On Some Further Results of Growth Properties of Composite Entire and Meromorphic Functions

Sanjib Kumar Datta

Department of Mathematics, University of North Bengal
P.O. North Bengal University, Raja Rammohunpur
Dist-Darjeeling, PIN-734013, West Bengal, India
sanjib.kr_datta@yahoo.co.in

Tanmay Biswas

Department of Mathematics, University of North Bengal
P.O. North Bengal University, Raja Rammohunpur
Dist-Darjeeling, PIN-734013, West Bengal, India
Tanmaybiswas_math@rediffmail.com

Abstract

In this paper we study the comparative growth properties of composite entire and meromorphic functions considering left factor or right factor to be of order zero.

Mathematics Subject Classification: 30D35, 30D30

Keywords: Entire and meromorphic function, order, lower order, zero order, zero lower order, type, composition, growth

1 Introduction, Definitions and Notations.

We denote by \mathbb{C} the set of all finite complex numbers. Let f be a meromorphic function and g be an entire function defined on \mathbb{C}. We use the standard notations and definitions in the theory of entire and meromorphic functions which are available in [5] and [12]. In the sequel we use the following notation:

$\log^k x = \log \left(\log^{k-1} x \right)$ for $k = 1, 2, 3, \ldots$ and $\log^0 x = x$.

We now recall the following definitions:
Definition 1 The order ρ_f and the lower order λ_f of a meromorphic function f are defined as

$$
\rho_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}.
$$

If f is an entire function, one can easily verify that

$$
\rho_f = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log r}.
$$

Definition 2 The type σ_f of a meromorphic function f is defined as

$$
\sigma_f = \limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho_f}}, \quad 0 < \rho_f < \infty.
$$

If f is entire, then

$$
\sigma_f = \limsup_{r \to \infty} \frac{\log M(r, f)}{r^{\rho_f}}, \quad 0 < \rho_f < \infty.
$$

Definition 3 A function $\rho_f(r)$ is called a proximate order of f relative to $T(r, f)$ if (i) $\rho_f(r)$ is non-negative and continuous for $r \geq r_0$, say, (ii) $\rho_f(r)$ is differentiable for $r \geq r_0$ except possibly at isolated points at which $\rho'_f(r - 0)$ and $\rho'_f(r + 0)$ exist, (iii) $\lim \rho_f(r) = \rho_f < \infty$, (iv) $\lim r \rho'_f(r) \log r = 0$ and (v) $\limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho'_f(r)}} = 1$.

Definition 4 A function $\lambda_f(r)$ is called a lower proximate order of f relative to $T(r, f)$ if (i) $\lambda_f(r)$ is non-negative and continuous for $r \geq r_0$, say, (ii) $\lambda_f(r)$ is differentiable for $r \geq r_0$ except possibly at isolated points at which $\lambda'_f(r - 0)$ and $\lambda'_f(r + 0)$ exist, (iii) $\lim \lambda_f(r) = \lambda_f < \infty$, (iv) $\lim r \lambda'_f(r) \log r = 0$ and (v) $\liminf_{r \to \infty} \frac{T(r, f)}{r^{\lambda'_f(r)}} = 1$.

If $\rho_f < \infty$ then f is of finite order. Also $\rho_f = 0$ means that f is of order zero. In this connection Liao and Yang [8] gave the following definition.

Definition 5 [8]Let f be a meromorphic function of order zero. Then the quantities ρ_f^* and λ_f^* of a meromorphic function f are defined as :

$$
\rho_f^* = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log^2 r} \quad \text{and} \quad \lambda_f^* = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log^2 r}.
$$

If f is an entire function then clearly

$$
\rho_f^* = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log^2 r} \quad \text{and} \quad \lambda_f^* = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log^2 r}.
$$
Datta and Biswas [3] gave an alternative definition of zero order and zero lower order of a meromorphic function which is the following.

