Positive Solutions for Boundary Value Problems on a Half Line

Baohe Wang

Department of Mathematics, Shandong Administration Institute
Jinan, 250014, P.R. China

Abstract

In this paper, we consider the multiplicity of positive solutions for one-dimensional p-Laplacian differential equation on the half line. By using fixed point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.

Mathematics Subject Classification: 34B15, 34B18, 34B40

Keywords: Boundary value problems; p-Laplacian; Half-line; Multiple positive solutions; Fixed point theorem

1 Introduction

In this paper, we study the existence of triple positive solutions to the boundary value problem (BVP) for the one-dimensional p-Laplacian on a half line

\[
\begin{aligned}
\phi_p(x'(t))' + h(t)f(t, x(t), x'(t)) &= 0, \quad 0 < t < \infty, \\
x(0) &= 0, \quad \lim_{t \to +\infty} x'(t) = 0,
\end{aligned}
\]

(1.1)

where $\phi_p(s) = |s|^{p-2} s, \ p > 1$.

The study of multi-point boundary value problems for linear second-order ordinary differential equation was initiated by Il'in and Moiseev [1, 2]. Since then there has been much current attention focused on the study of nonlinear multi-point boundary value problems [3, 6, 7] and the references therein. Eq. (1.1) with $0 < t < +\infty$ substituted by $0 < t < 1$, and sometimes with the nonlinear term f without the first-order derivative have been studied by several researchers, see [5]. Especially, the study of triple positive solutions attracts much attention.

In [4], the authors studied the problem

\[
\begin{aligned}
x'' + \phi(t)f(t, x, x') &= 0, \quad 0 < t < +\infty, \\
x(0) &= 0, \quad \lim_{t \to +\infty} x'(t) = 0.
\end{aligned}
\]

In [7], the author investigated the problem
\[
\begin{align*}
&x'' - k^2 x(t) + f(t, x(t)) = 0, \quad 0 < t < +\infty, \\
x(0) = 0, \quad \lim_{t \to +\infty} x(t) = 0
\end{align*}
\]

Motivated by the above works, we investigated problem (1.1). The interesting point here is that when \(\alpha \neq 0 \), problem (1.1) is a multi-point boundary value problem on infinite interval with \(p \)-Laplacian, which has never been studied before. What’s more, we at least three positive solution. And when \(\alpha = 0 \), although the problem become the same as in [9] when \(\beta = 0 \), our process of getting the main results is different. In section five, we give an example to illustrate our main results.

Throughout this paper, we always suppose that \(h, f \) satisfy

\begin{itemize}
 \item [(H_1)] \(h \in C(R_+, R_+), h \) is not identically zero on any subinterval of \((0, \infty)\) and \(\int_0^{+\infty} h(s) ds < +\infty, \int_0^{+\infty} \phi_q \left(\int_0^{+\infty} h(s) ds \right) d\tau < +\infty. \)
 \item [(H_2)] \(f(t, (1 + t)u, v) \in C(R_+^3, R_+), f(t, 0, 0) \) is not identically zero on any subinterval of \((0, +\infty)\) and when \(u, v \) are bounded \(f(t, (1 + t)u, v) \) is bounded on \([0, +\infty)\).
\end{itemize}

For convenience, here we set \(\phi_q(s) = |s|^{q-1} s, \frac{1}{p} + \frac{1}{q} = 1 \) is the inverse function to \(\phi_p(s) \).

\section{Preliminary Notes}

For the convenience of the reader, we will present some definitions in this section which are important in the proof process of the main results.

Let
\[
X = \{ x \in C^1[0, \infty), \sup_{0 \leq t < +\infty} \frac{x(t)}{1 + t} < +\infty, \lim_{t \to +\infty} x'(t) = 0 \}\quad (2.1)
\]

with the norm \(\| x \| = \max \{ \| x \|, \| x' \|_\infty \} \), where \(\| x \|_1 = \sup |\frac{x(t)}{1 + t}|, \| x' \|_\infty = \sup_{0 \leq t < +\infty} |x'(t)| \). It is clearly that \((X, \| \cdot \|)\) is a Banach space.

