In this paper, we introduce \(rga \)-closed sets and \(rga \)-open sets and some of its basic properties.

Mathematics Subject Classification: 54C10, 54C08, 54C05

Keywords: \(rga \)-closed sets, \(rga \)-open sets

1 Introduction

N. Levine [14] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Balachandran, Sundaram and Maki [5], Bhattacharyya and Lahiri [6], Arockiarani [2], Dunham [11], Gnanambal [12], Malghan [18], Palaniappan and Rao [23], Park [24] Arya and Gupta [3] and Devi [8], Benchalli and wali [29] have worked on generalized closed sets, their generalizations and related concepts in general topology. In this paper, we define and study the properties of regular generalized \(\alpha \)-closed sets (briefly \(rga \)-closed). Moreover, in this paper we define \(rga \)-open sets and obtained some of its basic properties as results.

Throughout the paper \(X \) and \(Y \) denote the topological spaces \((X, \tau)\) and \((Y, \sigma)\) respectively and on which no separation axioms are assumed unless otherwise explicitly stated. For any subset \(A \) of a space \((X, \tau)\), the closure of \(A \), interior of \(A \), semi-interior of \(A \), semi-closure of \(A \), \(w \)-interior of \(A \), \(w \)-closure of \(A \), \(gpr \)-interior of \(A \), \(gpr \)-closure of \(A \), \(\alpha \)-closure of \(A \), \(\alpha \)-interior of \(A \) and the complement of \(A \) are denoted by \(cl(A) \) or \(\tau-cl(A) \), \(int(A) \) or
Definition 1.1. A subset A of a space X is called
1) a preopen set [20] if $A \subseteq \text{intcl}(A)$ and a preclosed set if $\text{clint}(A) \subseteq A$.
2) a semiopen set [13] if $A \subseteq \text{clint}(A)$ and a semiclosed set if $\text{intcl}(A) \subseteq A$.
3) a α-open set [22] if $A \subseteq \text{intcl}(A)$ and a α-closed set if $\text{clint}(A) \subseteq A$.
4) a semi-preopen set [1] if $A \subseteq \text{clint}(A)$ and a semi-preclosed set if $\text{intcl}(A) \subseteq A$.
5) a regular open set [28] if $A = \text{intcl}(A)$ and a regular closed set if $A = \text{clint}(A)$.

The intersection of all semiclosed (resp. semiopen) subsets of X containing A is called the semi-closure (resp. semi-kernel) of A and is denoted by $\text{scl}(A)$ (resp. $\text{sker}(A)$). Also the intersection of all preclosed (resp. semi-preclosed and α-closed) subsets of X containing A is called pre-closure (resp. semi-pre closure and α-closure) of A and is denoted by $\text{pcl}(A)$ (resp. $\text{spcl}(A)$ and α-cl (A)).

Definition 1.2. A subset A of a space X is called
1) generalized closed set (briefly, g-closed) [14] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2) semi-generalized closed set (briefly, sg-closed) [6] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
3) generalized semiclosed set (briefly, gs-closed) [4] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
4) generalized α-closed set (briefly, $g\alpha$-closed) [16] if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.
5) α-generalized closed set (briefly, αg-closed) [15] if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
6) generalized semi-preclosed set (briefly, gsp-closed) [9] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
7) regular generalized closed set (briefly, rg-closed) [23] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
8) generalized preclosed set (briefly, gp-closed) [17] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
9) generalized preregular closed set (briefly, gpr-closed) [12] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
10) weakly generalized closed set (briefly, wg-closed) [21] if $\text{clint}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
11) strongly generalized semi-closed set [25] (briefly, g^*-closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
12) π-generalized closed set (briefly, πg-closed) [10] if $\text{cl}(A) \subseteq U$ whenever τ-int (A), $\text{sint}(A)$, $\text{scl}(A)$, $\text{w-int}(A)$, $\text{w-cl}(A)$, $\text{gpr-int}(A)$, $\text{gpr-cl}(A)$, α-int (A), α-cl (A) and A^C or $X - A$ respectively. (X, τ) will be replaced by X if there is no chance of confusion.