Definition 6 [3] Let \(f \) be a meromorphic function of order zero. Then the quantities \(\rho_f^* \) and \(\lambda_f^* \) of \(f \) are defined by:

\[
\rho_f^* = \limsup_{r \to \infty} \frac{T(r,f)}{\log r} \quad \text{and} \quad \lambda_f^* = \liminf_{r \to \infty} \frac{T(r,f)}{\log r}.
\]

For entire \(f \),

\[
\rho_f^* = \limsup_{r \to \infty} \frac{\log M(r,f)}{\log r} \quad \text{and} \quad \lambda_f^* = \liminf_{r \to \infty} \frac{\log M(r,f)}{\log r}.
\]

In this paper we investigate some growth properties of composite entire and meromorphic functions of order zero.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [2] If \(f \) and \(g \) are two entire functions then for all sufficiently large values of \(r \),

\[
M\left(\frac{1}{8} M\left(\frac{r}{2},g\right) - |g(0)|, f\right) \leq M(r,f \circ g) \leq M (M(r,g), f).
\]

Lemma 2 [11] Let \(f \) be entire and \(g \) be a transcendental entire function of finite lower order. Then for any \(\delta > 0 \),

\[
M(r^{1+\delta}, f \circ g) \geq M (M(r,g), f) \quad (r \geq r_0).
\]

Lemma 3 [1] If \(f \) be meromorphic and \(g \) be entire then for all sufficiently large values of \(r \),

\[
T(r,f \circ g) \leq \{1 + o(1)\} \frac{T(r,g)}{\log M(r,g)} T (M(r,g), f).
\]

Lemma 4 [6] Let \(g \) be an entire function with \(\lambda_g < \infty \) and assume that \(a_i (i = 1, 2, ..., n; n \leq \infty) \) are entire functions satisfying \(T(r,a_i) = o\{T(r,g)\}. If \)

\[
\sum_{i=1}^{n} \delta(a_i, g) = 1, then \lim_{r \to \infty} \frac{T(r,g)}{\log M(r,g)} = \frac{1}{\pi}.
\]
Lemma 5 \[7\] If \(f \) be an entire function, then for \(\delta > 0 \) the function \(r^{\rho_f + \delta - \rho_f(r)} \) is ultimately an increasing function of \(r \).

Lemma 6 Let \(f \) be an entire function. Then for \(\delta > 0 \) the function \(r^{\lambda_f + \delta - \lambda_f(r)} \) is ultimately an increasing function of \(r \).

Proof. Since

\[
\frac{d}{dr} r^{\lambda_f + \delta - \lambda_f(r)} = \{\lambda_f + \delta - \lambda_f(r) - r\lambda_f'(r) \log r\} r^{\lambda_f + \delta - \lambda_f(r) - 1} > 0
\]

for all sufficiently large values of \(r \), the lemma is proved. \(\blacksquare \)

Lemma 7 \[4\] Let \(f \) be a meromorphic function and \(g \) be transcendental entire. If \(\rho_{fog} < \infty \), then \(\rho_f = 0 \).

Lemma 8 \[3\] Let \(f \) be meromorphic and \(g \) be entire such that \(\rho_f < \infty \) and \(\rho_g = 0 \). Also let \(g \) be transcendental entire. Then \(\rho_{fog} < \infty \).

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 If \(f \) be any meromorphic function of order zero. Then (i) \(\rho_f^* = 1 \) and (ii) \(\lambda_f^* = 1 \).

Proof. From the definition of \(\rho_f^{**} \) and \(\lambda_f^{**} \) we have for arbitrary positive \(\varepsilon \) and for all large values of \(r \),

\[
T(r, f) \leq (\rho_f^{**} + \varepsilon) \log r
\]

i.e.,

\[
\log T(r, f) \leq \log^{[2]} r + O(1)
\]

i.e.,

\[
\frac{\log T(r, f)}{\log^{[2]} r} \leq \frac{\log^{[2]} r + O(1)}{\log^{[2]} r}
\]

i.e.,

\[
\limsup_{r \to \infty} \frac{\log T(r, f)}{\log^{[2]} r} \leq 1 \tag{1}
\]

and

\[
\liminf_{r \to \infty} \frac{\log T(r, f)}{\log^{[2]} r} \leq 1. \tag{2}
\]
Again for arbitrary positive ε and for all large values of r

\[
T (r, f) \geq (\lambda_f^{**} - \varepsilon) \log r
\]

i.e., \[
\log T (r, f) \geq \log^2 r + O (1)
\]

i.e., \[
\frac{\log T (r, f)}{\log^2 r} \geq \frac{\log^2 r + O (1)}{\log^2 r}
\]

i.e., \[
\limsup_{r \to \infty} \frac{\log T (r, f)}{\log^2 r} \geq 1
\]

