Automatic Continuity of Separating Linear Isomorphisms on a Class of Topological Algebras

E. Ansari-Piri and M. Aghajani

Department of Mathematics, Faculty of Science
University of Guilan, P.O.Box 1914, Rasht, Iran
e_ansari@guilan.ac.ir
aghajani_238@yahoo.com

Abstract

The continuity and general form of a separating linear isomorphisms $A : C(T) \to C(S)$, when T and S are compact topological spaces, have been studied in last few years. Recently, we have changed the conditions on T and S and proved that the separating linear isomorphism $A : C_c(T) \to C_c(S)$ has a general form. In this note, we prove the continuity of such isomorphisms.

Mathematics Subject Classification: Primary 46H

Keywords: Separating linear isomorphism, continuous linear isomorphism

1 Introduction

When T and S are compact topological spaces, in [3] it is proved that every separating linear isomorphism $A : C(T) \to C(S)$ is continuous and has a general form. In [4], the continuity and general form of bi-separating linear maps between the algebras $B(E)$ of all linear continuous maps on a Banach space E is also discussed, where by a bi-separating linear isomorphism we mean a separating linear isomorphism with a separating linear inverse. The continuity and general form of bi-separating linear isomorphisms between standard subalgebras of bounded operators on Frechet spaces is considered in [1]. In [2]The authors also have recently proved that, where T is non-compact locally compact Hausdorff and S is only Hausdorff space, then every separating linear isomorphism $A : C_c(T) \to C_c(S)$ has a general form. In this note we prove the continuity of such isomorphisms, if moreover S is a locally compact and completely regular space.

\[\text{1Corresponding author}\]
Let us recall that a linear map A between the algebras X and Y is said to be separating if $xy = 0 \Rightarrow A(x)A(y) = 0$ for all $x, y \in X$.

2 The continuity of separating linear isomorphisms

Let T be a non-compact, normal, locally compact and S be a Hausdorff space. Suppose $A : C_c(T) \to C_c(S)$ is a linear separating map. In [2] it is proved that there are three subsets S_1, S_2, S_3 for S such that $S = S_1 \cup S_2 \cup S_3$ where S_3 is closed and there is a continuous map $\varphi : S_1 \cup S_2 \to T$ and a non vanishing continuous map $\chi : S_1 \to \mathbb{C}$ such that for every $f \in C_c(T)$, and every $s \in S_1$:

$$Af(s) = \chi(s) \cdot f \circ \varphi(s),$$

and $Af \equiv 0$ on S_3. Moreover, for all $f \in C_c(T)$, if $(\text{supp} f) \cap \varphi(S_2) = \phi$, then $Af|_{S_2} \equiv 0$.

Here we prove that if moreover S is a locally compact and completely regular space, then the separating linear isomorphism A is continuous.

Proposition 2.1 The two sets S_1 and S_2 have the following properties:

1. The subset S_1 of S is closed.
2. $\varphi(S_2) \cap \text{int} K$ is finite for every compact subset K of T.

Proof. Following the proof of [2; theorem 3.1], for $s \in S$, if we denote by δ_s the evaluation functional of $C_c(S)$ at the point s then, for $f \in C_c(T)$, $\delta_s \circ A(f) = Af(s)$, and $S_3 = \{s \in S : \delta_s \circ A \equiv 0\}$, $S_2 = \{s \in S : \delta_s \circ A$ is discontinuous} and $S_1 = S \setminus (S_2 \cup S_3)$, and so $S_1 = \{s \in S : \delta_s \circ A$ is non-zero and continuous}.\]

To prove (1), let $(s_{\alpha})_{\alpha \in I}$ be a net in S_1 which converges to $s \in S$. Since T is locally compact and $\varphi(s) \in T$, so $\exists f \in C_c(T); f(\varphi(s)) \neq 0$. By the continuity of the map f, we have $f(\varphi(s_{\alpha})) \to f(\varphi(s))$. Therefore, there exists $\alpha_0 \in I$ such that for all α with $\alpha \geq \alpha_0$ we have $f(\varphi(s_{\alpha})) \neq 0$. Now, $\chi(s_{\alpha}) \neq 0$ so $Af(s_{\alpha}) \neq 0$ for all $\alpha \geq \alpha_0$. By regarding to $C_c(T) = \ker \delta_{s_{\alpha}} \circ A \oplus \langle f \rangle$, for all $\alpha \geq \alpha_0$ we can assume the existence of an scalar β_α and a map $h_{\alpha} \in \ker \delta_{s_{\alpha}} \circ A$ for every $g \in C_c(T)$ such that $g = h_\alpha + \beta_\alpha f$, thus $g(\varphi(s_{\alpha})) = h_\alpha(\varphi(s_{\alpha})) + \beta_\alpha f(\varphi(s_{\alpha}))$. Since $s_{\alpha} \in S_1$, so $\ker \delta_{s_{\alpha}} \circ A = K_{s_{\alpha}}$ where $K_s = \{f \in C_c(T); f(\varphi(s)) = 0\}$ for every $s \in S$. We put $\beta_\alpha = \frac{g(\varphi(s_{\alpha}))}{f(\varphi(s_{\alpha}))}$, and therefore we have $g(\varphi(s_{\alpha})) = h_\alpha(\varphi(s_{\alpha})) + \beta_\alpha f(\varphi(s_{\alpha}))$. Now we put $\beta = \frac{Af(s)}{f(\varphi(s))}$, then we have $Ag(s) = \beta \cdot g(\varphi(s))$. In other words, we get $\delta_s \circ A(g) = \beta \cdot (g \circ \varphi)(s)$ for every $g \in C_c(T)$, and so $\delta_s \circ A$ is continuous, which means $s \in S_1$.

