Approximating Fixed Points of Nonexpansive Mappings in CAT(0) Spaces

Thanomsak Laokul

Department of Mathematics, Faculty of Science
Chaing Mai University, Chiang Mai 50200, Thailand
thanom_kul@hotmail.com

Bancha Panyanak

Department of Mathematics, Faculty of Science
Chaing Mai University, Chiang Mai 50200, Thailand
banchap@chiangmai.ac.th

Abstract

Let C be a nonempty closed convex subset of a complete CAT(0) space and $T : C \to C$ be a nonexpansive mapping with $F(T) := \{x \in C : Tx = x\} \neq \emptyset$. Suppose $\{x_n\}$ is generated iteratively by $x_1 \in C$, $x_{n+1} = t_nT[s_nTx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n$ for all $n \geq 1$,

where $\{t_n\}$ and $\{s_n\}$ are real sequences in $[0,1]$ such that one of the following two conditions is satisfied:

(i) $t_n \in [a,b]$ and $s_n \in [0,b]$ for some a, b with $0 < a \leq b < 1$,
(ii) $t_n \in [a,1]$ and $s_n \in [a,b]$ for some a, b with $0 < a \leq b < 1$.

Then the sequence $\{x_n\}$ Δ–converges to a fixed point of T. This is an analog of a result on weak convergence theorem in Banach spaces of Takahashi and Kim [W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, Math. Japonica. 48 no. 1 (1998), 1-9]. Strong convergence of the iterative sequence $\{x_n\}$ is also discussed.

Mathematics Subject Classification: 54H25, 54E40

Keywords: nonexpansive mappings, fixed points, Δ–convergence, CAT(0) spaces

\footnote{1Corresponding author.}
1 Introduction

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean plane. It is well-known that any complete, simply connected Riemannian manifold having non-positive sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces, R–trees (see [1]), Euclidean buildings (see [2]), the complex Hilbert ball with a hyperbolic metric (see [12]), and many others. For a thorough discussion of these spaces and of the fundamental role they play in geometry (see Bridson and Haefliger [1]). Burago, et al. [4] contains a somewhat more elementary treatment, and Gromov [13] a deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [15] and [16]). He showed that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed and many of papers have appeared (see e. g., [5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 22, 23]).

Recently, Kirk and Panyanak [17] used the concept of Δ–convergence introduced by Lim [19] to prove the CAT(0) space analogs of some Banach space results which involve weak convergence and Dhomponsa and Panyanak [10] obtained Δ–convergence theorems for the Picard, Mann and Ishikawa iterations in the CAT(0) space setting.

The purpose of this paper is to study the iterative scheme defined as follows:

Let C be a nonempty closed convex subset of a complete CAT(0) space and $T : C \to C$ be a nonexpansive mapping with $F(T) := \{ x \in C : Tx = x \} \neq \emptyset$. Suppose $\{x_n\}$ is generated iteratively by $x_1 \in C$,

$$x_{n+1} = t_n T[s_n Tx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n \quad \text{for all } n \geq 1,$$

where $\{t_n\}$ and $\{s_n\}$ are chosen so that $t_n \in [a, b]$ and $s_n \in [0, b]$ or $t_n \in [a, 1]$ and $s_n \in [a, b]$ for some a, b with $0 < a \leq b < 1$. We show that the sequence $\{x_n\}$ defined by (1) Δ–converges to a fixed point of T. This is an analog of a result on weak convergence theorem in Banach spaces of Takahashi and Kim [24]. It is worth mentioning that our result immediately apply to any CAT(κ) space with $\kappa \leq 0$ since any CAT(κ) space is a CAT(κ') space for every $\kappa' \geq \kappa$ (see [1], p. 165).

2 Preliminary Notes

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subset R$
to X such that $c(0) = x, c(l) = y$, and $d(c(t), c(t')) = |t - t'|$ for all $t, t' \in [0, l]$. In particular, c is an isometry and $d(x, y) = l$. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic segment is denoted by $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for the geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) := \triangle(\bar{x}_1, \bar{x}_2, \bar{x}_3)$ in the Euclidean plane E^2 such that $d_{E^2}(\bar{x}_i, \bar{x}_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom.