(3)

and

\[
\liminf_{r \to \infty} \frac{\log T (r, f)}{\log^2 r} \geq 1.
\]

(4)

Therefore from (1) and (3) it follows that

\[
\rho_f^* = \limsup_{r \to \infty} \frac{\log T (r, f)}{\log^2 r} = 1.
\]

and from (2) and (4) we obtain that

\[
\lambda_f^* = \liminf_{r \to \infty} \frac{\log T (r, f)}{\log^2 r} = 1.
\]

Thus the theorem follows. ■

Remark 1 If f be any entire function of order zero. Then one can easily verify that (i) $\rho_f^* = 1$ and (ii) $\lambda_f^* = 1$.

Example 1 Taking $f = z^2$ it can be easily verified that

\[
\rho_f = 0, \quad \rho_f^* = 1 \quad \text{and} \quad \rho_f^{**} = 2.
\]

Similarly if $g = z^3$, then

\[
\rho_g = 0, \quad \rho_g^* = 1 \quad \text{and} \quad \rho_g^{**} = 3.
\]

Corollary 1 Under the conditions of Theorem 1,

\[
\lim_{r \to \infty} \frac{\log T (r, f)}{\log^2 r} = 1.
\]

If f be an entire function of order zero then

\[
\lim_{r \to \infty} \frac{\log^2 M (r, f)}{\log^2 r} = 1.
\]
Theorem 2 Let \(f \) and \(g \) be two entire functions such that \(\rho_f = 0 \) and \(\lambda_g < \infty \). Also let \(g \) be transcendental entire. Then \(\rho_{f \circ g} = \rho_g \).

Proof. In view of Lemma 1 and Theorem 1 we get that
\[
\rho_{f \circ g} = \limsup_{r \to \infty} \frac{\log [M(r, f \circ g)]}{\log r} \\
\leq \limsup_{r \to \infty} \frac{\log [M(r, g), f]}{\log [M(r, g)]} \limsup_{r \to \infty} \frac{\log [M(r, g)]}{\log r} \\
= \rho_f^* \rho_g = 1. \rho_g = \rho_g.
\]
(5)

Also from Lemma 2 and Theorem 1 it follows that
\[
\rho_{f \circ g} = \limsup_{r \to \infty} \frac{\log [M(r^{1+\delta}, f \circ g)]}{\log r^{1+\delta}} \\
\geq \liminf_{r \to \infty} \frac{\log [M(r, g), f]}{\log [M(r, g)]} \limsup_{r \to \infty} \frac{\log [M(r, g)]}{\log r} \\
= \lambda_f^* \rho_g = 1. \rho_g = \rho_g.
\]
(6)

Now combining (5) and (6) we obtain that
\[
\rho_{f \circ g} = \rho_g.
\]

This completes the proof. ■

Theorem 3 Let \(f \) and \(g \) be two entire functions such that \(\rho_f = 0 \) and \(\lambda_g < \infty \). Also let \(g \) be transcendental entire. Then \(\frac{1}{3.4 \rho_g} \lambda_f^* \sigma_g \leq \sigma_{f \circ g} \leq \rho_f^* \sigma_g \).