Define the cone \(P \subset X \) by
\[
P = \{ x \in X, x(t) \geq 0, t \in [0, +\infty), x(0) = 0, x \) is concave on\([0, +\infty)\} \}
\]

\begin{definition}
A map \(\alpha \) is said to be a nonnegative continuous \textbf{concave} functional on \(P \) provided that \(\alpha : P \to [0, \infty) \) is continuous and
\[
\alpha(\lambda x + (1 - \lambda)y) \geq \lambda \alpha(x) + (1 - \lambda)\alpha(y).
\]
\end{definition}
Respectively, a map β is said to be a nonnegative continuous convex functional on P provided that $\beta : P \to [0, \infty)$ is continuous and

$$\beta(\lambda x + (1 - \lambda)y) \leq \lambda\beta(x) + (1 - \lambda)\beta(y)$$

for all $x, y \in P$ and $0 \leq \lambda \leq 1$.

Let α, γ, θ, ψ be nonnegative continuous maps on P with α concave, and θ, γ convex. Then for positive numbers a, b, c, d we define the following subsets of P

$$P(\gamma, d) = \{ x \in P \mid \gamma(x) < d \},$$
$$P(\alpha, b, \gamma, d) = \{ x \in \overline{P(\gamma, d)} \mid \alpha(x) \geq b \},$$
$$P(\alpha, b, \theta, c, \gamma, d) = \{ x \in \overline{P(\gamma, d)} \mid \alpha(x) \geq b, \theta(x) \leq c \},$$
$$R(\psi, a, \gamma, d) = \{ x \in \overline{P(\gamma, d)} \mid \psi(x) \geq a \},$$

then it is obvious that $P(\gamma, d)$, $P(\alpha, b, \gamma, d)$ and $P(\alpha, b, \theta, c, \gamma, d)$ are convex and $R(\psi, a, \gamma, d)$ are closed.

Next we state Avery-Peterson fixed point theorem.

Theorem 2.2 ([3]) Let P be a cone in Banach space E. Let γ and θ be nonnegative continuous convex functionals on P, α be nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P satisfying

$$\psi(\lambda x) \leq \lambda \psi(x) \text{ for all } 0 \leq \lambda \leq 1.$$

and

$$\alpha(x) \leq \psi(x), \quad \|x\| \leq M\gamma(x) \text{ for all } x \in \overline{P(\gamma, d)}.$$

with M, d be positive numbers. Suppose that $T : P \to P$ is completely continuous and there exist positive numbers a, b, c, d with $a < b$ such that

$$(S_1) \text{ \{ } x \in P(\alpha, b, \theta, c, \gamma, d) \mid \alpha(x) > b \text{ \} \neq \emptyset \text{ and } \alpha(Tx) > b \text{ for } x \in P(\alpha, b, \theta, c, \gamma, d);}$$

$$(S_2) \text{ } \alpha(Tx) > b \text{ for } x \in P(\alpha, b, \gamma, d) \text{ with } \theta(Tx) > c;$$

$$(S_3) 0 \notin R(\psi, a, \gamma, d) \text{ and } \psi(Tx) < a \text{ for } x \in R(\psi, a, \gamma, d) \text{ with } \psi(x) = a.$$

Then T has at least three fixed points $x_1, x_2, x_3 \in \overline{P(\gamma, d)}$ such that

$$\gamma(x_i) \leq d, \quad i = 1, 2, 3; \quad \psi(x_1) < a; \quad \psi(x_2) > a \text{ with } \alpha(x_2) < b; \quad \alpha(x_3) > b.$$
3 Some Lemmas

Let $k > 1$ be a constant and we define the nonnegative continuous functionals $\alpha, \gamma, \theta, \psi$ on P by
\[
\begin{align*}
\alpha(x) &= \frac{k}{k+1} \min_{1 \leq t \leq k} x(t), \quad \gamma(x) = \sup_{0 \leq t < +\infty} x'(t), \\
\psi(x) &= \theta(x) = \frac{x(0)}{1+\epsilon} \quad \text{for } x \in P.
\end{align*}
\] (3.1)

Lemma 3.1 For $x \in P$, $\|x\|_1 \leq \|x'\|_\infty$.

Proof. For any $x \in P$, we have $x(t) = \int_0^t x'(s)ds \leq t \|x'\|_\infty$, $0 \leq t \leq +\infty$.

then we have $\frac{x(t)}{1+t} \leq \frac{t}{1+t} \|x'\|_\infty$. So we can get $\|x\|_1 \leq \|x'\|_\infty$. The proof is complete.

Lemma 3.2 For $x \in P$, $\alpha(x) \geq \frac{1}{k+1} \theta(x)$.