Let us recall the following definitions as pre requesties.
A ⊆ U and U is π-open in X.
13) weakly closed set (briefly, w-closed)[27] if cl (A) ⊆ U whenever A ⊆ U and U is semiopen in X.
14) mildly generalized closed set (briefly, mildly g-closed)[24] if clint (A) ⊆ U whenever A ⊆ U and U is g-open in X.
15) semi weakly generalized closed set (briefly, swg-closed) if clint (A) ⊆ U whenever A ⊆ U and U is semiopen in X.
16) regular weakly generalized closed set (briefly, rwg-closed) if clint (A) ⊆ U whenever A ⊆ U and U is regular open in X.
17) A subset A of a space X is called regular semiopen[7] if there is a regular open U such U ⊂ A ⊂ cl(U). The family of all regular semiopen sets of X is denoted by RSO(X).

The complements of the above mentioned closed sets are their respective open sets.

2 rga-closed sets and their basic properties.

We introduce the following definition

Definition 2.1. A subset A of a space X is called regular α-open set (briefly, rα-open) if there is a regular open set U such that U ⊂ A ⊂ αcl(U).

The family of all regular α-open sets of X is denoted by RαO(X).

Definition 2.2. A subset A of a space X is called a regular generalized α-closed set (briefly, rga-closed) if αcl (A) ⊆ U whenever A ⊆ U and U is regular α-open in X. We denote the set of all rga-closed sets in X by RGA C(X).

First we prove that the class of rga-closed sets has properly lies between the class of gα-closed sets and the class of regular generalized closed sets.

Theorem 2.1. Every gα-closed set in X is rga-closed set in X, but not conversely.

Proof. The proof follows from the definitions and the fact that every regular open sets are regular α-open.

The converse of the above theorem need not be true, as seen from the following example.

Example 2.1. Let X = \{a, b, c, d, e\} with topology τ = \{X, \emptyset, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}. Then the set A = \{a, d, e\} is rga-closed set but not gα-closed set in X.
Theorem 2.2. Every w-closed set in X is $rg\alpha$-closed set in X, but not conversely.

Proof. The proof follows from the definitions and the fact that every regular α-open set is semiopen and closed sets are α-closed. □

The converse of the above theorem need not be true, as seen from the following example.

Example 2.2. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Then the set $A = \{b\}$ is $rg\alpha$-closed set but not w-closed set in X.

Theorem 2.3. Every rw-closed set in X is $rg\alpha$-closed set in X, but not conversely.

Proof. The proof follows from the definitions and the fact that closed sets are α-closed. □

The converse of the above theorem need not be true, as seen from the following example.

Example 2.3. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Then the set $A = \{b\}$ is $rg\alpha$-closed set but not rw-closed set in X.

Theorem 2.4. Every $rg\alpha$-closed set in X is rg-closed set in X, but not conversely.

Proof. The proof follows from the definitions and the fact that every regular open sets are regular α-open. □

The converse of the above theorem need not be true, as seen from the following example.

Example 2.4. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Then the set $A = \{a, b\}$ is rg-closed set but not $rg\alpha$-closed set in X.

Corollary 2.1. Every closed set is $rg\alpha$-closed but not conversely.

Proof. Follows from sheik John [26] and theorem 2.3.

Corollary 2.2. Every regular closed set is $rg\alpha$-closed but not conversely.

Proof. Follows from stone [19] and corollary 2.1.
Corollary 2.3. Every rgα-closed set is a gpr-closed but not conversely.

Proof. Follows from Gnanmbal [12] and theorem 2.4.

Corollary 2.4. Every π-closed set is a rgα-closed set but not conversely.

Proof. Follows from [10] and corollary 2.1.

Theorem 2.5. Every rgα-closed set in X is rwg-closed set in X, but not conversely.

Proof. The proof follows from the definitions and the fact that every regular open sets are regular α-open.

The converse of the above theorem need not be true, as seen from the following example.

Example 2.5. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Then the set $A = \{a, b\}$ is rwg-closed set but not rgα-closed set in X.