Proof. In view of Lemma 1 and Theorem 2 we get that
\[
\sigma_{f \circ g} = \limsup_{r \to \infty} \frac{\log [M(r, f \circ g)]}{r^{\rho_{f \circ g}}} \\
\leq \limsup_{r \to \infty} \frac{\log [M(r, g), f]}{\log [M(r, g)]} \limsup_{r \to \infty} \frac{\log [M(r, g)]}{r^{\rho_g}} \\
= \rho_f^* \sigma_g.
\]

Again for all large values of \(r \),
\[
\log^+ M(r, f \circ g) \geq T(r, f \circ g) \\
\geq \frac{1}{3} \log M \left(\frac{1}{8} M \left(\frac{r}{4}, g \right) + \circ (1), f \right) \quad \text{cf. [5] and [10]}
\]
Results of growth properties

\[\log M(r, f \circ g) \geq \frac{1}{3} (\lambda_f^* - \varepsilon) \log \left\{ \frac{1}{8} M \left(\frac{r}{4}, g \right) + o(1) \right\} \]

\[\log M(r, f \circ g) \geq \frac{1}{9} \lambda_f^* \log \left(\frac{r}{4}, g \right) \]

\[\log M(r, f \circ g) \geq \frac{1}{3} (\lambda_f^* - \varepsilon) \log M \left(\frac{r}{4}, g \right) + O(1). \]

Therefore in view of Theorem 2 we get from above for all sufficiently large values of \(r \),

\[\frac{\log M(r, f \circ g)}{r^{\rho_{f \circ g}}} \geq \frac{1}{3} (\lambda_f^* - \varepsilon) \frac{\log M \left(\frac{r}{4}, g \right) + O(1)}{r^{\rho_{f \circ g}}} \]

\[\log M(r, f \circ g) \geq \frac{1}{3} (\lambda_f^* - \varepsilon) \frac{\log M \left(\frac{r}{4}, g \right)}{r^{\rho_{f \circ g}}} \frac{1}{4^{\rho_{f \circ g}}}. \]

So from above it follows that

\[\limsup_{r \to \infty} \frac{\log M(r, f \circ g)}{r^{\rho_{f \circ g}}} \geq \frac{1}{3} (\lambda_f^* - \varepsilon) \limsup_{r \to \infty} \frac{\log M \left(\frac{r}{4}, g \right)}{r^{\rho_{f \circ g}}} \]

\[\lim_{r \to \infty} \frac{\log M(r, g)}{r^{1+\delta}} \leq \frac{1}{3} (\lambda_f^* - \varepsilon) \sigma_g. \]

As \(\varepsilon (> 0) \) is arbitrary, the theorem is proved. \(\blacksquare \)

Theorem 4 Let \(f \) be entire and \(g \) be transcendental entire with \(\lambda_g < \infty \). Also let \(\rho_{f \circ g} = 0 \), then

\[\rho_f^* \lambda_g^* \leq \rho_{f \circ g}^* \leq \rho_f^* \rho_g^*. \]

Proof. By Lemma 2

\[\rho_{f \circ g}^* = \limsup_{r \to \infty} \frac{\log M(r^{1+\delta}, f \circ g)}{\log r^{1+\delta}} \]

\[\geq \limsup_{r \to \infty} \frac{\log M(M(r, g), f)}{\log M(r, g)} \liminf_{r \to \infty} \frac{\log M(r, g)}{\log r} \]

\[= \rho_f^* \lambda_g^*. \]

Again by Lemma 1

\[\rho_{f \circ g}^* = \limsup_{r \to \infty} \frac{\log M(r, f \circ g)}{\log r} \]

\[\leq \limsup_{r \to \infty} \frac{\log M(M(r, g), f)}{\log M(r, g)} \limsup_{r \to \infty} \frac{\log M(r, g)}{\log r} \]

\[= \rho_f^* \rho_g^*. \]

Thus the theorem is proved. \(\blacksquare \)
Theorem 5 Let f be meromorphic and g be transcendental entire such that $\rho_{fg} = 0$. Also let $0 < \lambda_{fg}^* \leq \rho_{fg}^* < \infty$ and $0 < \lambda_f^* \leq \rho_f^* < \infty$. Then for any positive number A

\[
\frac{\lambda_{fg}^*}{A\rho_f^*} \leq \liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{\lambda_{fg}^*}{A\lambda_f^*} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{\rho_{fg}^*}{A\lambda_f^*}.
\]

Proof. Since $\rho_{fg} = 0 < \infty$ by Lemma 7, $\rho_f = 0$. Now from the definition of ρ_f^* and λ_f^* we have for arbitrary positive ε and for all large values of r,

\[
T(r, f \circ g) \geq (\lambda_{fg}^* - \varepsilon) \log r
\] (7)

and

\[
T(r^A, f) \leq A \left(\rho_f^* + \varepsilon \right) \log r.
\] (8)