Proof. It can be easily seen that for any $x \in P$, x is increasing on $[0, +\infty)$. Meanwhile, noticing $x'(t) = 0$, the function $\frac{x(t)}{1+t}$ achieve its maximum at $\sigma \in [0, +\infty)$, then $\theta(x) = \frac{x(\sigma)}{1+\sigma}$. In fact, if $\theta(x) = \lim_{t \to +\infty} \frac{x(t)}{1+t}$, then $\lim_{t \to +\infty} \frac{x(t)}{1+t} = 0$, it is a contradiction. Furthermore, x is concave, so
\[
\alpha(x) = \frac{k}{k+1} x\left(\frac{1}{k}\right) = \frac{k}{k+1} \left(\frac{k-1+k\sigma}{k+k\sigma} \cdot \frac{1}{k-1+k\sigma} + \frac{1}{k+k\sigma}\right)
\]
\[
\geq \frac{1}{k+1} \cdot \frac{x(\sigma)}{1+\sigma} = \frac{1}{k+1} \theta(x).
\]

Then the proof is completed.

Define the operator $T : P \to C^1[0, +\infty)$ by
\[
(Tx)(t) = \int_0^t \left(\phi_q \int_{\tau}^{+\infty} h(s)f(s, x(s), x'(s))ds\right)d\tau.
\] (3.2)

Since the Arzela-Ascoli theorem fails to work in the space X, we need a modified compactness criterion to prove T is compact. In the following, we will present an explicit one. For more general cases, we refer the readers to [7,15] and the references therein.

Lemma 3.3 ([11]) Let $V = \{x \in X : \|x\| \leq \iota\} \ (\iota > 0)$, if $\{x(t), \ x \in V\}$ and $\{x'(t), \ x \in V\}$ are both equicontinuous on any compact intervals of $[0, +\infty)$ and equiconvergent at infinity, then V is relatively compact on X. Where $V_1 \in \left\{\frac{x(t)}{1+t}, \ x \in V\right\} \cup \{x'(t), \ x \in V\}$ is equiconvergent at infinity if and only if for all $\epsilon > 0$, there exists $I = I(\epsilon)$ such that for all $x \in V_1$, it holds,
\[
\left|\frac{x(t_1)}{1+t_1} - \frac{x(t_2)}{1+t_2}\right| < \epsilon, \quad |x'(t_1) - x'(t_2)| < \epsilon,
\]
for all $t_1, t_2 \geq I$.

Set $C = \phi q \int_{0}^{+\infty} h(s) ds$, \quad C(t_i) = \int_{0}^{t_i} \phi q \left(\int_{\tau}^{+\infty} h(s) ds \right) d\tau$, \quad \text{for } i = 1, 2.

Lemma 3.4 Let (H_1) and (H_2) hold, Then $T : P \rightarrow P$ is completely continuous.

Proof. Firstly, we show that $T : P \rightarrow P$ is well defined. For any $x \in P$,

$$ (Tx)(t) \geq 0 \quad (3.3) $$

it can be easily seen that

$$ (Tx)''(t) = -h(s)f(t, x(t), x'(t)) \leq 0. \quad (3.4) $$

Combining (3.3) to (3.4), we can see that $T : P \rightarrow P$ is well defined.

Secondly, we aim to prove that T is continuous and compact respectively.

Let $x_n \rightarrow x$ as $n \rightarrow +\infty$ in P, then there exists r such that $\sup_{n \in \mathbb{N} \setminus \{0\}} \|x_n\| < r$. Set $B_r = \sup \{ f(t, (1 + t)u, v) \mid (t, u, v) \in [0, +\infty) \times [0, r]^2 \}$ and we have

$$ \int_{0}^{+\infty} h(s) |f(s, x_n(s), x_n'(s)) - f(s, x, x')| ds \leq 2B_r \int_{0}^{+\infty} h(s) ds. \quad (3.5) $$

Therefore, by the Lebesgue dominated convergence theorem, one arrives at

$$ |\phi_p(Tx_n)'(t) - \phi_p(Tx)'(t)| = \left| \int_{0}^{+\infty} h(s) (f(s, x_n(s), x_n'(s)) - f(s, x, x')) ds \right| $$

$$ \leq \int_{0}^{+\infty} h(s) |f(s, x_n(s), x_n'(s)) - f(s, x, x')| ds $$

$$ \rightarrow 0 \quad \text{as } n \rightarrow +\infty, $$

then, because ϕ_p is a continuous operator and it is monotone increasing, we have $(Tx_n)'(t) \rightarrow (Tx)'(t)$. Furthermore,

$$ \|(Tx_n)(t) - (Tx)(t)\| \leq M\|(Tx_n)'(t) - (Tx)'(t)\|_{\infty} \rightarrow 0 $$

as $n \rightarrow \infty$, T is continuous.