Remark 2.1. From the above discussions and known results we have the following implications

In the following diagram, by

$A \rightarrow B$ we mean A implies B but not conversely and

$A \leftrightarrow B$ means A and B are independent of each other.
Theorem 2.6. The union of two rgα-closed subsets of X is also rgα-closed subset of X.

Proof. Assume that A and B are rgα-closed set in X. Let U be regular α-open in X such that $A \cup B \subset U$. Then $A \subset U$ and $B \subset U$. Since A and B are rgα-closed, $\alpha cl(A) \subset U$ and $\alpha cl(B) \subset U$. Hence $\alpha cl (A \cup B) = (\alpha cl(A)) \cup (\alpha cl(B)) \subset U$. That is $\alpha cl (A \cup B) \subset U$. Therefore $A \cup B$ is rgα-closed set in X.

Remark 2.2. The intersection of two rgα-closed sets in X is generally not rgα-closed set in X.

Example 2.6. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. If $A = \{a, b, c\}$ and $B = \{a, d, e\}$ Then A and B are rgα-closed sets in X, but $A \cap B = \{a\}$ is not a rgα-closed set in X.
Theorem 2.7. If a subset A of X is $r\alpha$-closed set in X. Then $\alpha cl(A) \setminus A$ does not contain any nonempty regular α-open set in X.

proof. Suppose that A is $r\alpha$-closed set in X. We prove the result by contradiction. Let U be a regular α-open set such that $\alpha cl(A) \setminus A \supset U$ and $U \neq \phi$. Now $U \subset \alpha cl(A) \setminus A$. Therefore $U \subset X \setminus A$ which implies $A \subset X \setminus U$. Since U is regular α-open set, $X \setminus U$ is also regular α-open in X. Since A is $r\alpha$-closed set in X, by definition we have $\alpha cl(A) \subset X \setminus U$. So $U \subset X \setminus \alpha cl(A)$. Also $U \subset \alpha cl(A)$. Therefore $U \subset (\alpha cl(A) \cap (X \setminus \alpha cl(A))) = \phi$. This shows that, $U = \phi$ which is contradiction. Hence $\alpha cl(A) \setminus A$ does not contain any non-empty regular α-open set in X.

The converse of the above theorem need not be true seen from following example.

Example 2.7. If $\alpha cl(A) \setminus A$ contains no non-empty $r\alpha$-open subset in X, then A need not be $r\alpha$-closed set. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$ and $A = \{a, b\}$. Then $\alpha cl(A) \setminus A = \{a, b, c\} \setminus \{a, b\} = \{c\}$ does not contain non-empty regular α-open set in X, but A is not a $r\alpha$-closed set in X.

Corollary 2.5. If a subset A of X is $r\alpha$-closed set in X, then $\alpha cl(A) \setminus A$ does not contain any regular open set in X, but not conversely.

Proof. Follows from theorem 2.7. and the fact that every regular open set is regular α-open.

Corollary 2.6. If a subset A of X is $r\alpha$-closed set in X, then $\alpha cl(A) \setminus A$ does not contain any non-empty regular closed set in X, but not conversely.

Proof. Follows from theorem 2.7. and the fact that every regular open set is regular α-open.

Theorem 2.8. For an element $x \in X$, the set $X \setminus \{x\}$ is $r\alpha$-closed or regular α-open.

proof. Suppose $X \setminus \{x\}$ is not regular α-open set. Then X is the only regular α-open set containing $X \setminus \{x\}$. This implies $\alpha cl(X \setminus \{x\}) \subset X$. Hence $X \setminus \{x\}$ is $r\alpha$-closed set in X.

Theorem 2.9. If A is regular open and $r\alpha$-closed then A is regular closed and hence α-clopen.

proof. Suppose A is regular open and $r\alpha$-closed. As every regular open is regular α-open and $A \subset A$, we have $\alpha cl(A) \subset A$. Also $A \subset \alpha clA$. Therefore $\alpha clA = A$. That is A is α-closed. Since A is regular open, A is α-open. Now $cl(int(A)) = cl(A) = A$. Therefore A is a regular closed and α-clopen.
Theorem 2.10. If A is $rg\alpha$-closed subset of X such that $A \subseteq B \subseteq acl(A)$. Then B is $rg\alpha$-closed set in X.

