Approximation of Conjugate of Functions

Belonging to the Generalized Lipschitz Class by Lower Triangular Matrix Means

Shyam Lal

Department of Mathematics, Banaras Hindu University
Varanasi -221005 (India)
shyam_lal@rediffmail.com

Jitendra Kumar Kushwaha

Department of Mathematics, Banaras Hindu University
Varanasi -221005 (India)
k.jitendrakumar@yahoo.com

Abstract

In this paper, two new theorems on the degree of approximation of $\tilde{f}(x)$, conjugate of function $f \in \text{Lip}_\alpha$ and $f \in \text{Lip}\{\tilde{\xi}(t), p\}$ class, by lower triangular matrix means of conjugate series of the Fourier series have been established.

Mathematics Subject Classification (2008): 42B05, 42B08

Keywords: Generalized Lipschitz class, Fourier series, Degree of approximation, Lower Triangular matrix means
1. Introduction and Definitions

The degree of approximation of a function $f \in \text{Lip} \alpha$ and $f \in \text{Lip}(\tilde{\xi}(t), p)$ has been determined by several investigators like Alexits [1], Sahney and Goel [12], Chandra ([4],[5]), Qureshi ([8], [9]) and Leindler [6], by Cesaro means and Nörlund means of Fourier series. Working in the same direction Qureshi ([10],[11]) have determined the degree of approximation of $\tilde{f}(x)$, conjugate of a function $f \in \text{Lip} \alpha$ and $f \in \text{Lip}(\tilde{\xi}(t), p)$ by Nörlund means of conjugate series of a Fourier series. But till now nothing seems to have been done so for to determined the degree of approximation of $\tilde{f}(x)$, conjugate of a function $f \in \text{Lip} \alpha$ and $f \in \text{Lip}(\tilde{\xi}(t), p)$, by lower triangular matrix means of conjugate series of the Fourier series. Lower triangular matrix summability transformation includes (C, 1), (C, δ), (N, p_n) and (N, p, q) methods as particular cases. The generalized Lipschitz class $\text{Lip}(\tilde{\xi}(t), p)$ is a generalization of α and $\text{Lip}(\alpha, p)$. The purpose of this paper is to determine the degree of approximation of $\tilde{f}(x)$, conjugate of function $f \in \text{Lip} \alpha , 0 < \alpha \leq 1$ and $f \in \text{Lip}(\tilde{\xi}(t), p)$, by lower triangular matrix means.

A function $f \in \text{Lip} \alpha$ if $\left| f(x + t) - f(x - t) \right| = O(t^\alpha)$, $0 < \alpha \leq 1$.

A function $f(x) \in \text{Lip}(\alpha, p)$ for $0 \leq x \leq 2\pi$, if

$$\left(\int_0^{2\pi} |f(x + t) - f(x)|^p \, dx \right)^{1/p} = O(\left| t \right|^{\alpha}) , \quad 0 < \alpha \leq 1 , p \geq 1 \quad (\text{McFadden [7]}) .$$

Given a positive increasing function $\tilde{\xi}(t)$ of t and an integer $p \geq 1$,

$f(x) \in \text{Lip}(\tilde{\xi}(t), p)$ if $\left(\int_0^{2\pi} |f(x + t) - f(t)|^p \, dx \right)^{1/p} = O(\tilde{\xi}(t))$ \quad (Siddiqi [13]).

In case $\tilde{\xi}(t) = t^\alpha$ then $\text{Lip}(\tilde{\xi}(t), p)$ coincides to $\text{Lip}(\alpha, p)$.

If $p \to \infty$ in $\text{Lip}(\alpha, p)$ then it coincides to $\text{Lip} \alpha$.

L_∞ – norm of a function $f : R \to R$ is defined by $\|f\|_\infty = \sup \{|f(x) : x \in R|\}$

L_p – norm is defined by $\|f\|_p = \left(\int_0^{2\pi} |f(x)|^p \, dx \right)^{1/p} , p \geq 1$.

