) are satisfied and the series

$$\sum_{j=1}^{\infty} (\alpha_j(0))^m$$

is convergent for a fixed number $m \in (0, \infty)$, then the asymptotic formula

$$N(\varepsilon) = \pi^{-1} \Big[1 + O(e^{-\varepsilon^{-\beta}}) \Big] \sum_{j} \int_{\alpha_{\delta}(x) > \varepsilon} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx$$

is satisfied as $\varepsilon \to 0$, where β is a positive constant.

Proof: By using the theorem 2.2, it is shown that the inequality

$$N(\varepsilon) < \pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx + constl_{\varepsilon} \int_{0}^{\delta} \sqrt{\alpha_{1}(x)} dx + constl_{\varepsilon} \psi_{1}^{k}(\varepsilon)$$

$$(3.1)$$

is satisfied. By the theorem 2.1 and the inequality (3.1), we obtain

$$\left| N(\varepsilon) - \pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx \right| < const \left[l_{\varepsilon} \delta + l_{\varepsilon} \psi_{1}^{k}(\varepsilon) \right]$$

for small positive values of ε ($\varepsilon > 0$).

Here, if we take $k = \frac{1}{2}$ and consider the formula (2.1) then we find

$$\left| N(\varepsilon) - \pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx \right| < constl_{\varepsilon} \sqrt{\psi_{1}(\varepsilon)}.$$
 (3.2)

Let us limit from above the sum on the left side of the inequality (3.2). Let us take

$$f(\varepsilon) = \psi_1(\varepsilon) [ln\psi_1(\varepsilon)]^{-1}.$$

By using the operator function Q(x) which satisfies the condition 2) and the function p(x) which satisfies the condition 4) and 6), we obtain

$$\sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx > \int_{0}^{\psi_{1}(\varepsilon)} \sqrt{\frac{\alpha_{1}(x) - \varepsilon}{p(x)}} dx$$

$$> \int_{\frac{f(\varepsilon)}{2}} \sqrt{\frac{\alpha_{1}(x) - \varepsilon}{p(x)}} dx$$

$$> \sqrt{c_{2}^{-1}} \int_{\frac{f(\varepsilon)}{2}}^{f(\varepsilon)} \sqrt{\alpha_{1}(x) - \varepsilon} dx$$

$$> \frac{f(\varepsilon)}{2\sqrt{c_{2}}} \sqrt{\alpha_{1}(x) - \varepsilon} dx$$

$$> \frac{f(\varepsilon)}{2\sqrt{c_{2}}} \sqrt{\alpha_{1}(f(\varepsilon) - \varepsilon)}.$$
(3.3)

On the other hand, if the conditions 1), 2), 3) and 7) have been satisfied, it can be shown that

$$\alpha_1 \left(\frac{\psi_1(\varepsilon)}{\ln \psi_1(\varepsilon)} \right) - \varepsilon > \left(\ln \psi_1(\varepsilon) \right)^{-(\xi+1)(n+1)} \tag{3.4}$$

for small positive values of ε . From (3.3) and (3.4), we find

$$\sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx > \frac{\psi_{1}(\varepsilon)}{2\sqrt{c_{2}}ln\psi_{1}(\varepsilon)} (ln\psi_{1}(\varepsilon))^{-\frac{1}{2}(\xi+1)(n+1)}$$

$$> c_{11}\psi_{1}^{\frac{3}{4}}(\varepsilon). \tag{3.5}$$

From (3.2) and (3.3), we find

$$\left| \frac{N(\varepsilon)}{\pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx} - 1 \right| < c_{11} l_{\varepsilon} \psi_{1}^{-\frac{1}{4}}(\varepsilon).$$
 (3.6)

Furthermore, since the series

$$\sum_{j=1}^{\infty} (\alpha_j(0))^m$$

is convergent, we have

$$const \ge \sum_{j=1}^{\infty} (\alpha_j(0))^m \ge \sum_{\alpha_j(0) \ge \varepsilon} (\alpha_j(0))^m \ge \sum_{\alpha_j(0) \ge \varepsilon} (\varepsilon)^m = \varepsilon^m l_{\varepsilon}.$$

