Some Weak Separation Axioms in Bitopological Spaces

R. Raja Rajeswari
Sri Parasakthi College for Women, Courtallam-627818, India
rajiarul@gmail.com

M. Lellis Thivagar
Arul Anandar College, Karumathur-625514, India
mlthivagar@yahoo.co.in

S. Athisaya Ponmani
Jayaraj Annapackiam College, Periyakulam-625601, India
athisayaponmani@yahoo.co.in

Saeid Jafari
College of Vestsjaelland South
Herrestraede 114200 Slagelse, Denmark
jafari@stofanet.dk

Abstract

In this paper, we offer some new separation axioms called ultra-R_{YS}, ultra-R_Y, ultra-R_D and ultra-T_{YS}. Moreover we study some of their basic properties.

Mathematics Subject Classification: 54C55

Keywords: uR_T, uR_D, uR_{YS} and uT_{YS} space

1 Introduction

Aull and Thron[2] introduced and studied extensively various separation axioms in between T_0 and T_1 in 1962. Shanin [15] introduced the notion of R_0 topological space in 1943. A topological space is R_0 if every open set contains
the closure of each of its singletons. Later, Dube [3] rediscovered it and studied some properties of this weak separation axiom. Among others, he showed that a topological space is T_1 if and only if it is T_0 and R_0. Several topologists (e.g. [2], [6], [7], [8], [9]) further investigated properties of R_0 topological spaces and many interesting results have been obtained. Also in 1974, Dube [3] introduced some more separation axioms R_Y, R_{YS}, R_D and R_{DD}, which are weaker than R_0. The fact that if X is not R_0, then there are some $x \in X$ such that $(1,2)\ker(\{x\}) \setminus (1,2)\ker(\{x\}) \neq \phi$ and also there are some $x \in X$ such that $(1,2)\ker(\{x\}) \setminus (1,2)\ker(\{x\}) \neq \phi$ suggests the Definition of R_T spaces [13]. In this paper we generalize all the above axioms in bitopological spaces introduced in [10]. We define ultra-R_T, ultra-R_D, ultra-R_{YS} and ultra-T_{YS} and establish the relationship that ultra-R_0 \Rightarrow ultra-R_T \Rightarrow ultra-R_D \Rightarrow ultra-R_{YS} \Rightarrow ultra-T_{YS}.

2 Preliminary Notes

Definition 2.1 A set A of a topological space (X,τ) is called α-open set [14] if $A \subset \text{int}(\text{cl}(\text{int}(A)))$ where $\text{int}(A)$ and $\text{cl}(A)$ denotes the interior and closure of A with respect to τ.

Definition 2.2 A topological space X is said to be R_0 [3] if for each $x \in G$, $\text{cl}(\{x\}) \subset G$ where G is an open set in X.

Definition 2.3 A topological space X is said to be

(i) R_{YS}-space [16] if for $x, y \in X, \text{cl}(\{x\}) \neq \text{cl}(\{y\})$ implies $\text{cl}(\{x\}) \cap \text{cl}(\{y\}) = \phi$ or $\{x\}$ or $\{y\}$.

(ii) R_D-space [16] if for $x \in X, \text{cl}(\{x\}) \cap \text{ker}(\{x\}) = \{x\}$ implies that $d(\{x\}) = \text{cl}(\{x\}) \setminus \{x\}$ is closed, where $\text{ker}(\{x\}) = \cap\{G \in \tau \text{ and } x \in G\}$.

(iii) R_T-space [13] if for each $x \in X$, both $\text{ker}(\{x\}) \setminus \text{cl}(\{x\})$ and $\text{cl}(\{x\}) \setminus \text{ker}(\{x\})$ are degenerate. By a degenerate set we mean a null set or a singleton set.

In what follows, by a space X we mean (X,τ_1,τ_2), where X is a nonempty set, τ_1 and τ_2 are topologies on X.