The degree of approximation $E_n(f)$ of a function $f : R \to R$ by a trigonometric polynomial t_n of order n is defined by $\text{(Zygmund [16], p. 114)}$

$$\|t_n - f\|_p = \min \|t_n - f\|_p .$$
Let \(f \) be periodic with period \(2\pi \) and integrable over \((-\pi, \pi)\) in Lebesgue sense and \(f(x) \in \text{Lip}(\xi(t), p) \). Let its Fourier series be given by

\[
f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} A_n(x). \tag{1}
\]

The conjugate series of the Fourier series (1) is given by

\[
\sum_{n=1}^{\infty} (a_n \sin nx - b_n \cos nx) = -\sum_{n=1}^{\infty} B_n(x). \tag{2}
\]

If \(f \) is Lebesgue integrable then

\[
\tilde{f}(x) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \psi(t) \cot(t/2) \, dt = -\frac{1}{2\pi} \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \psi(t) \cot(t/2) \, dt
\]

exists for almost all \(x \) (Zygmund [16], p.131). \(\tilde{f}(x) \) is called the conjugate function of \(f(x) \).

Let \(T = \{a_{n,k}\} \) be an infinite lower triangular matrix satisfying Töeplitz [15] conditions of regularity, i.e. \(\sum_{k=0}^{n} a_{n,k} \to 1 \), as \(n \to \infty \), \(a_{n,k} \to 0 \), for \(k > n \) and \(\sum_{k=0}^{n} |a_{n,k}| \leq M \) a finite constant.

Let \(\sum_{n=0}^{\infty} u_n \) be an infinite series whose \(k^{th} \) partial sum \(s_k = \sum_{n=0}^{k} u_n \). The sequence to sequence transformation \(t_n = \sum_{k=0}^{n} a_{n,k} s_k \) defines the sequence \(\{t_n\} \) of lower triangular matrix summability means of sequence \(\{s_n\} \) generated by the sequence of coefficients \(\{a_{n,k}\} \). The series \(\sum_{n=0}^{\infty} u_n \) is said to be summable to sum \(s \) by lower triangular matrix method if \(\lim_{n \to \infty} t_n \) exists and is equal to \(s \) (Zygmund [16], p.74) and we write \(t_n \to s(T) \), as \(n \to \infty \).

We use the following notations:

\[
\psi(t) = f(x + t) - f(x - t), \quad A_{n,\tau} = \sum_{k=n-\tau}^{n} a_{n,k},
\]
\[\tau = \left\lfloor \frac{1}{t} \right\rfloor = \text{The greatest integer not greater than } (1/t) \]

\[M_n(t) = \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,k} \cos(k + 1/2)t \sin(t/2) . \]

2. Theorems

We prove the following theorems:

Theorem 1: Let \(T = (a_{n,k}) \) be an infinite regular lower triangular matrix such that the element \((a_{n,k}) \) be non-negative, non-decreasing with \(k \leq n \). If \(f : \mathbb{R} \to \mathbb{R} \) is \(2\pi \)-periodic, Lebesgue integrable on \((-\pi, \pi)\) and \(f \in \text{Lip}_\alpha , 0 < \alpha \leq 1 \), then the degree of approximation of its conjugate function \(\tilde{f} \) by lower triangular matrix means \(\tilde{t}_n(x) = \sum_{k=0}^{n} a_{n,k} \tilde{s}_k(x) \) of conjugate series of Fourier series (2) satisfies, \(n=0,1,2 \ldots \),

\[
\left\| \tilde{t}_n - f \right\|_{p} = \begin{cases}
O((n + 1)^{-\alpha}) , & 0 < \alpha < 1 \\
O(\log(n + 1)\pi e/(n + 1)) , & \alpha = 1 .
\end{cases}
\]