Here,

$$l_{\varepsilon} = const \varepsilon^{-m}. \tag{3.7}$$

Since the function $\alpha_1(x)$ satisfies the condition 7), we have

$$\varepsilon = \alpha_1(\psi_1(\varepsilon)) > (\ln_n \psi_1(\varepsilon))^{-\xi}$$

for small positive values of ε . From here, we obtain

$$\psi_1(\varepsilon) > e^{\varepsilon - \frac{1}{\xi}}.\tag{3.8}$$

From (3.6), (3.7) and (3.8), we find

$$\left| \frac{N(\varepsilon)}{\pi^{-1} \sum_{j=1}^{l_{\varepsilon}} \int_{0}^{\psi_{j}(\varepsilon)} \sqrt{\frac{\alpha_{j}(x) - \varepsilon}{p(x)}} dx} - 1 \right| < c_{13} \varepsilon^{-m} e^{-\frac{1}{4}\varepsilon^{-\frac{1}{4}}} < e^{-\varepsilon^{-\beta}}.$$

From this inequality, we obtain the asymptotic formula

$$N(\varepsilon) = \pi^{-1} \Big[1 + O(e^{-\varepsilon^{-\beta}}) \Big] \sum_{j} \int_{\alpha_j(x) \ge \varepsilon} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx$$

as $\varepsilon \to 0$. \square

First of all, we suppose that the function $\alpha_1(x)$ satisfies following condition:

8) For every $\eta > 0$

$$\lim_{x \to \infty} \alpha_1(x) x^{k_0 - \eta} = \lim_{x \to \infty} [\alpha_1(x) x^{k_0 + \eta}]^{-1} = 0$$

where k_0 is a constant which belongs to the interval (0,2).

By using the theorem 2.1 and the inequality (3.1), the following theorem can be proved.

Theorem 3.2 We suppose that the conditions 1)-6) and 8) are satisfied. In addition, if the series

$$\sum_{j=1}^{\infty} (\alpha_j(0))^m$$

is convergent for a fixed number m which satisfies the condition

$$0 < m < \frac{(2 - k_0)^2}{8k_0 - 2k_0^2},$$

then the asymptotic formula

$$N(\varepsilon) = \pi^{-1} \Big[1 + O(\varepsilon^{t_0}) \Big] \sum_{j} \int_{\alpha_j(x) \ge \varepsilon} \sqrt{\frac{\alpha_j(x) - \varepsilon}{p(x)}} dx$$

is satisfied as $\varepsilon \to 0$, where t_0 is a positive constant.

References

- [1] Adiguzelov E.E., Bakṣi Ö. and Bayramov A.M., "The Asymptotic Behavior of the Negative Part of the Spectrum of Sturm- Liouville Operator with the Operator Coefficient Which Has Singularity", International Journal of Differential Equations and Applications, vol.6, No 3, 315-329, 2002.
- [2] Cohberg, I.C. and Krein, M.G., "Introduction to the Theory of Linear Non-selfadjoint Operator", Translation of Mathematichal Monographs, vol. 18, Amer. Math. Soc., Providence, R.I. 1969.

- [3] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol 1, New York, 1970.
- [4] Lysternik, L.A. and Sobolev, V.I., Elements of Functional Analysis, Fredrick Ungar, New York, 1955.
- [5] Adigüzelov, E.E., Bairamoglu, M. and Maksudov, F.G., "On Asymtoties of Spectrum and Trace of High Order Differential Operator With Operator Coefficients", Doga-Turkish journal of mathematics, vol. 17, No:2, 1993.
- [6] Skaçek, B.Y., Asymptote of Negative Part of Spectrum of One Dimensioned Differential Operators, Pribl. metodi reșeniya differn. uraveniy, Kiev, 1963.

Received: August, 2008