Definition 2.4 A subset A of a space X is called $(1,2)\alpha$-open [10] if $A \subset \tau_1\text{-int}(\tau_2\text{-cl}(\tau_1\text{-int}(A)))$, where a subset A of X is $\tau_1\tau_2$-open if $A \subset \tau_1 \cup \tau_2$ and it is $\tau_1\tau_2$-closed if its complement is $\tau_1\tau_2$-open, and the intersection of all the $\tau_1\tau_2$-closed sets containing A is denoted by $\tau_1\tau_2\text{-cl}(A)$. The family of all $(1,2)\alpha$-open sets in X is denoted by $(1,2)\alpha\mathcal{O}(X)$. The complement of a $(1,2)\alpha$-open set is called a $(1,2)\alpha$-closed set. The intersection of all $(1,2)\alpha$-closed (resp. $(1,2)\alpha$-open) sets containing A is denoted by $(1,2)\alpha\text{cl}(A)$ (resp. $(1,2)\alpha\text{ker}(A)[8]$). The family of all $(1,2)\alpha$-open sets is denoted by $(1,2)\alpha\mathcal{O}(X)$.
Definition 2.5 A bitopological space X is called ultra-R_0 (briefly U_{R_0}) [12] if for each $x \in G$, $(1,2)\alpha cl\{x\} \subseteq G$ where G is a $(1,2)\alpha$-open set.

The following results were obtained in [12].

Theorem 2.6 Let X be a space and $x,y \in X$. Then the following statements are satisfied

(i) If $x \in (1,2)\alpha cl\{y\}$, then $(1,2)\alpha cl\{x\} \subseteq (1,2)\alpha cl\{y\}$.

(ii) If $x \in (1,2)\alpha cl\{y\}$, then $y \in (1,2)\alpha ker\{x\}$.

(iii) If X is U_{R_0}, then for each $x \in X$, $(1,2)\alpha cl\{x\} = (1,2)\alpha ker\{x\}$.

(iv) If X is U_{R_0}, and $x \in (1,2)\alpha cl\{y\}$, then $y \in (1,2)\alpha cl\{x\}$ for any $x,y \in X$.

3 Some new separation axioms

Definition 3.1 A space X is called

(i) ultra-R_D (briefly U_{R_D}) if for each $x \in X$, $(1,2)\alpha cl\{x\} \cap (1,2)\alpha ker\{x\} = \{x\}$ implies that the $(1,2)\alpha$-derived set, $(1,2)\alpha d\{x\} = (1,2)\alpha cl\{x\} \setminus \{x\}$ is $(1,2)\alpha$-closed.

(ii) ultra-R_T (briefly U_{R_T}) if for each $x \in X$, both $(1,2)\alpha ker\{x\} \setminus (1,2)\alpha cl\{x\}$ and $(1,2)\alpha cl\{x\} \setminus (1,2)\alpha ker\{x\}$ are degenerate.

(iii) ultra-R_{YS} (briefly $U_{R_{YS}}$) if for $x,y \in X$, $(1,2)\alpha cl\{x\} \neq (1,2)\alpha cl\{y\}$ implies $(1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} = \phi$ or $\{x\}$ or $\{y\}$.

(iv) ultra-T_{YS} (briefly $U_{T_{YS}}$) if for $x \neq y$ implies $(1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} = \phi$ or $\{x\}$ or $\{y\}$.

(v) ultra-R_Y (briefly U_{R_Y}) if for all $x,y \in X$, $(1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\}$ is a degenerate set.

Remark 3.2 Obviously U_{R_0} implies U_{R_T}. But the converse is not always true as it is shown by the following Example.

Example 3.3 Let $X = \{a,b,c,d\}$, $\tau_1 = \{\phi, X, \{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}\}$, $\tau_2 = \{\phi, X, \{b\}\}$ and $(1,2)\alpha O(X) = \{\phi, X, \{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}\}$. Here X is U_{R_T} but not U_{R_0}.