Theorem 2. The degree of approximation of a function \(\tilde{f}(x) \), conjugate of a function \(f \in \text{Lip}(\xi(t),p) \), by the lower triangular matrix means \(\tilde{t}_n(x) \) of conjugate Fourier series (2) is given by

\[
\left\| \tilde{t}_n - \tilde{f} \right\|_{p} = O\left((n + 1)^{1/p} \xi \left(\frac{1}{n + 1} \right) \right)
\]

provided \(\xi(t) \) is positive increasing function of \(t \) satisfying

\[
\left\{ \int_{0}^{1/(n+1)} \left(\frac{t |\psi(t)|}{\xi(t)} \right)^p dt \right\}^{1/p} = O\left((n + 1)^{-1} \right) ,
\]

(3)

\[
\left\{ \int_{1/(n+1)}^{\pi} \left(\frac{t^{-\delta} |\psi(t)|}{\xi(t)} \right)^p dt \right\}^{1/p} = O\left((n + 1)^{\delta} \right)
\]

(4)

where \(\delta \) is an arbitrary number such that \(q(1-\delta)-1 > 0 \), \(q \) the conjugate index of \(p \) and the condition (3) and (4) hold uniformly in \(x \).
3. Lemma

For the proof of our theorems, the following lemma is required.

Lemma. Under the condition of our theorem on \((a_{n,k})\),

\[
M_n(t) = O\left(\frac{A_{n,\tau}}{t}\right), \quad \text{for } (n+1)^{-1} < t \leq \pi.
\]

Proof. For \((n+1)^{-1} < t \leq \pi, \sin(t/2) \geq (t/\pi), \tau \leq n\), we have

\[
|M_n(t)| = \left|\frac{1}{2\pi} \sum_{k=0}^{n-\tau-1} a_{n,k} \cos(k/2)t + \frac{1}{2\pi} \sum_{k=n-\tau}^{n} a_{n,k} \cos(k/2)t\right|
\]

\[
\leq \frac{1}{2\pi} \left|\sum_{k=0}^{n-\tau-1} a_{n,k} \cos(k/2)t + \sum_{k=n-\tau}^{n} a_{n,k} \cos(k/2)t\right|
\]

\[
\leq \frac{1}{2\pi} \left[2a_{n,n-\tau-1} \max_{0 \leq \tau \leq n-\tau-1} \left|\sum_{k=0}^{\tau} \cos(k/2)t + \sum_{k=n-\tau}^{n} a_{n,k} \cos(k/2)t\right|\right]
\]

\[
= \frac{1}{2\pi} \left[O\left(\frac{a_{n,n-\tau-1}}{t}\right) + A_{n,\tau}\right]
\]

and \(A_{n,\tau} = \sum_{k=n-\tau}^{n} a_{n,k} = a_{n,n-\tau} + a_{n,n-\tau+1} + \ldots + a_{n,n}\)

\[
\geq a_{n,n-\tau-1} + a_{n,n-\tau-1} + \ldots + a_{n,n-\tau-1}
\]

\[
= (\tau+1)a_{n,n-\tau-1}
\]

\[
\geq \left(\frac{a_{n,n-\tau-1}}{t}\right).
\]

Therefore, \(|M_n(t)| = O\left(\frac{A_{n,\tau}}{t}\right)\).

4. Proof of the Theorem 1

The \(k\)th partial sum of the conjugate series of the Fourier series (2) is given by

\[
\tilde{S}_n(x) = -\frac{1}{2\pi} \int_{0}^{\pi} \cot(t/2) \psi(t)dt + \frac{1}{2\pi} \int_{0}^{\pi} \frac{\cos(n+1/2)t}{\sin(t/2)} \psi(t)dt
\]

\[
\tilde{S}_n(x) = \left\{-\frac{1}{2\pi} \int_{0}^{\pi} \cot(t/2) \psi(t)dt\right\} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\cos(n+1/2)t}{\sin(t/2)} \psi(t)dt
\]
Then
\[\sum_{k=0}^{n} a_{n,k} \left\{ \tilde{S}_n(x) - \left(-\frac{1}{2\pi} \int_0^{\pi} \cot(t/2) \psi(t) \, dt \right) \right\} = \frac{1}{2\pi} \int_0^{\pi} \left(\sum_{k=0}^{n} a_{n,k} \frac{\cos(n+1/2)t}{\sin(t/2)} \right) \psi(t) \, dt \]