Proof. If A is $rg\alpha$-closed subset of X such that $A \subseteq B \subseteq acl(A)$. Let U be a regular α-open set of X such that $B \subseteq U$. Then $A \subseteq U$. Since A is a $rg\alpha$-closed we have $acl(A) \subseteq U$. Now $acl(B) \subseteq acl(acl(A)) = acl(A) \subseteq U$. Therefore B is $rg\alpha$-closed set in X.

Remark 2.3. The converse of the theorem 2.10. need not be true in general. Consider the topological space (X, τ), where $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Let $A = \{b\}$ and $B = \{b, c\}$. Then A and B are $rg\alpha$-closed sets in (X, τ), but $A \subseteq B$ is not subset in $acl(A)$.

Theorem 2.11. Let A be a $rg\alpha$-closed in (X, τ). Then A is α-closed if and only if $acl(A) \setminus A$ is a regular α-open.

Proof. Suppose A is a α-closed in X. Then $acl(A) = A$ and so $acl(A) \setminus A = \phi$, which is regular α-open in X. Conversely, suppose $acl(A) \setminus A$ is a regular α-open set in X. Since A is $rg\alpha$-closed, by theorem 2.7. $acl(A) \setminus A$ does not contain any nonempty regular α-open in X. Then $acl(A) \setminus A = \phi$, hence A is α-closed set in X.

Theorem 2.12. If A is regular open and rg-closed, then A is $rg\alpha$-closed set in X.

Proof. Let U be any regular α-open set in X such that $A \subseteq U$. Since A is regular open and rg-closed, we have $acl(A) \subseteq A$. Then $acl(A) \subseteq A \subseteq U$. Hence A is $rg\alpha$-closed set in X.

Theorem 2.13. If a subset A of topological space X is both regualr α-open and $rg\alpha$-closed, then it is α-closed.

Proof. Suppose a subset A of topological space X is both regualr α-open and $rg\alpha$-closed. Now $A \subseteq A$. Then $acl(A) \subseteq A$. Hence A is α-closed.

Corollary 2.7. Let A be regular α-open and $rg\alpha$-closed subset in X. Suppose that F is α-closed set in X. Then $A \cap F$ is an $rg\alpha$-closed set in X.

Proof. Let A be a regular α-open and $rg\alpha$-closed subset in X and F be closed. By theorem 2.13., A is α-closed. So $A \cap F$ is a α-closed and hence $A \cap F$ is $rg\alpha$-closed set in X.

Theorem 2.14. If A is an open and S is α-open in topological space X, then $A \cap S$ is α-open in X.
Theorem 2.15. If A is both open and g-closed set in X, then it is rga-closed set in X.

Proof. Let A be an open and g-closed set in X. Let $A \subset U$ and let U be a regular α-open set in X. Now $A \subset A$. By hypothesis $\alpha cl(A) \subset A$. That is $\alpha cl(A) \subset U$. Thus A is rga-closed in X. \blacksquare

Remark 2.4. If A is both open and rga-closed in X, then A need not be g-closed, in general, as seen from the following example.

Example 2.8. Consider $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. In this topological space the subset $\{a, d, e\}$ is an open and rga-closed set, but not g-closed.

Theorem 2.16. In a topological space X, if $R\alpha O(X) = \{X, \phi\}$, then every subset of X is a rga-closed set.

Proof. Let X be a topological space and $R\alpha O(X) = \{X, \phi\}$. Let A be any subset of X. Suppose $A = \phi$. Then ϕ is rga-closed set in X. Suppose $A \neq \phi$. Then X is the only regular α-open set containing A and so $\alpha cl(A) \subset X$. Hence A is rga-closed set in X. \blacksquare

The converse of the theorem 2.16. need not be true in general as seen from the following example.

Example 2.9. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a, b\}, \{c, d\}\}$. Then every subset of (X, τ) is rga-closed set in X, But $R\alpha O(X, \tau) = \{X, \phi, \{a, b\}, \{c, d\}\}$.