\textbf{CAT(0)}: Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle. Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\bar{x}, \bar{y} \in \overline{\triangle}$,

$$d(x, y) \leq d_{E^2}(\bar{x}, \bar{y}).$$

If x, y_1, y_2 are points in a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, then the CAT(0) inequality implies

$$d(x, y_0)^2 \leq \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2.$$ (CN)

This is the (CN) inequality of Bruhat and Tits [3]. In fact (cf. [1], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $x \in X$, we set

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius $r(\{x_n\})$ of $\{x_n\}$ is given by

$$r(\{x_n\}) = \inf \{r(x, \{x_n\}) : x \in X\},$$

and the asymptotic center $A(\{x_n\})$ of $\{x_n\}$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$

It is known from Proposition 7 of [9] that in a CAT(0) space, $A(\{x_n\})$ consists of exactly one point.

We now give the definition of $\Delta-$convergence.
Definition 2.1 ([17, 19]) A sequence \(\{x_n\} \) in a CAT(0) space \(X \) is said to \(\Delta \)-converge to \(x \in X \) if \(x \) is the unique asymptotic center of \(\{u_n\} \) for every subsequence \(\{u_n\} \) of \(\{x_n\} \). In this case we write \(\Delta - \lim_n x_n = x \) and call \(x \) the \(\Delta \)-limit of \(\{x_n\} \).

Definition 2.2 Let \(C \) be a nonempty subset of a CAT(0) space \(X \) and \(T : C \to X \) be a mapping. \(T \) is called nonexpansive if for each \(x, y \in C \),

\[
d(Tx, Ty) \leq d(x, y).
\]

A point \(x \in C \) is called a fixed point of \(T \) if \(x = Tx \). We denote with \(F(T) \) the set of fixed points of \(T \).

We now collect some elementary facts about CAT(0) spaces which will be used in the proofs of our main results.

Lemma 2.3 ([17]) Every bounded sequence in a complete CAT(0) space always has a \(\Delta \)-convergent subsequence.

Lemma 2.4 (Proposition 2.1 of [8]) If \(C \) is a closed convex subset of a complete CAT(0) space and if \(\{x_n\} \) is a bounded sequence in \(C \), then the asymptotic center of \(\{x_n\} \) is in \(C \).

Lemma 2.5 (Proposition 3.7 of [17]) Let \(C \) be a closed convex subset of a complete CAT(0) space \(X \), and let \(T : C \to X \) be a nonexpansive mapping. Then the conditions \(\{x_n\} \Delta \)-converges to \(x \) and \(d(x_n, Tx_n) \to 0 \), imply \(x \in C \) and \(Tx = x \).

Lemma 2.6 Let \((X, d)\) be a CAT(0) space.

(i) [10, Lemma 2.1(iv)] For \(x, y \in X \) and \(t \in [0, 1] \), there exists a unique point \(z \in [x, y] \) such that

\[
d(x, z) = td(x, y) \quad \text{and} \quad d(y, z) = (1 - t)d(x, y).
\]

We use the notation \((1 - t)x \oplus ty\) for the unique point \(z \) satisfying (2).

(ii) [10, Lemma 2.4] For \(x, y, z \in X \) and \(t \in [0, 1] \), we have

\[
d((1 - t)x \oplus ty, z) \leq (1 - t)d(x, z) + td(y, z).
\]

The following result is a consequence of Lemma 2.9 in [18].

Lemma 2.7 Let \(X \) be a complete CAT(0) space and let \(x \in X \). Suppose \(\{t_n\} \) is a sequence in \([b, c]\) for some \(b, c \in (0, 1) \) and \(\{x_n\}, \{y_n\} \) are sequences in \(X \) such that \(\limsup_n d(x_n, x) \leq r \), \(\limsup_n d(y_n, x) \leq r \), and \(\lim_n d((1 - t_n)x_n \oplus t_ny_n, x) = r \) for some \(r \geq 0 \). Then

\[
\lim_{n \to \infty} d(x_n, y_n) = 0.
\]
3 Main Results

In this section, we prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of a complete CAT(0) space X and let $T : C \to C$ be a nonexpansive mapping. Let $\{t_n\}$ and $\{s_n\}$ be sequences in $[0, 1]$. Suppose $x_1 \in C$, and $\{x_n\}$ is defined by

$$x_{n+1} = t_nT[s_nTx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n$$

for all $n \geq 1$. Then $\lim_{n \to \infty} d(x_n, x^*)$ exists for all $x^* \in F(T)$.