Theorem 3.4 Every space which is U_{R_T}, it is also U_{R_D}.
Proof: Let X be ultra-R_T. Then both $(1,2)\alpha \ker \{ \{ x \} \} \setminus (1,2)\alpha \cl \{ \{ x \} \}$ and $(1,2)\alpha \cl \{ \{ x \} \} \setminus (1,2)\alpha \ker \{ \{ x \} \}$ are degenerate. Now let $< x > = (1,2)\alpha \cl \{ \{ x \} \} \cap (1,2)\alpha \ker \{ \{ x \} \}$. Then $(1,2)\alpha \ker \{ \{ x \} \} = < x > \cup D$ and $(1,2)\alpha \cl \{ \{ x \} \} = < x > \cup E$, where D is not a subset of $(1,2)\alpha \cl \{ \{ x \} \}$ and E is not a subset of $(1,2)\alpha \ker \{ \{ x \} \}$. Observe that D and E are degenerate sets. If $< x > = \{ x \}$, then $(1,2)\alpha \cl \{ \{ x \} \} = E \cup \{ x \}$ and $(1,2)\alpha \ker \{ \{ x \} \} = D \cup \{ x \}$. We need to prove that $(1,2)\alpha \cl \{ \{ x \} \} = (1,2)\alpha \cl \{ \{ x \} \} \setminus \{ x \}$ is $(1,2)\alpha$-closed. Let U be a $(1,2)\alpha$-open set containing $(1,2)\alpha \ker \{ \{ x \} \}$. Then $(X \setminus U)$ is $(1,2)\alpha$-closed set. Hence $(X \setminus U) \cap (1,2)\alpha \cl \{ \{ x \} \} = E$ or ϕ.

Case (i) If $(X \setminus U) \cap (1,2)\alpha \cl \{ \{ x \} \} = E$, then E is the intersection two $(1,2)\alpha$-closed sets, hence $(1,2)\alpha$-closed.

Case (ii) $(X \setminus U) \cap (1,2)\alpha \cl \{ \{ x \} \} = \phi$, then $(1,2)\alpha \cl \{ \{ x \} \} \subset U$, $E \subset U$. Since E is not a subset of $(1,2)\alpha \ker \{ \{ x \} \}$, there is a $(1,2)\alpha$-open set V such that $x \in V$ and E is not a subset of V. Then $(1,2)\alpha \cl \{ \{ x \} \} \cap (X \setminus V) = E$ is a $(1,2)\alpha$-closed set. Hence X is $u R_D$.

Remark 3.5 The converse of Theorem 3.4 is not always true as it is shown by the following Example.

Example 3.6 $X = \{ a, b, c \}$, $\tau_1 = \{ \phi, X, \{ a \} \}$, $\tau_2 = \{ \phi, X, \{ a, c \} \}$ and $(1,2)\alpha O \{ \{ x \} \} = \{ \phi, X, \{ a \}, \{ a, b \}, \{ a, c \} \}$. Here X is $u R_D$ but as $(1,2)\alpha \cl \{ \{ a \} \} \setminus (1,2)\alpha \ker \{ \{ a \} \} = \{ b, c \}$, X is not $u R_T$.

Theorem 3.7 Every $u R_T$ space is $u R_Y S$.

Proof: Let X be $u R_T$ and $x, y \in X$. If $(1,2)\alpha \cl \{ \{ x \} \} \neq (1,2)\alpha \cl \{ \{ y \} \}$ and $(1,2)\alpha \cl \{ \{ x \} \} \cap (1,2)\alpha \cl \{ \{ y \} \} \neq \phi$. Hence assume that there exits an element $a \in X$ such that $a \neq x, a \neq y$ and $a \in (1,2)\alpha \cl \{ \{ x \} \} \cap (1,2)\alpha \cl \{ \{ y \} \}$, then $a \in (1,2)\alpha \cl \{ \{ x \} \}$ and $a \in (1,2)\alpha \cl \{ \{ y \} \}$. So $x, y \in (1,2)\alpha \ker \{ \{ a \} \}[12]$. As X is $u R_T$ $(1,2)\alpha \ker \{ \{ a \} \} = < a > \cup E$ where E is a degenerate set and E is not a subset of $(1,2)\alpha \cl \{ \{ a \} \}$. There exits four possible cases if $x \in (1,2)\alpha \ker \{ \{ a \} \}$ and $y \in (1,2)\alpha \ker \{ \{ a \} \}$.