Theorem 2.17. In a topological space X, $R\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau\}$ iff every subset of X is a rga-closed set.

Proof. Suppose that $R\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau\}$. Let A be any subset of X such that $A \subset U$, where U is a regular α-open. Then $U \in R\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau\}$. That is $U \in \{F \subset X : F^c \in \tau\}$. Thus U is a α-closed set. Then $\alpha cl(U) = U$. Also $\alpha cl(A) \subset \alpha cl(U) = U$. Hence A is rga-closed set in X.

Conversely, suppose that every subset of (X, τ) is rga-closed. Let $U \in R\alpha O(X, \tau)$. Since $U \subset U$ and U is rga-closed, we have $\alpha cl(U) \subset U$. Thus $\alpha cl(U) = U$ and $U \in \{F \subset X : F^c \in \tau\}$. Therefore $R\alpha O(X, \tau) \subset \{F \subset X : F^c \in \tau\}$. \blacksquare

Definition 2.3. The intersection of all regular α-open subsets of (X, τ) containing A is called the regular α-kernal of A and is denoted by $rker(A)$.
Lemma 2.1. Let X be a topological space and A be a subset of X. If A is a regular α-open in X, then $r\alpha ker(A) = A$ but not conversely.

Proof. Follows from definition. 2.3.

Lemma 2.2. For any subset A of X, $\alpha ker(A) \subset r\alpha ker(A)$.

Proof. Follows from the implication $R\alpha O(X) \subset \alpha O(X)$.

Lemma 2.3. For any subset A of X, $A \subset r\alpha ker(A)$.

Proof. Follows from the definition. 2.3.

3 $rg\alpha$-open sets and $rg\alpha$-neighbourhoods.

In this section, we introduce and study $rg\alpha$-open sets in topological spaces and obtain some of their properties. Also, we introduce $rg\alpha$-neighbourhood (shortly $rg\alpha$-nbhd in topological spaces by using the notion of $rg\alpha$-open sets. We prove that every nbhd of x in X is $rg\alpha$-nbhd of x but not conversely.

Definition 3.1. A subset A in X is called regular generalized α-open (briefly, $rg\alpha$-open) in X if A^c is $rg\alpha$-closed in X. We denote the family of all $rg\alpha$-open sets in X by $RG\alpha O(X)$.

Theorem 3.1. If a subset A of a space X is w-open then it is $rg\alpha$-open but not conversely.

Proof. Let A be a w-open set in a space X. Then A^c is w-closed set. By theorem 2.2. A^c is $rg\alpha$-closed. Therefore A is $rg\alpha$-open set in X.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.1. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. In this topological space the subset $\{b\}$ is $rg\alpha$-open but not w-open.

Corollary 3.1. Every open set is $rg\alpha$-open set but not conversely.

Proof. Follows from sheik john [26] and theorem 3.1.

Corollary 3.2. Every regular open set is $rg\alpha$-open set but not conversely.

Proof. Follows from stone [28] and theorem 3.1.
Theorem 3.2. If a subset A of a space X is $rg\alpha$-open, then it is rg-open set in X.

Proof. Let A be $rg\alpha$-open set in space X. Then A^c is $rg\alpha$-closed set in X. By theorem 2.4., A^c is rg-closed set in X. Therefore A is rg-open set in space X. ■

The converse of the above theorem need not be true, as seen from the following example.

Example 3.2. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \varnothing, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. In this topological space the subset $\{a, b\}$ is rg-open but not $rg\alpha$-open set in X.

Theorem 3.3. If a subset A of a space X is $rg\alpha$-open, then it is gpr-open set in X, but not conversely.

Proof. Let A be $rg\alpha$-open set in a space X. Then A^c is $rg\alpha$-closed set in X. By corollary 2.3. A^c is gpr-closed in X. Therefore A is gpr-open set in X. ■

The converse of the above theorem need not be true, as seen from the following example.

Example 3.3. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \varnothing, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. In this topological space the subset $\{a, b\}$ is gpr-open but not $rg\alpha$-open.