Proof. By Lemma 2.6 (ii) and the nonexpansiveness of T, for each $x^* \in F(T)$ we have

$$d(x_{n+1}, x^*) = d(t_nT[s_nTx_n \oplus (1 - s_n)x_n] \oplus (1 - t_n)x_n, x^*)$$

$$\leq t_n d(T[s_nTx_n \oplus (1 - s_n)x_n], x^*) + (1 - t_n)d(x_n, x^*)$$

$$\leq t_n d(s_nTx_n \oplus (1 - s_n)x_n, x^*) + (1 - t_n)d(x_n, x^*)$$

$$\leq t_n (s_n d(Tx_n, x^*) + (1 - s_n)d(x_n, x^*)) + (1 - t_n)d(x_n, x^*)$$

$$\leq d(x_n, x^*).$$

Consequently, we have $d(x_n, x^*) \leq d(x_1, x^*)$ for all $n \geq 1$. This implies that $\{d(x_n, x^*)\}_{n=1}^{\infty}$ is bounded and decreasing. Hence $\lim_{n \to \infty} d(x_n, x^*)$ exists. ■

Theorem 3.2 Let C be a nonempty closed convex subset of a complete CAT(0) space X and let $T : C \to C$ be a nonexpansive mapping. Let $\{t_n\}$ and $\{s_n\}$ be sequences in $[0, 1]$ such that $t_n \in [a, b]$ and $s_n \in [0, b]$ or $t_n \in [a, 1]$ and $s_n \in [a, b]$ for some a, b with $0 < a \leq b < 1$. From arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ by the recursion (3). Then $F(T)$ is nonempty if and only if $\{x_n\}$ is bounded and $\lim_{n \to \infty} d(Tx_n, x_n) = 0$.

Proof. Suppose that $F(T)$ is nonempty and let $x^* \in F(T)$. Then by Lemma 3.1, $\lim_{n \to \infty} d(x_n, x^*)$ exists and $\{x_n\}$ is bounded. Put

$$c = \lim_{n \to \infty} d(x_n, x^*)$$

and set $y_n = s_nTx_n \oplus (1 - s_n)x_n$ for all $n \geq 1$. Since

$$d(Ty_n, x^*) \leq d(y_n, x^*)$$

$$= d(s_nTx_n \oplus (1 - s_n)x_n, x^*)$$

$$\leq s_n d(Tx_n, x^*) + (1 - s_n)d(x_n, x^*)$$

$$\leq s_n d(x_n, x^*) + (1 - s_n)d(x_n, x^*)$$

$$= (s_n + 1 - s_n)d(x_n, x^*)$$

$$= d(x_n, x^*),$$
we have
\[\limsup_{n \to \infty} d(Ty_n, x^*) \leq \limsup_{n \to \infty} d(y_n, x^*) \leq c. \tag{5} \]

Further, we have
\[\lim_{n \to \infty} d(t_nTy_n \oplus (1-t_n)x_n, x^*) = \lim_{n \to \infty} d(x_{n+1}, x^*) = c. \tag{6} \]

Case 1. If \(0 < a \leq t_n \leq b < 1 \) and \(0 \leq s_n \leq b < 1 \).

By (4), (5), (6) and Lemma 2.7, we have \(\lim_{n \to \infty} d(Ty_n, x_n) = 0 \).

Case 2. If \(0 < a \leq t_n \leq 1 \) and \(0 < a \leq s_n \leq b < 1 \).

By the nonexpansiveness of \(T \), we have \(d(Tx_n, x^*) \leq d(x_n, x^*) \) for all \(n \geq 1 \).