Case (i) Assume $x \in < a >$ and $y \in < a >$. Then $x \in (1,2)\alpha \cl \{ \{ a \} \}$ and $y \in (1,2)\alpha \cl \{ \{ a \} \}$. Hence $(1,2)\alpha \cl \{ \{ x \} \} = (1,2)\alpha \cl \{ \{ a \} \} = (1,2)\alpha \cl \{ \{ y \} \}$, a contradiction.

Case (ii) Assume $\{ x \} = E$ and $y \in < a >$. So $\{ x \} \notin (1,2)\alpha \cl \{ \{ a \} \}$ and $y \in (1,2)\alpha \cl \{ \{ a \} \}$. Then $(1,2)\alpha \cl \{ \{ y \} \} = (1,2)\alpha \cl \{ \{ a \} \}}$. Here also we have two cases to discuss.

Case (a) Let $y \in (1,2)\alpha \cl \{ \{ x \} \}$ and by assumption $x \notin (1,2)\alpha \cl \{ \{ a \} \}$. So $x \in X \setminus (1,2)\alpha \cl \{ \{ a \} \}$, where $X \setminus (1,2)\alpha \cl \{ \{ a \} \}$ is a $(1,2)\alpha$-open set containing the point x. Hence $(1,2)\alpha \ker \{ \{ x \} \} \subset X \setminus (1,2)\alpha \cl \{ \{ a \} \}$. Then $(1,2)\alpha \cl \{ \{ x \} \} \setminus (1,2)\alpha \ker \{ \{ x \} \} \supset (1,2)\alpha \cl \{ \{ a \} \} \supset \{ y, a \}$, implies that $(1,2)\alpha \cl \{ \{ x \} \} \setminus (1,2)\alpha \ker \{ \{ x \} \}$ is not a degenerate set. A contradiction.
Case (b) Let \(y \notin (1,2)\alpha cl\{x\} \). Since \(y \in (1,2)\alpha cl\{x\} \) and \(a \in (1,2)\alpha cl\{x\} \), we have \(y \in (1,2)\alpha cl\{x\} \), again a contradiction.

Case(iii) Let \(x \in < a > \) and \(\{y\} = E \). Its proof is similar to Case (ii).

Case (iv) Let \(\{x\} = \{y\} = E \). Then \((1,2)\alpha cl\{x\} = (1,2)\alpha cl\{y\} \), a contradiction. Hence if \((1,2)\alpha cl\{x\} \neq (1,2)\alpha cl\{y\} \), then \((1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} \) = \(\phi \) or \(\{x\} \) or \(\{y\} \). So \(X \) is \(U_{Y_{YS}} \).

The converse of the above Theorem is not always true. This can be shown by the Example 3.13.

Theorem 3.8 Every \(U_{Y_{YS}} \) space is \(U_{Y_{D}} \), but not the converse.

Proof: Let \(X \) be a \(U_{Y_{YS}} \) space. There are three cases to discuss.

Case (i) Let \((1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} \) = \(\{x\} \). Then \((1,2)\alpha cl\{x\} = \phi \) and hence \((1,2)\alpha \)-closed set.

Case (ii) Let \((1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} \) = \(\{y\} \). Then \((1,2)\alpha cl\{y\} = \phi \).

Case(iii) Let \((1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} \) = \(\phi \) and by assumption, \((1,2)\alpha cl\{x\} \cap (1,2)\alpha ker\{x\} \) = \(\{x\} \). Hence we get a contradiction. Therefore \(X \) is \(U_{Y_{D}} \).