Theorem 3.4. If a subset A of a topological space X is $rg\alpha$-open, then it is rgw-open set in X, but not conversely.

Proof. Let A be $rg\alpha$-open set in a space X. Then A^c is $rg\alpha$-closed set in X. By theorem 2.5. A^c is rgw-closed in X. Therefore A is rgw-open subset in X. ■

The converse of the above theorem need not be true, as seen from the following example.

Example 3.4. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \varnothing, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. In this topological space the subset $\{a, b\}$ is rgw-open set in X, but not $rg\alpha$-open.

Theorem 3.5. If A and B are $rg\alpha$-open sets in a space X. Then $A \cap B$ is also $rg\alpha$-open set in X.

Proof. If A and B are $rg\alpha$-open sets in a space X. Then A^c and B^c are $rg\alpha$-closed sets in a space X. By theorem 2.6. $A^c \cup B^c$ is also $rg\alpha$-closed set in X. That is $A^c \cup B^c = (A \cap B)^c$ is a $rg\alpha$-closed set in X. Therefore $A \cap B$ $rg\alpha$-open set in X. ■
Remark 3.1. The union of two $rg\alpha$-open sets in X is generally not a $rg\alpha$-open set in X.

Example 3.5. Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $RG\alpha O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $RaO(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Take $A = \{b, c, d\}$. Then A is not $rg\alpha$-open. However $int (A) \cup A^c = \{b, c\} \cup \{a\} = \{a, b, c\}$. So for some regular α-open G, we have $int (A) \cup A^c = \{a, b, c\} \subset G$ gives $G = X$, but A is not $rg\alpha$-open.

Theorem 3.6. If a set A is $rg\alpha$-open in a space X, then $G = X$, whenever G is regular α-open and $int (A) \cup A^c \subset G$.

Proof. Suppose that A is $rg\alpha$-open in X. Let G be regular α-open and $int (A) \cup A^c \subset G$. This implies $G^c \subset (int (A) \cup A^c)^c = (int (A))^c \cap A$. That is $G^c \subset (int (A))^c - A^c$. Thus $G^c \subset cl (A)^c - A^c$. Since $(int (A))^c = cl (A^c)$. Now G^c is also regular α-open and A^c is $rg\alpha$-closed, by theorem 2.7., it follows that $G^c = \phi$. Hence $G = X$.

The converse of the above theorem is not true in general as seen from the following example.

Example 3.6. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $RGAO(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $RaoO(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $RG\alpha O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $RaO(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Take $A = \{b, c, d\}$. Then A is not $rg\alpha$-open. However $int (A) \cup A^c = \{b, c\} \cup \{a\} = \{a, b, c\}$. So for some regular α-open G, we have $int (A) \cup A^c = \{a, b, c\} \subset G$ gives $G = X$, but A is not $rg\alpha$-open.

Theorem 3.7. Every singleton point set in a space is either $rg\alpha$-open or $r\alpha$-open.

Proof. Let X be a topological space. Let $x \in X$. To prove $\{x\}$ is either $rg\alpha$-open or $r\alpha$-open. That is to prove $X - \{x\}$ is either $rg\alpha$-closed or $r\alpha$-open, which follows from theorem 2.8.

Analogous to a neighbourhood in space X, we define $rg\alpha$-neighbourhood in a space X as follows.

Definition 3.2. Let X be a topological space and let $x \in X$. A subset N of X is said to be a $rg\alpha$-nbhd of x iff there exists a $rg\alpha$-open set G such that $x \in G \subset N$.

Definition 3.3. A subset N of space X, is called a $rg\alpha$-nbhd of $A \subset X$ iff there exists a $rg\alpha$-open set G such that $A \subset G \subset N$.
Remark 3.2. The \(r\alpha\)-nbhd \(N \) of \(x \in X \) need not be a \(r\alpha\)-open in \(X \).

Example 3.7. Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then \(R\alpha\theta O(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\} \). Note that \(\{a, c\} \) is not a \(r\alpha\)-open set, but it is a \(r\alpha\)-nbhd of \(\{a\} \). Since \(\{a\} \) is a \(r\alpha\)-open set such that \(a \in \{a\} \subset \{a, c\} \).