or, \(\tilde{t}_n(x) - f(x) = \int_0^{\pi} \psi(t) M_n(t) \, dt \)
\[= \int_0^{1/(n+1)} \psi(t) M_n(t) \, dt + \int_{1/(n+1)}^{\pi} \psi(t) M_n(t) \, dt \]
\[= I_1 + I_2 \quad (5) \]
\[|f(x + t) - f(x)| = O(t^\alpha), \ f \in \text{Lip}_\alpha. \]
\[|\psi(t)| = |f(x + t) - f(x - t)| \leq |f(x + t) - f(x)| + |f(x) - (x + t)|. \]
\[= O(t^\alpha) + O(t^\alpha) = O(t^\alpha) \]

Then \(\psi(t) \in \text{Lip}_\alpha. \)

Now, for \(0 < t \leq 1/(n+1) \), we have
\[|I_1| = \left| \int_0^{1/(n+1)} \psi(t) \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,k} \frac{\cos(k+1/2)t}{\sin(t/2)} \, dt \right| \]
\[\leq \frac{1}{2\pi} \int_0^{1/(n+1)} |\psi(t)| \left| \sum_{k=0}^{n} a_{n,k} \frac{\cos(k+1/2)t}{\sin(t/2)} \right| \, dt \]
\[= \left(\int_0^{1/(n+1)} t^\alpha O(H(t)) \, dt \right) \]
\[= O(t^{1/1-(n+1)}). \quad (6) \]

Using lemma, for \(1/(n+1) < t \leq \pi \), we have
\[|I_2| = \left| \int_{1/(n+1)}^{\pi} \psi(t) M_n(t) \, dt \right| \]
\[= \left(\int_{1/(n+1)}^{\pi} t^\alpha O\left(\frac{A_{n,t}}{t} \right) \, dt \right) \]
\[= O \left(\int_{1/(n+1)}^{\pi} A_{n,y} \, dy \right). \]
Approximation of conjugate of functions

\[\begin{align*}
&= O \left(\frac{A_{n,n}}{n+1} \right) \int_{1/\pi}^{n+1} \frac{dy}{y^\alpha} + O \left(\frac{A_{n,n/\pi}}{n+1} \right) \int_{1/\pi}^{n+1} \frac{dy}{y^\alpha} \\
&= O \left(\frac{1}{n+1} \right) \int_{1/\pi}^{n+1} \frac{dy}{y^\alpha} \quad \left(\therefore \frac{A_{n,n}}{y^\alpha} \text{ is monotonic} \right) \\
&= O \left(\frac{1}{n+1} \right) \left\{ \frac{1}{1-\alpha} \left[\frac{1}{(n+1)^{\alpha-1}} - \left(\frac{1}{\pi} \right)^{-\alpha+1} \right] \right\}, \quad 0 < \alpha < 1 \\
&= O((n+1)^{-\alpha}), \quad 0 < \alpha < 1 \\
&= O(\log(n+1)\pi/(n+1)), \quad \alpha = 1.
\end{align*} \]

Combining from (5) to (7), we have

\[\left\| t_n - \tilde{f} \right\|_{\infty} = \sup_{x} \left\| t_n(x) - \tilde{f}(x) \right\| : x \in \mathbb{R} \]

\[= \begin{cases}
O((n+1)^{-\alpha}), & 0 < \alpha < 1 \\
O(\log(n+1)\pi e/(n+1)), & \alpha = 1.
\end{cases} \]

5. Proof of Theorem 2.

Following the proof of theorem 1,

\[\tilde{t}_n(x) - \tilde{f}(x) = \int_{0}^{1/(n+1)} \psi(t)M_n(t)dt + \int_{1/(n+1)}^{\pi} \psi(t)M_n(t)dt \]

\[= I_1 + I_2 \quad (8) \]