T is compact provided that it maps bounded sets into relatively compact sets. Let Ω be a bounded set of P, then there exists $\rho > 0$ such that $\|x\| < \rho$ for all $x \in \Omega$. Obviously, we have

$$ \|(Tx)'\|_{\infty} = \phi q \int_{0}^{+\infty} (h(s)f(s, x(s), x'(s)) ds \leq C\phi q(B_\rho) \quad (3.6) $$

for all $x \in \Omega$, where B_ρ is defined as B_r. Then, $\|T\Omega\| \leq M\phi q(B_\rho)$. So $T\Omega$ is compact.
Moreover, for any $I \in (0, +\infty)$ and $t_1, t_2 \in [0, I)$,

$$
\left| \frac{(Tx)(t_1)}{1+t_1} - \frac{(Tx)(t_2)}{1+t_2} \right| \leq \int_0^{t_1} \left(\phi_q \int_\tau^{+\infty} h(s)f(s, x(s), x'(s))dsd\tau \right) \left| \frac{1}{1+t_1} - \frac{1}{1+t_2} \right| \\
+ \frac{1}{1+t_2} \int_0^{t_2} \left(\phi_q \int_\tau^{+\infty} h(s)f(s, x(s), x'(s))dsd\tau \right) \\
\leq \phi_q(B_{\rho}) \left((I) \left| \frac{1}{1+t_1} - \frac{1}{1+t_2} \right| + (C(t_1) - C(t_2)) \right) \\
\to 0, \text{ uniformly as } t_1 \to t_2.
$$

(3.6)

for all $x \in \Omega$. So $T\Omega$ is equicontinuous on any compact interval of $[0, +\infty)$.

Finally, for any $x \in \Omega$,

$$
\lim_{t \to +\infty} \left| \frac{(Tx)(t)}{1+t} \right| = \lim_{t \to +\infty} \left(\frac{1}{1+t} \right) \int_0^{t} \left(\phi_q \int_\tau^{+\infty} h(s)f(s, x(s), x'(s))dsd\tau \right) \\
\leq M\phi_q(B_{\rho}) \lim_{t \to +\infty} \phi_q \left(\int_t^{+\infty} h(s)ds \right) = 0,
$$

(3.8)

$$
\lim_{t \to +\infty} |(Tx)'(t)| = \lim_{t \to +\infty} \phi_q \left(\int_t^{+\infty} h(s)f(s, x(s), x'(s))ds \right) \\
\leq \phi_q(B_{\rho}) \lim_{t \to +\infty} \phi_q \left(\int_t^{+\infty} h(s)ds \right) = 0.
$$

(3.9)

So $T\Omega$ is equiconvergent at infinity. $T\Omega$ is relatively compact, that is, T is a compact operator.

Above all, $T: P \to P$ is completely continuous. Complete out proof.

4 Main Results

In this section, we impose growth conditions which allow us to apply Theorem 2.1 to the boundary value problem (1.1).

Theorem 4.1 Suppose there exist positive numbers a, b, d such that $0 < ka < b < \frac{2k-1}{2k(k+1)}d$ and $(H_1),(H_2)$ hold, further suppose that

(H_3) $f(t, (1+t)u, v) \leq \phi_p(d/C)$, for $(t, u, v) \in [0, +\infty) \times [0, d] \times [0, d]$;

(H_4) $f(t, (1+t)u, v) < \phi_p(a/C)$, for $(t, u, v) \in [0, +\infty) \times [0, a] \times [0, d]$;