Theorem 3.8. Every nbhd \(N \) of \(x \in X \) is a \(r\alpha\)-nbhd of \(X \).

Proof. Let \(N \) be a nbhd of point \(x \in X \). To prove that \(N \) is a \(r\alpha\)-nbhd of \(x \). By definition of nbhd, there exists an open set \(G \) such that \(x \in G \subset N \). As every open set is \(r\alpha\)-open set \(G \) such that \(x \in G \subset N \). Hence \(N \) is \(r\alpha\)-nbhd of \(x \).

Remark 3.3. In general, a \(r\alpha\)-nbhd \(N \) of \(x \in X \) need not be a nbhd of \(x \) in \(X \), as seen from the following example.

Example 3.8. Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then \(R\alpha\theta O(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\} \). The set \(\{a, c\} \) is \(r\alpha\)-nbhd of the point \(c \), since the \(r\alpha\)-open sets \(\{c\} \) is such that \(c \in \{c\} \subset \{a, c\} \). However, the set \(\{a, c\} \) is not a nbhd of the point \(c \), since no open set \(G \) exists such that \(c \in G \subset \{a, c\} \).

Theorem 3.9. If a subset \(N \) of a space \(X \) is \(r\alpha\)-open, then \(N \) is a \(r\alpha\)-nbhd of each of its points.

Proof. Suppose \(N \) is \(r\alpha\)-open. Let \(x \in N \). We claim that \(N \) is \(r\alpha\)-nbhd of \(x \). For \(N \) is a \(r\alpha\)-open set such that \(x \in N \subset N \). Since \(x \) is an arbitrary point of \(N \), it follows that \(N \) is a \(r\alpha\)-nbhd of each of its points.

Remark 3.4. The converse of the above theorem is not true in general as seen from the following example.

Example 3.9. Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then \(R\alpha\theta O(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\} \). The set \(\{a, d\} \) is \(r\alpha\)-nbhd of the point \(a \), since the \(r\alpha\)-open set \(\{a\} \) is such that \(a \in \{a\} \subset \{a, d\} \). Also the set \(\{a, d\} \) is \(r\alpha\)-nbhd of the point \(\{d\} \). Since the \(r\alpha\)-open set \(\{d\} \) is such that \(d \in \{d\} \subset \{a, d\} \). That is \(\{a, d\} \) is \(r\alpha\)-nbhd of each of its points. However the set \(\{a, d\} \) is not a \(r\alpha\)-open set in \(X \).

Theorem 3.10. Let \(X \) be a topological space. If \(F \) is a \(r\alpha\)-closed subset of \(X \), and \(x \in F^c \). Prove that there exists a \(r\alpha\)-nbhd \(N \) of \(x \) such that \(N \cap F = \phi \).
Proof. Let F be $rg\alpha$-closed subset of X and $x \in F^c$. Then F^c is $rg\alpha$-open set of X. So by theorem 3.9. F^c contains a $rg\alpha$-nbhd of each of its points. Hence there exists a $rg\alpha$-nbhd N of x such that $N \subset F^c$. That is $N \cap F = \phi$.

Definition 3.4. Let x be a point in a space X. The set of all $rg\alpha$-nbhd of x is called the $rg\alpha$-nbhd system at x, and is denoted by $rg\alpha-N(x)$.

Theorem 3.11. Let X be a topological space and for each $x \in X$, Let $rg\alpha-N(x)$ be the collection of all $rg\alpha$-nbhds of x. Then we have the following results.

(i) $\forall x \in X$, $rg\alpha-N(x) \neq \phi$.
(ii) $N \in rg\alpha-N(x) \Rightarrow x \in N$.
(iii) $N \in rg\alpha-N(x)$, $M \supset N \Rightarrow M \in rg\alpha-N(x)$.
(iv) $N \in rg\alpha-N(x), M \in rg\alpha-N(x) \Rightarrow N \cap M \in rg\alpha-N(x)$.
(v) $N \in rg\alpha-N(x) \Rightarrow$ there exists $M \in rg\alpha-N(x)$ such that $M \subset N$ and $M \in rg\alpha-N(y)$ for every $y \in M$.