Now from (7) and (8) it follows for all large values of r,

\[
\frac{T(r, f \circ g)}{T(r^A, f)} \geq \frac{\lambda_{fg}^* - \varepsilon}{A \left(\rho_f^* + \varepsilon \right)}.
\]

As $\varepsilon (> 0)$ is arbitrary, we obtain that

\[
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \geq \frac{\lambda_{fg}^*}{A\rho_f^*}.
\] (9)

Again for a sequence of values of r tending to infinity,

\[
T(r, f \circ g) \leq (\lambda_{fg}^* + \varepsilon) \log r
\] (10)

and for all large values of r,

\[
T(r^A, f) \geq A \left(\lambda_f^* - \varepsilon \right) \log r.
\] (11)

Combining (10) and (11) we get for a sequence of values of r tending to infinity,

\[
\frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{(\lambda_{fg}^* + \varepsilon)}{A \left(\lambda_f^* - \varepsilon \right)}.
\]

Since $\varepsilon (> 0)$ is arbitrary it follows that

\[
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{\lambda_{fg}^*}{A\lambda_f^*}.
\] (12)
Results of growth properties

Also for a sequence of values of r tending to infinity,

$$T(r^A, f) \leq A(\lambda^*_f + \varepsilon) \log r. \quad (13)$$

Now from (7) and (13) we obtain for a sequence of values of r tending to infinity,

$$\frac{T(r, f \circ g)}{T(r^A, f)} \geq \frac{(\lambda^*_{f \circ g} - \varepsilon)}{A(\lambda^*_f + \varepsilon)}.$$

As $\varepsilon (\geq 0)$ is arbitrary, we get from above that

$$\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \geq \frac{\lambda^*_{f \circ g}}{A\lambda^*_f}. \quad (14)$$

Also for all large values of r,

$$T(r, f \circ g) \leq (\rho^*_{f \circ g} + \varepsilon) \log r. \quad (15)$$

So from (11) and (15) it follows for all large values of r,

$$\frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{(\rho^*_{f \circ g} + \varepsilon)}{A(\lambda^*_f - \varepsilon)}.$$

Since $\varepsilon (\geq 0)$ is arbitrary we obtain that

$$\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{\rho^*_{f \circ g}}{A\lambda^*_f}. \quad (16)$$

Thus the theorem follows from (9), (12), (14) and (16). ■

In view of Lemma 8, the following theorem can be proved in the line of Theorem 5 and so the proof is omitted.

Theorem 6 Let f be meromorphic and g be transcendental entire such that $\rho_{f \circ g} = 0$. Also let $0 < \lambda^*_f \leq \rho^*_{f \circ g} < \infty$, $\rho_f < \infty$ and $0 < \lambda^*_g \leq \rho^*_{g} < \infty$. Then for any positive number A

$$\frac{\lambda^*_{f \circ g}}{A\rho^*_g} \leq \liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, g)} \leq \frac{\lambda^*_{f \circ g}}{A\lambda^*_g} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, g)} \leq \frac{\rho^*_{f \circ g}}{A\lambda^*_g}.$$

Theorem 7 Let f be meromorphic and g be entire such that $\rho_{f \circ g} = 0$. Also let $0 < \lambda^*_f \leq \rho^*_{f \circ g} < \infty$ and $0 < \rho^*_g < \infty$. Then for any positive number A

$$\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \frac{\rho^*_{f \circ g}}{A\rho^*_f} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)}.$$
Proof. In view of Lemma 7, \(\rho_{f \circ g} = 0 \) implies that \(\rho_f = 0 \).
From the definition of \(\rho_f^{**} \) we get for a sequence of values of \(r \) tending to infinity,

\[
T (r^A, f) \geq A \left(\rho_f^{**} - \varepsilon \right) \log r.
\]
(17)

Now from (15) and (17) it follows for a sequence of values of \(r \) tending to infinity,

\[
\frac{T (r, f \circ g)}{T (r^A, f)} \leq \frac{\rho_{f \circ g}^{**} + \varepsilon}{A \left(\rho_f^{**} - \varepsilon \right)}.
\]