For (2), we suppose that there exists a compact subset K of T such that $\varphi(S_1) \cap \text{int} K$ is infinite. Since K is compact so there exists a sequence $(\varphi(s_n))_{n \in \mathbb{N}}$.
of distinct elements of \(\text{int}K \) with \(s_n \in S_2 \) for \(n \in N \) and \((\varphi(s_n))_{n \in N} \) converges to a point of \(K \). Therefore we can assume that \((U_n)_{n \in N} \) is a pair wise disjoint sequence of open subsets of \(K \) such that \(\varphi(s_n) \in U_n \subseteq K \) for every \(n \in N \). We can also assume that the closure of every \(U_n \) is compact. Let \(V_n \) be a neighborhood of \(\varphi(s_n) \) with \(V_n \subseteq U_n \) and \(\overline{V_n} \) is compact. Thus there exists a map \(g_n \in C_c(T) \) such that \(0 \leq g_n \leq 1 \), \(g_n|_{V_n} \equiv 1 \) and \(\text{coz}(g_n) \subseteq U_n \) for each \(n \in N \). On the other hand, since \(\delta_{s_n} \circ A \) is discontinuous, there exists a map \(h_n \in C_c(T) \) with \(\sup\{|h_n(t)| : t \in K\} \leq 1 \) and such that \(|\delta_{s_n} \circ A(h_n)| = |Ah_n(s_n)| \geq n^3 \) for all \(n \in N \). We put \(f_n = 1/n^2h_n \cdot g_n \). Since \(g_n \equiv 1 \) on \(V_n \), then we have that \(|Af_n(s_n)| = 1/n^2 \cdot |Ah_n(s_n)| > n \). So \(|Af_n(s_n)| > n \) for each \(n \in N \). By regarding to \(|f_n| \leq 1/n^2 \) we define \(f = \sum_{n \in N} f_n \). Since \(\text{supp} f \subseteq \cup \text{supp} f_n \subseteq K \), so \(f \in C_c(T) \). On the other hand, as \((U_n) \) is pair wise disjoint and \(\text{coz}(f_n) \subseteq U_n \), for all \(n \in N \), then \(Af_n|_{\varphi^{-1}(U_m)} \equiv 0 \) for \(n \neq m \). Thus \(|Af(s_n)| = |Af_n(s_n)| > n \) for all \(n \in N \), which is a contradiction with \(Af \) is bounded.

Theorem 2.2 Let \(A : C_c(T) \to C_c(S) \) be a separating linear isomorphism. Then \(A \) is continuous and \(Af(s) = \chi(s) \cdot f(\varphi(s)) \) for all \(s \in S \) and \(f \in C_c(T) \).

Proof. Since \(A \) is injective, by [2; corollary 3.3] \(\overline{\varphi(S)} = T \). Let \(t \in T \) be a limit point and \(U \) be a neighborhood of \(t \) with compact closure. By proposition (2.1), \(U \cap \varphi(S_2) \) is finite where \(U \cap \varphi(S) \) is infinite and therefore \(U \cap \varphi(S_1) \) is infinite. Since \(\varphi(S_2) \) consists only of the limit points of \(T \), this implies that \(\varphi(S_1) = T \).

For every \(f \in C_c(T) \) and \(s \in S_1 \) we have \(Af(s) = \chi(s) \cdot f(\varphi(s)) \). Now, if \(Af(s) = 0 \) for \(s \in S_1 \) and some \(f \in C_c(T) \), since \(\chi(s) \neq 0 \) so \(f(\varphi(s)) = 0 \). Therefore, if \(Af|_{S_1} = 0 \), then \(f(\varphi(S_1)) \equiv 0 \) i.e. \(f|_{\varphi(S_1)} \equiv 0 \) and since \(\varphi(S_1) = T \), so \(f = 0 \) on \(T \). Now, we claim \(S_2 = \emptyset \). For if \(s \in S_2 \), then \(\{s\} \cap S_2 = \emptyset \) and since \(S_1 \) is closed by Urysohn’s lemma there exists \(g \in C_c(S) \) with \(g(s_0) = 1 \) and \(g = 0 \) on \(S_1 \). Since \(A \) is bijection and \(g \) is a non-zero, so there exists a non-zero \(f \) in \(C_c(T) \) with \(Af = g \), i.e. \(Af(s) = 1 \) and \(Af|_{S_1} \equiv 0 \) which is a contradiction.

We close the paper with a remark which says that if we consider \(A : C_0(T) \to C_0(S) \) with the same conditions then \(A \) has a general form, but we believe the continuity of \(A \) is still open.

Remark. Let \(A : C_0(T) \to C_0(S) \) be a linear separating map. Suppose \(A_1 = A|_{C_0(T)} \) and \(S_0 = \{s \in S : \delta \circ A \text{ is continuous on } C_0(T)\} \). Since the proof of Theorem (3.1) of [2] valid if we replace \(C_c(S) \) by \(C_0(S) \), so there exists a continuous map \(\varphi : S_1 \cup S_2 \to T \) and a non vanishing continuous map \(\chi : S_1 \to C \) such that \(A_1 f(s) = \chi(s) \cdot f(\varphi(s)) \) for every \(f \in C_c(T), s \in S_0 \). Now, let \(f \in C_0(T) \), and choose \((f_n) \) from \(C_c(T) \) with \(f_n \to f \) in \(C_0(T) \) and let
$s \in S_0$. Then $\delta_s \circ A(f_n) \to \delta_s \circ A(f)$ and $\delta_s \circ A(f) = \lim_{n \to \infty} \chi(s) \cdot f_n(\varphi(s)) = \chi(s) \cdot f(\varphi(s))$.

References

Received: September 21, 2008