Using Hölder’s inequality, \(\psi(t) \in \text{Lip} \left(\xi(t), p \right) \), (3), \(\sin (t/2) \geq (t/\pi) \) and second mean value theorem for integrals, we have

\[\left| I_1 \right| \leq \left\{ \int_{0}^{1/(n+1)} \left(\frac{t|\psi(t)|}{\xi(t)} \right)^p dt \right\}^{1/p} \left\{ \int_{0}^{1/(n+1)} \left(\frac{|\xi(t)|M_n(t)}{t} \right)^q dt \right\}^{1/q} \]

\[\leq \left\{ \int_{0}^{1/(n+1)} \left(\frac{t|\psi(t)|}{\xi(t)} \right)^p dt \right\}^{1/p} \left\{ \int_{0}^{1/(n+1)} \left(\frac{\xi(t)|\cos(k+1/2)t|}{t|\sin(t/2)|} \right)^q dt \right\}^{1/q} \]

\[= O \left(\frac{1}{n+1} \right) \left\{ \int_{0}^{1/(n+1)} \left(\frac{\xi(t)}{t^2} \right)^q dt \right\}^{1/q} \]
\[
= O\left(\left(\frac{1}{n+1}\right)^{1/(n+1)}\int_{\epsilon}^{1} \frac{1}{t^{2q}} dt\right)^{1/q}, \text{ for some } 0 < \epsilon < 1/(n+1)
\]
\[
= O\left(\left(\frac{1}{n+1}\right)^{1/(n+1)}\left(\frac{1}{(n+1)^{2q-4} - \epsilon^{1-2q}}\right)^{1/q}\right)
\]
\[
= O\left((n+1)^{1/p} \xi \left(\frac{1}{n+1}\right)\right), \quad \left(\because p^{-1} + q^{-1} = 1\right) \tag{9}
\]

Using lemma, (4) and hypothesis of the theorem, we have
\[
|I_2'| = \left[\int_{1/(n+1)}^{\pi} \frac{t^{-\delta} \psi(t)}{\xi(t)} \right]^{1/p} \left[\int_{1/(n+1)}^{\pi} \frac{\xi(t) |M_n(t)|^q}{t^{-\delta}} \right]^{1/q}
\]
\[
= O\left((n+1)^{\delta} \right) \left[\int_{1/(n+1)}^{\pi} \frac{\xi(t) \left[A_n(t)\right]^q}{t^{-\delta}} \right]^{1/q}
\]
\[
= O\left((n+1)^{\delta} \right) \left[\int_{1/(n+1)}^{\pi} \left(\frac{\xi(t) A_n(t)}{t^{1-\delta}}\right)^q dt \right]^{1/q}
\]
\[
= O\left((n+1)^{\delta} \right) \left[\int_{1/(n+1)}^{\pi} \left(\frac{\xi(y) A_n(y)}{y^{1-\delta}}\right)^q \frac{dy}{y^2} \right]^{1/q}
\]
\[
= O\left((n+1)^{\delta} \right) \left[\int_{1/(n+1)}^{\pi} \frac{dy}{y^{q+\delta}} \right]^{1/q}
\]
\[
= O\left((n+1)^{\delta} \right) \left(\frac{(n+1)^q(1-\delta) - 1}{\pi^q(1-\delta) - 1}\right)^{1/q}
\]
\[
= O\left((n+1)^{\delta} \xi \left(\frac{1}{n+1}\right)\right) O\left((n+1)^{q(1-\delta) - 1}\right)^{1/q}
\]
\[
= O\left((n+1)^{1/p} \xi \left(\frac{1}{n+1}\right)\right) \tag{10}
\]

Combining from (8) to (10), we have
\[
\left\| \tilde{t}_n - f \right\|_p = O \left((n + 1)^{1/p} \frac{1}{\xi(n + 1)} \right).
\]

6. Corollaries

Following corollaries may be derived from Theorem 2.