As \(\varepsilon (> 0) \) is arbitrary we obtain that

\[
\liminf_{r \to \infty} \frac{T (r, f \circ g)}{T (r^A, f)} \leq \frac{\rho_{f \circ g}^{**}}{A \rho_f^{**}}.
\]
(18)

Again for a sequence of values of \(r \) tending to infinity,

\[
T (r, f \circ g) \geq \left(\rho_{f \circ g}^{**} - \varepsilon \right) \log r.
\]
(19)

So combining (8) and (19) we get for a sequence of values of \(r \) tending to infinity,

\[
\frac{T (r, f \circ g)}{T (r^A, f)} \geq \frac{\rho_{f \circ g}^{**} - \varepsilon}{A \left(\rho_f^{**} + \varepsilon \right)}.
\]

Since \(\varepsilon (> 0) \) is arbitrary it follows that

\[
\limsup_{r \to \infty} \frac{T (r, f \circ g)}{T (r^A, f)} \geq \frac{\rho_{f \circ g}^{**}}{A \rho_f^{**}}.
\]
(20)

Thus the theorem follows from (18) and (20).

In view of Lemma 8, the following theorem can be carried out in the line of Theorem 7 and therefore we omit the proof.

Theorem 8 Let \(f \) be meromorphic and \(g \) be entire such that \(\rho_{f \circ g} = 0 \). Also let \(0 < \lambda_{f \circ g}^{**} \leq \rho_{f \circ g}^{**} < \infty, \rho_f < \infty \) and \(0 < \rho_g^{**} < \infty \). Then for any positive number \(A \)

\[
\liminf_{r \to \infty} \frac{T (r, f \circ g)}{T (r^A, g)} \leq \frac{\rho_{f \circ g}^{**}}{A \rho_g^{**}} \leq \limsup_{r \to \infty} \frac{T (r, f \circ g)}{T (r^A, g)}.
\]

The following theorem is a natural consequence of Theorem 5 and Theorem 7.
Theorem 9 Let f be meromorphic and g be entire such that $\rho_{fog} = 0$. Also let $0 < \lambda_{fog}^* \leq \rho_{fog}^* < \infty$ and $0 < \lambda_g^* \leq \rho_g^* < \infty$. Then for any positive number A,

$$
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)} \leq \min \left\{ \frac{\lambda_{fog}^*}{A \lambda_f^*}, \frac{\rho_{fog}^*}{A \rho_f^*} \right\} \\
\leq \max \left\{ \frac{\lambda_{fog}^*}{A \lambda_f^*}, \frac{\rho_{fog}^*}{A \rho_f^*} \right\} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, f)}.
$$

The proof is omitted.

Analogously one may state the following theorem without proof.

Theorem 10 Let f be meromorphic and g be entire such that $\rho_{fog} = 0$. Also let $0 < \lambda_{fog}^* \leq \rho_{fog}^* < \infty$, $\rho_f < \infty$ and $0 < \lambda_g^* \leq \rho_g^* < \infty$. Then for any positive number A,

$$
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, g)} \leq \min \left\{ \frac{\lambda_{fog}^*}{A \lambda_g^*}, \frac{\rho_{fog}^*}{A \rho_g^*} \right\} \leq \max \left\{ \frac{\lambda_{fog}^*}{A \lambda_g^*}, \frac{\rho_{fog}^*}{A \rho_g^*} \right\} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r^A, g)}.
$$

Theorem 11 Let f be a meromorphic function of order zero and g be entire such that ρ_g is finite. Then

$$
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq (1 + o(1)) \rho_f^* 2^{\rho_g^*}.
$$

Proof. If $\rho_f^* = \infty$, then the result is obvious. So we suppose that $\rho_f^* < \infty$. Since $T(r, g) \leq \log^+ M(r, g)$, we obtain by Lemma 3 for $\varepsilon (> 0)$ and for all large values of r,

$$
T(r, f \circ g) \leq (1 + o(1)) (\rho_f^* + \varepsilon) \log M(r, g)
$$

Since $\varepsilon (> 0)$ is arbitrary, it follows from above that

$$
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq (1 + o(1)) \rho_f^* \liminf_{r \to \infty} \frac{\log M(r, g)}{T(r, g)}.
$$