Proof. (i) Since X is a $rg\alpha$-open set, it is a $rg\alpha$-nbhd of every $x \in X$. Hence there exists at least one $rg\alpha$-nbhd (namely X) for each $x \in X$. Hence $rg\alpha-N(x) \neq \phi$ for every $x \in X$.
(ii) If $N \in rg\alpha-N(x)$, then N is a $rg\alpha$-nbhd of x. So by definition of $rg\alpha$-nbhd, $x \in N$.
(iii) Let $N \in rg\alpha-N(x)$ and $M \supset N$. Then there is a $rg\alpha$-open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $rg\alpha$-nbhd of x. Hence $M \in rg\alpha-N(x)$.
(iv) Let $N \in rg\alpha-N(x)$ and $M \in rg\alpha-N(x)$. Then by definition of $rg\alpha$-nbhd there exists $rg\alpha$-open sets G_1 and G_2 such that $x \in G_1 \subset N$ and $x \in G_2 \subset M$. Hence $x \in G_1 \cap G_2 \subset N \cap M \rightarrow (1)$. Since $G_1 \cap G_2$ is a $rg\alpha$-open set, (being the intersection of two $rg\alpha$-open sets), it follows from (1) that $N \cap M$ is a $rg\alpha$-nbhd of x. Hence $N \cap M \in rg\alpha-N(x)$.
(v) If $N \in rg\alpha-N(x)$, then there exists a $rg\alpha$-open set M such that $x \in M \subset N$. Since M is a $rg\alpha$-open set, it is $rg\alpha$-nbhd of each of its points. Therefore $M \in rg\alpha-N(y)$ for every $y \in M$.

Theorem 3.12. Let X be a nonempty set, and for each $x \in X$, let $rg\alpha-N(x)$ be a nonempty collection of subsets of X satisfying following conditions.

(i) $N \in rg\alpha-N(x) \Rightarrow x \in N$
(ii) $N \in rg\alpha-N(x), M \in rg\alpha-N(x) \Rightarrow N \cap M \in rg\alpha-N(x)$.

Let τ consists of the empty set and all those non-empty subsets of G of X having the property that $x \in G$ implies that there exists an $N \in rg\alpha-N(x)$ such that $x \in N \subset G$, then τ is a topology for X.

Proof. (i) $\phi \in \tau$ by definition. We now show that $x \in \tau$. Let x be any arbitrary element of X. Since $rg\alpha-N(x)$ is nonempty, there is an $N \in rg\alpha-N(x)$ and so $x \in N$ by (i). Since N is a subset of X, we have $x \in N \subset X$.
Hence \(X \in \tau \).

(ii) Let \(G_1 \in \tau \) and \(G_2 \in \tau \). If \(x \in G_1 \cap G_2 \) then \(x \in G_1 \) and \(x \in G_2 \). Since \(G_1 \in \tau \) and \(G_2 \in \tau \), there exists \(N \in rga-N(x) \) and \(M \in rga-N(x) \), such that \(x \in N \subset G_1 \) and \(x \in M \subset G_2 \). Then \(x \in N \cap M \subset G_1 \cap G_2 \). But \(N \cap M \in rga-N(x) \) by (2). Hence \(G_1 \cap G_2 \in \tau \).

(iii) Let \(G_\lambda \in \tau \) for every \(\lambda \in \Lambda \). If \(x \in \bigcup \{ G_\lambda : \lambda \in \Lambda \} \), then \(x \in G_{\lambda x} \) for some \(\lambda x \in \Lambda \). Since \(G_{\lambda x} \in \tau \), there exists an \(N \in rga-N(x) \) such that \(x \in N \subset G_{\lambda x} \) and consequently \(x \in N \subset \bigcup \{ G_\lambda : \lambda \in \Lambda \} \). Hence \(\bigcup \{ G_\lambda : \lambda \in \Lambda \} \in \tau \). It follows that \(\tau \) is topology for \(X \).

References

Received: March, 2009