Cor.1. If \(\xi(t) = t^\alpha \) then the degree of approximation of a function \(\tilde{f}(x) \), conjugate of \(f \in \text{Lip}(\alpha, p), \frac{1}{p} < \alpha < 1 \) by lower triangular matrix means \(t_n(x) \) of the conjugate series of the Fourier series (2) is given by

\[
\left\| \tilde{t}_n - f \right\|_p = O \left((n + 1)^{-\alpha + \frac{1}{p}} \right).
\]

Cor.2. If \(p \to \infty \) in corollary 1, then for \(0 < \alpha < 1 \),

\[
\left\| \tilde{t}_n - f \right\|_{\infty} = O \left((n + 1)^{-\alpha} \right).
\]

Cor.3 If \(a_n,k = \frac{p_n-k}{p_n} \), \(p_n \neq 0 \) and \(\xi(t) = t^\alpha \) then the degree of approximation of \(\tilde{f}(x) \), conjugate of \(f \in \text{Lip}(\alpha, p) \) by Nörlund means \(\tilde{t}_n = \frac{1}{p_n} \sum_{k=0}^{n} s_k \) of the conjugate series of Fourier series is given by

\[
\left\| \tilde{t}_n - f \right\|_p = O \left((n + 1)^{-\alpha + \frac{1}{p}} \right).
\]

Cor.4 If \(a_n,k = \frac{p_n-k}{p_n} \) and \(\xi(t) = t^\alpha \) and \(p \to \infty \) then the degree of approximation of \(\tilde{f}(x) \), conjugate of \(f \in \text{Lip}\alpha \) by Nörlund means \(\tilde{t}_n = \frac{1}{p_n} \sum_{k=0}^{n} s_k \) of the conjugate series of Fourier series is given by

\[
\left\| \tilde{t}_n - f \right\|_{\infty} = \begin{cases} O \left((n + 1)^{-\alpha} \right), & 0 < \alpha < 1 \\ O(\log(n + 1)\pi e/(n + 1)), & \alpha = 1. \end{cases}
\]
If $a_{n,k} = \frac{p_{n+k}}{q_k}$ such that $R_n = \sum_{k=0}^{n} p_{n-k} q_k \neq 0$, $\frac{R(y)}{y^\alpha}$ is monotonic non-decreasing then degree of approximation of $f(x)$, conjugate of a function $f \in \text{Lip}_\alpha$, by generalized Nörlund means $t_n = \frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k s_k(x)$ of the conjugate series (2) satisfies
\[
\left\| t_n - f \right\|_\infty = \begin{cases} O\left((n+1)^{-\alpha}\right), & 0 < \alpha < 1 \\ O\left((\log(n+1))e/(n+1)\right), & \alpha = 1. \end{cases}
\]

Remarks:

Remark 1. (1) The degree of approximation $\left\| f - t_n \right\|_p = O\left((n+1)^{-\alpha+\frac{1}{p}}\right)$ determined by Qureshi ([11], p.561, L.12) tends to ∞ if $0 < \alpha = \frac{1}{3} < 1$ and $p=2$ and also for other values. Therefore, this deficiency has motivated to investigate degree of approximation of conjugate of functions belonging to $\text{Lip}(\alpha, p)$ considering $\frac{1}{p} < \alpha < 1$.

Remark 2. There are several results, for example, Alexits [1], Chandra [4], Sahney & Goel [12], Alexits & Leindler [2] and Bernstein [3] for the degree of approximation of functions $f \in \text{Lip}_\alpha$, but most of these results are not satisfied for $n= 0, 1$ or $\alpha = 1$. Therefore, this deficiency has motivated to investigate degree of approximation of functions belonging to Lip_α considering cases $0 < \alpha < 1$ and $\alpha = 1$ separately. Considering these specific cases separately, we have obtained better and sharper estimate of $\tilde{f}(x)$, conjugate of $f \in \text{Lip}_\alpha$, than all previously known results in this direction.

References

Approximation of conjugate of functions

Received: November, 2008