Since $\limsup_{r \to \infty} \frac{T(r, g)}{r^\rho_g(r)} = 1$, for given $\varepsilon (0 < \varepsilon < 1)$ we get for all large values of r,

$$
T(r, g) < (1 + \varepsilon) r^\rho_g(r)
$$

(22)
and for a sequence of values of \(r \) tending to infinity

\[
T(r, g) > (1 - \varepsilon) r^{\rho_g(r)}.
\]

Since \(\log M(r, g) \leq 3T(2r, g) \), for a sequence of values of \(r \) tending to infinity we get for any \(\delta > 0 \)

\[
\frac{\log M(r, g)}{T(r, g)} \leq \frac{3(1 + \varepsilon)}{(1 - \varepsilon)} \frac{(2r)^{\rho_g + \delta}}{(2r)^{\rho_g} - \rho_g(2r)} \frac{1}{r^{\rho_g(r)}}
\]

\[
\leq \frac{3(1 + \varepsilon)}{(1 - \varepsilon)} 2^{\rho_g + \delta}.
\]

because \(r^{\rho_g + \delta - \rho_g(r)} \) is ultimately an increasing function of \(r \). Since \(\varepsilon > 0 \) and \(\delta > 0 \) are arbitrary, we obtain that

\[
\liminf_{r \to \infty} \frac{\log M(r, g)}{T(r, g)} \leq 3.2^{\rho_g}.
\]

Thus from (21) and (24) it follows that

\[
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq (1 + o(1)) 3.\rho_f^{**} 2^{\rho_g}.
\]

Theorem 12 Let \(f \) be a meromorphic function of order zero and \(g \) be entire with \(\lambda_g < \infty \). Then

\[
\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq (1 + o(1)) 3.\rho_f^{**} 2^{\rho_g}.
\]

Theorem 13 Let \(f \) and \(g \) be two non constant entire functions such that \(f \) is of lower order zero and \(\lambda_f^{**} \) and \(\lambda_g \) are finite. Then

\[
\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \geq (1 + o(1)) \frac{1}{3} \frac{\lambda_f^{**}}{4\lambda_g}.
\]

Proof. If \(\lambda_f^{**} = 0 \) then the result is obvious. So we suppose that \(\lambda_f^{**} > 0 \). For all values of \(r \) we know that

\[
T(r, f \circ g) \geq \frac{1}{3} \log M \left\{ \frac{1}{8} M\left(\frac{r}{4}, g\right) + o(1), f \right\} \{c.f. \[10]\}\]
For \(0 < \varepsilon < \min \{ \lambda_f^{**}, 1 \} \) we get for all large values of \(r \),

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) \log \left\{ \frac{1}{8} M \left(\frac{r}{4}, g \right) + o(1) \right\}
\]

i.e.,

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) \log \left\{ \frac{1}{9} M \left(\frac{r}{4}, g \right) \right\}
\]

i.e.,

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) \log \left\{ \frac{1}{3} (\lambda_f^{**} - \varepsilon) \log \frac{1}{9} \right\}
\]

i.e.,

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) T \left(\frac{r}{4}, g \right) + O(1).
\] (25)

Since \(\lim \inf_{r \to \infty} \frac{T(r, g)}{r^{\lambda_g(r)}} = 1 \) for given \(\varepsilon (>0) \) we get for all large values of \(r \)

\[
T(r, g) > (1 - \varepsilon) r^{\lambda_g(r)}.
\] (26)

and for a sequence of values of \(r \) tending to infinity

\[
T(r, g) < (1 + \varepsilon) r^{\lambda_g(r)}.
\] (27)

From (25) and (26) we get for \(\delta (>0) \) and for all large values of \(r \)

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) (1 - \varepsilon) (1 + o(1)) \frac{r^{\lambda_g + \delta}}{(\frac{r}{4})^{\lambda_g + \delta - \lambda_g(\frac{r}{4})}}.
\]