This implies
\[\limsup_{n \to \infty} d(Tx_n, x^*) \leq c. \tag{7} \]

Now,
\[d(x_{n+1}, x^*) \leq t_n d(Ty_n, x^*) + (1-t_n)d(x_n, x^*) \]
\[\leq t_n d(y_n, x^*) + (1-t_n)d(x_n, x^*) \]
\[= t_n d(y_n, x^*) + d(x_n, x^*) - t_n d(x_n, x^*). \]

This implies
\[\frac{d(x_{n+1}, x^*) - d(x_n, x^*)}{t_n} \leq d(y_n, x^*) - d(x_n, x^*). \]

Thus
\[d(x_{n+1}, x^*) - d(x_n, x^*) \leq \frac{d(x_{n+1}, x^*) - d(x_n, x^*)}{t_n} \leq d(y_n, x^*) - d(x_n, x^*). \]

Combining this inequality and (5), we have
\[c \leq \liminf_{n \to \infty} d(y_n, x^*) \leq \limsup_{n \to \infty} d(y_n, x^*) \leq c. \]
Therefore
\[c = \lim_{n \to \infty} d(y_n, x^*) = \lim_{n \to \infty} d(s_n Tx_n \oplus (1 - s_n)x_n, x^*). \tag{8} \]

By (4), (7), (8) and Lemma 2.7, we have \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \).

Conversely, suppose that \(\{x_n\} \) is bounded and \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \).

Let \(A(\{x_n\}) = \{x\} \). Then \(x \in C \) by Lemma 2.4. Since \(d(x_n, Tx) \leq d(x_n, Tx_n) + d(Tx_n, Tx) \) for all \(n \geq 1 \), then
\[\limsup_{n \to \infty} d(x_n, Tx) \leq \limsup_{n \to \infty} d(x_n, x). \]

By the unique of asymptotic centers, we have \(Tx = x \). Therefore, \(x \) is a fixed point of \(T \).

The following theorem is an analog of Theorem 1 of [24].

Theorem 3.3 Let \(C \) be a nonempty closed convex subset of a complete \(CAT(0) \) space \(X \), and let \(T : C \to C \) be a nonexpansive mapping with \(F(T) \neq \emptyset \). Let \(\{t_n\} \) and \(\{s_n\} \) be sequences in \([0, 1]\) so that \(t_n \in [a, b] \) and \(s_n \in [0, b] \) or \(t_n \in [a, 1] \) and \(s_n \in [a, b] \) for some \(a, b \) with \(0 < a \leq b < 1 \). From arbitrary \(x_1 \in C \), define the sequence \(\{x_n\} \) by the recursion (3). Then \(\{x_n\} \) \(\Delta \)-converges to a fixed point of \(T \).

Proof. Theorem 3.2 guarantees that \(\{x_n\} \) is bounded and \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \).

We now let \(\omega_w(x_n) := \bigcup A(\{u_n\}) \) where the union is taken over all sub-sequences \(\{u_n\} \) of \(\{x_n\} \). We claim that \(\omega_w(x_n) \subset F(T) \). Let \(u \in \omega_w(x_n) \), then there exists a subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(A(\{u_n\}) = \{u\} \).

By Lemma 2.3 and 2.4 there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta - \lim_n v_n = v \in C \). Since \(\lim_n d(v_n, T v_n) = 0 \), then \(v \in F(T) \) by Lemma 2.5.

We claim that \(u = v \). Suppose not, since \(T \) is nonexpansive and \(v \in F(T) \), \(\lim_n d(x_n, v) \) exists by Theorem 3.1. Then by the uniqueness of asymptotic centers,
\[
\limsup_n d(v_n, v) < \limsup_n d(v_n, u)
\leq \limsup_n d(u_n, u)
\leq \limsup_n d(u_n, v)
= \limsup_n d(x_n, v)
= \limsup_n d(v_n, v)
\]
1312