(H_5) $f(t, (1+t)u, v) > \phi_p(b/N_0)$, for $(t, u, v) \in \left[\frac{1}{k}, k \right] \times \left[\frac{k}{k}, \frac{2k(k+1)}{k-1}b \right] \times [0, d]$,
where \(N_0 = \frac{1}{(k+1)!} \int_0^k \phi_q \left(\int_{\tau}^{+\infty} h(s) ds \right) d\tau \). Then (1.1) has at least three positive solutions \(x_1, x_2, x_3 \) such that

\[
\sup_{0 \leq t < +\infty} x_i'(t) \leq d, \quad i = 1, 2, 3; \quad \sup_{0 \leq t < +\infty} \frac{x_3(t)}{1+t} < d \quad \text{with} \quad \min_{\frac{1}{k} \leq t \leq k} x_3(t) > \frac{k+1}{k} b.
\]

\[
\sup_{0 \leq t < +\infty} \frac{x_1(t)}{1+t} < a, \quad a < \sup_{0 \leq t < +\infty} \frac{x_2(t)}{1+t} < \frac{2(k+1)}{k-1} b \quad \text{with} \quad \min_{\frac{1}{k} \leq t \leq k} x_2(t) < \frac{k+1}{k} b,
\]

(4.1)

Proof. Let \(X, P, \alpha, \gamma, \theta, \psi, \) and \(T \) be defined as (2.1)-(2.4) respectively. Obviously, the fixed point of \(T \) coincide with the solutions of BVP (1.1) and (1.2). So it is enough to show that \(T \) has three positive fixed points on \(P \). Then we show that all the conditions of theorem 2.1 is satisfied.

Firstly, we show that the conditions \((S_1), (S_2)\) in Theorem 2.1 are satisfied. Set \(x(t) = (1 - e^{-t}) \frac{2k(k+1)}{2k-1} b, 0 \leq t < +\infty, \) and it is easy to check that \(x \in P(\alpha, b, \theta, c, \gamma, d) \) with \(\alpha(x) > b \), where \(c = \frac{2k(k+1)}{2k-1} b \). So \(\{ x \in P(\alpha, b, \theta, c, \gamma, d) \mid \alpha(x) > b \} \neq \emptyset \). Similarly, for \(x \in P(\alpha, b, \theta, c, \gamma, d) \), we have \(b \leq \frac{1}{1+t} \leq \frac{2(k+1)}{2k-1} b, t \in \left[\frac{1}{k}, k \right] \) and \(0 \leq x'(t) \leq d, t \in [0, +\infty) \). Therefore,

\[
\alpha(Tx) \geq \frac{1}{k+1} \theta(Tx) = \frac{1}{k+1} \sup_{0 \leq t < +\infty} (Tx)(t) = \frac{1}{k+1} \int_{\frac{1}{k}}^{k} \phi_q \left(\int_{\tau}^{k} h(s)f(s, x(s), x'(s)) ds \right) d\tau \\
\geq \frac{1}{(k+1)^2} \int_{\frac{1}{k}}^{k} \phi_q \left(\int_{\tau}^{k} h(s) ds \right) d\tau = \frac{b}{(k+1)^2 N_0} \int_{\frac{1}{k}}^{k} \phi_q \left(\int_{\tau}^{k} h(s) ds \right) d\tau = b.
\]

Hence, \(\alpha(Tx) > b \) for \(x \in P(\alpha, b, \theta, c, \gamma, d) \).

Secondly, we will prove that the condition \((S_2)\) of theorem 2.2 is fulfilled.

Let \(x \in P(\alpha, b, \gamma, d) \) with \(\theta(Tx) > \frac{2k(k+1)}{2k-1} b \), then we have

\[
\alpha(Tx) \geq \frac{1}{k+1} \theta(Tx) > \frac{1}{k+1} \frac{2k(k+1)}{2k-1} b > b.
\]

So both conditions \((S_1)\) and \((S_2)\) in Theorem 2.1 hold.

Finally, we show that condition \((S_3)\) of theorem 2.1 also holds. It can be seen clearly, \(\psi(0) = 0 < a \), there holds \(0 \notin R(\psi_a, \gamma, d) \). Suppose that \(x \in R(\psi_a, \gamma, d) \) with \(\psi(x) = a \), Then, in view of assumption \((H_4)\) together with lemma 3.2 we have

\[
\psi(Tx) \leq \gamma(Tx) = (Tx)'(0) \leq \phi_q \left(\int_{0}^{+\infty} h(s)f(s, x(s), x'(s)) ds \right) \leq \frac{a}{C} \left(\int_{0}^{+\infty} h(s) ds \right) = a.
\]

So condition \((S_3)\) of theorem 2.1 is also satisfied. Therefore, an application of Theorem 2.1 implies the boundary value problem (1.1) has at least three
positive solutions x_1, x_2, x_3 such that $\psi(x_1) < a, \psi(x_2) > a$ with $\alpha(x_2) < b, \alpha(x_3) > b$.