Since \(r^{\lambda_g + \delta - \lambda_g(r)} \) is ultimately an increasing function of \(r \) it follows for all large values of \(r \) that

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) (1 - \varepsilon) (1 + o(1)) \frac{r^{\lambda_g(r)}}{4^{\lambda_g + \delta}}.
\] (28)

So by (27) and (28) we get for a sequence of values of \(r \) tending to infinity

\[
T(r, f \circ g) \geq \frac{1}{3} (\lambda_f^{**} - \varepsilon) \frac{(1 - \varepsilon)}{(1 + \varepsilon)} (1 + o(1)) \frac{T(r, g)}{4^{\lambda_g + \delta}}.
\]

Since \(\varepsilon (>0) \) and \(\delta (>0) \) are arbitrary it follows from above that

\[
\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \geq (1 + o(1)) \frac{1}{3} \frac{\lambda_f^{**}}{4^{\lambda_g}}.
\]

Thus the theorem is proved. \(\blacksquare \)
Theorem 14 Let f and g be two non constant entire functions such that ρ_f^* and λ_g are finite. Also suppose that there exist entire functions a_i ($i = 1, 2, \ldots, n; n \leq \infty$) satisfying

(i) $T(r, a_i) = o\{T(r, g)\}$ as $r \to \infty$ for $i = 1, 2, \ldots, n$

(ii) $\sum_{i=1}^{n} \delta(a_i, g) = 1$.

Then

$$\frac{\pi \lambda_f^{**}}{3.4^{\lambda_g}} \leq \limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq \pi \rho_f^{**}.$$

Proof. For any two entire functions f and g, the following two inequalities are well known,

$$T(r, f) \leq \log^+ M(r, f) \leq 3T(2r, f). \ {cf.}[5]$$

and,

$$\log M(r, f \circ g) \leq \log M(M(r, g), f). \ {cf.}[2]$$

For $\varepsilon > 0$ we get from (29) and (30) for all large values of r,

$$T(r, f \circ g) \leq \log M(M(r, g), f)$$

i.e.,

$$T(r, f \circ g) \leq \left(\rho_f^{**} + \varepsilon\right) \log M(r, g)$$

i.e.,

$$\frac{T(r, f \circ g)}{T(r, g)} \leq \left(\rho_f^{**} + \varepsilon\right) \frac{\log M(r, g)}{T(r, g)}.$$

Hence we get from above that

$$\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq \left(\rho_f^{**} + \varepsilon\right) \limsup_{r \to \infty} \frac{\log M(r, g)}{T(r, g)}.$$

Since $\varepsilon > 0$ is arbitrary, it follows from Lemma 4 that

$$\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \leq \pi \rho_f^{**}. \quad (31)$$

Now suppose that $0 < \varepsilon < \min\{\lambda_f^{**}, 1\}$ we get from (25) for all large values of r that

$$\frac{T(r, f \circ g)}{T(r, g)} \geq \frac{1}{3} \left(\lambda_f^{**} - \varepsilon\right) \frac{\log M(\frac{r}{\lambda}, g)}{T(\frac{r}{\lambda}, g)} \frac{T(\frac{r}{\lambda}, g)}{T(r, g)} + O(1). \quad (32)$$

From (26) and (27) and in the line of Lemma 6 we get for a sequence of values of r tending to infinity and for $\delta > 0$

$$\frac{T(\frac{r}{\lambda}, g)}{T(r, g)} \geq \frac{1 - \varepsilon}{1 + \varepsilon} \frac{(\frac{r}{\lambda})^{\lambda_g + \delta}}{1 + \varepsilon (\frac{r}{\lambda})^{\lambda_g + \delta}} \frac{1}{T^\lambda(\frac{r}{\lambda})} \geq \frac{1 - \varepsilon}{1 + \varepsilon} \frac{1}{4^{\lambda_g + \delta}}.$$
Since $\varepsilon (> 0)$ and $\delta (> 0)$ are arbitrary we get from Lemma 4, (32) and above that

$$\limsup_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} \geq \frac{\pi \lambda_f^{**}}{3.4^h}.$$ (33)

Thus the theorem follows from (31) and (33).

References

Received: February, 2009