T. Laokul and B. Panyanak

a contradiction, and hence \(u = v \in F(T)\). To show that \(\{x_n\}\) \(\Delta\)–converges to a fixed point of \(T\), it suffices to show that \(\omega_w(x_n)\) consists of exactly one point. Let \(\{u_n\}\) be a subsequence of \(\{x_n\}\). By Lemmas 2.3 and 2.4 there exists a subsequence \(\{v_n\}\) of \(\{u_n\}\) such that \(\Delta \lim_n v_n = v \in C\). Let \(A(\{u_n\}) = \{u\}\) and \(A(\{x_n\}) = \{x\}\). We have seen that \(u = v\) and \(v \in F(T)\). We can complete the proof by showing that \(x = v\). Suppose not, since \(\{d(x_n, v)\}\) is convergent,

\[
\limsup_n d(v_n, v) < \limsup_n d(v_n, x) \\
\leq \limsup_n d(x_n, x) \\
< \limsup_n d(x_n, v) \\
= \limsup_n d(v_n, v)
\]
a contradiction, and hence the conclusion follows.

Another result in [24], the authors prove that the sequence \(\{x_n\}\) defined by (3) converges strongly to a fixed point of a nonexpansive mapping \(T\) whose domain is a nonempty closed convex subset \(C\) of a strictly convex Banach space \(E\) and its image \(T(C)\) is contained in a compact subset of \(C\) (see [24, Theorem 3]). The main tool in proving the result is Mazur’s theorem [21] which is stated that “The closed convex hull of a compact subset of a Banach space is itself compact”. An interesting question is:

Question 1. Can Theorem 3 of [24] extended to CAT(0) spaces? equivalently, if \(C\) is a nonempty closed convex subset of a complete CAT(0) space \(X\), and if \(T : C \to C\) is a nonexpansive mapping such that \(T(C)\) is contained in a compact subset of \(C\), \(x_1 \in C\) and \(\{x_n\}\) is given by

\[
x_{n+1} = t_n T[s_n T x_n \oplus (1 - s_n) x_n] \oplus (1 - t_n) x_n
\]

for all \(n \geq 1\), where \(\{t_n\}\) and \(\{s_n\}\) be sequences in \([0, 1]\) such that \(t_n \in [a, b]\) and \(s_n \in [0, b]\) or \(t_n \in [a, 1]\) and \(s_n \in [a, b]\) for some \(a, b\) with \(0 < a \leq b < 1\), does the sequence \(\{x_n\}\) converge strongly to a fixed point of \(T\)?

One way to solve Question 1 is to prove Mazur’s theorem in CAT(0) spaces. Thus, we should state:

Question 2. Is the closed convex hull of a compact subset of a complete CAT(0) space compact?

However, for Question 1, if the assumption “\(T(C)\) is contained in a compact subset of \(C\)” is replaced by “\(C\) is a compact subset of \(X\)”, then we can prove the strong convergence of \(\{x_n\}\) as the following result.
Theorem 3.4 Let C be a nonempty compact convex subset of a complete CAT(0) space X, and let $T : C \to C$ be a nonexpansive mapping. Let $\{t_n\}$ and $\{s_n\}$ be sequences in $[0, 1]$ such that $t_n \in [a, b]$ and $s_n \in [0, b]$ or $t_n \in [a, 1]$ and $s_n \in [a, b]$ for some a, b with $0 < a \leq b < 1$. From arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ by the recursion (9). Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. We first note that $F(T)$ is nonempty by [16, Theorem 12]. By the compactness of C, we see that $\{x_n\}$ has a strongly convergent subsequence $\{x_{n_k}\}$ whose limit we shall denote by z. Then, by Theorem 3.2 and the nonexpansiveness of T,

$$d(z, Tz) \leq d(z, x_{n_k}) + d(x_{n_k}, Tx_{n_k}) + d(Tx_{n_k}, Tz) \leq 2d(z, x_{n_k}) + d(x_{n_k}, Tx_{n_k}) \to 0 \text{ as } k \to \infty.$$

Therefore $z \in F(T)$. By Theorem 3.1 $\lim_n d(x_n, z)$ exists, thus z is the strong limit of the sequence $\{x_n\}$ itself. ■

ACKNOWLEDGEMENTS. This research was supported by the Centre of Excellence in Mathematics.

References

[18] W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive non-self mappings in CAT(0) spaces, submitted for publication.

Received: February, 2009