In addition, condition (H2) guarantees those fixed points are positive. So BVP (1.1) (1.2) has at least three positive solutions x_1, x_2, x_3 satisfying (4.1) and we complete our proof.

With the same arguments as those in Theorem 3.1, we can complete our proof.

When $p = 2$, we can get the explicit existence results from the above theorem.

Set
\[
\overline{C} = \int_0^{+\infty} h(s)ds, \quad \overline{N} = \frac{1}{(k+1)^2} \left(\frac{\alpha \eta}{1 - \alpha} \int_1^k h(s)ds + \int_1^k \int_\tau^k h(s)dsd\tau \right),
\]
\[
\overline{N}_0 = \frac{1}{(k+1)^2} \int_1^k \int_\tau^k h(s)dsd\tau.
\]

Consider the following second order BVP on the half line
\[
\begin{aligned}
&x'' + h(t)f(t, x(t), x'(t)) = 0, \quad 0 < t < +\infty, \\
&x(0) = \alpha x(\eta), \quad x'(\infty) = 0.
\end{aligned}
\]

Corollary 4.2 Let $\alpha = 0$, suppose that there exist numbers $a, b,$ and d such that $0 < ka < b < \frac{2k-1}{2k(k-1)}d$ and (H1), (H2), (H7), (H9) hold, Further suppose that

(H10) $f(t, (1 + t)u, v) > d/\overline{N}_0$ for \((t, u, v) \in \left[\frac{b}{k}, k \right] \times \left[\frac{b}{k}, \frac{2k(k+1)b}{k-1} \right] \times [0, d].$

Then (3.3) has at least three positive solutions x_1, x_2, x_3 such that (4.2) hold.

5 Example

Example 5.1

\[
\begin{aligned}
& (\phi_p(x'))' + e^{-4t}f(t, x(t), x'(t)) = 0, \quad 0 < t < +\infty, \\
& x(0) = 0, x'(\infty) = 0.
\end{aligned}
\]

where $p = 3, f(t, u, v) = \begin{cases}
\frac{1}{20} |\sin t| + 10^5 \left(\frac{u}{1+t} \right)^{10} + \frac{1}{20} \left(\frac{u}{300} \right), & u \leq 1, \\
\frac{1}{20} |\sin t| + 10^5 \left(\frac{1}{1+t} \right)^{10} + \frac{1}{20} \left(\frac{u}{300} \right), & u \geq 1.
\end{cases}
\]

Set $h(t) = e^{-4t}$, and it can be easily seen that (H1) and (H2) hold. Let $k = 3, \ a = 1/3, \ b = 6, \ d = 300.$ Then after a series of calculation, we can
get that $C = 1/2$, $N > 1/32$, so the nonlinear term f satisfies

$$f(t, (1 + t)u, v) \leq \frac{1}{20} + 10^5 + \frac{1}{20} < 3.6 \times 10^5 = \phi_3(d/C),$$

for $(t, u, v) \in [0, +\infty) \times [0, 600] \times [0, 300]$;

$$f(t, (1 + t)u, v) > 10^5 > \phi_3(b/N), \text{ for } (t, u, v) \in [\frac{1}{3}, 3] \times [2, 36] \times [0, 300];$$

$$f(t, (1 + t)u, v) < \frac{1}{9} = \phi_3(a/C), \text{ for } (t, u, v) \in [0, +\infty) \times [0, \frac{1}{3}] \times [0, 300].$$

Then the conditions in theorem 4.1 are all satisfied. So BVP (5.1) has at least three positive solutions x_1, x_2, x_3 such that

\[
\sup_{0 \leq t < +\infty} x_i(t) < 300, i = 1, 2, 3; \quad \sup_{0 \leq t < +\infty} \frac{x_1(t)}{1 + t} < \frac{1}{3}, \quad 2 < \sup_{0 \leq t < +\infty} \frac{x_2(t)}{1 + t} < 20, \\
\sup_{0 \leq t < +\infty} \frac{x_3(t)}{1 + t} < 300 \text{ with } \min_{\frac{1}{3} \leq t \leq 3} \frac{x_3(t)}{1 + t} > 8.
\]

References

Received: August, 2008