Example 3.9 The converse of Theorem 3.8 is not always true as it is shown in this Example. Let \(X = \{a,b,c,d\} \), \(\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\} \), \(\tau_2 = \{\phi, X, \{a\}, \{d\}\} \) and \((1,2)\alpha O\{X\} = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\} \). This space \(X \) is \(U_{Y_{D}} \) but not \(U_{Y_{YS}} \).

Remark 3.10 Obviously every \(U_{Y_{YS}} \) space is \(U_{Y_{Y}} \), but the converse is not true. Since the space in Example 3.9 is a \(U_{Y_{Y}} \) space but not a \(U_{Y_{YS}} \) space.

Definition 3.11 A space \(X \) is said to be ultra-\(Y_{YS} \) (briefly \(U_{Y_{YS}} \)) space if for all \(x, y \in X \), \(x \neq y, (1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} = \phi \) or \(\{x\} \) or \(\{y\} \).

Remark 3.12 Every \(U_{Y_{YS}} \) space is \(U_{Y_{YS}} \), but not the conversely.

Example 3.13 This Example gives a space which is \(U_{Y_{YS}} \) but not \(U_{Y_{YS}} \). Let \(X = \{a,b,c,d\} \), \(\tau_1 = \{\phi, X, \{a\}, \{b\}\} \), \(\tau_2 = \{\phi, X, \{b,c\}\} \) and \((1,2)\alpha O\{X\} = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \).

Definition 3.14 Let \(X \) be a bitopological space and two points \(x, y \in X \) are said to be \((1,2)\alpha \)-separated iff \(\{x\} \cap (1,2)\alpha cl\{y\} = \phi \).

Theorem 3.15 For a space \(X \), the following are equivalent.

(i) \(X \) is \(U_{Y_{YS}} \).

(ii) For any two distinct points \(x, y \in X \) either of the points has an empty \((1,2)\alpha \)-derived set ((1,2)\alpha \-derived-set) or \((1,2)\alpha cl\{x\} \cap (1,2)\alpha cl\{y\} = \phi \).
(iii). The (1,2)α-closure of (1,2)α-derived sets any two distinct points are dis-
joint.

(iv). The (1,2)α-derived sets of any two distinct points are (1,2)α-separated

Proof: (i) ⇒ (ii)

Let X is $\mathcal{U}T_{YS}$ and if for any $x,y \in X,(1,2)\text{acl}(\{x\}) \cap (1,2)\text{acl}(\{y\}) = \phi$ nothing
to prove. If not let (1,2)$\text{acl}(\{x\}) \cap (1,2)\text{acl}(\{y\}) = \{x\}$, then (1,2)$\text{ad}(\{x\}) = \phi$.

(ii) ⇒ (iii)

Let $(1,2)\text{acl}((1,2)\text{ad}(\{x\})) \cap (1,2)\text{acl}((1,2)\text{ad}(\{y\})) = \phi$. If any one of the
derived set is ϕ. Then nothing to prove. Now $(1,2)\text{acl}((1,2)\text{ad}(\{x\})) \subset
(1,2)\text{acl}(\text{ad}(\{x\}))$, and hence $(1,2)\text{acl}((1,2)\text{ad}(\{x\}) \cap (1,2)\text{acl}((1,2)\text{ad}(\{y\})) \subset
(1,2)\text{acl}(\{x\}) \cap (1,2)\text{acl}(\{y\}) = \phi$. Hence the result.

(iii)⇒(iv) Obvious.

(iv)⇒(i) Let $x,y \in X$ and $x \neq y$ such that $(1,2)\text{acl}((1,2)\text{ad}(\{x\})) \cap (1,2)\text{ad}(\{y\})
= \phi$. There are two possibilities, $(1,2)\text{acl}((1,2)\text{ad}(\{x\})) = (1,2)\text{ad}(\{x\})$ or
$(1,2)\text{acl}((1,2)\text{ad}(\{x\})) = (1,2)\text{acl}(\{x\})$.

Case (i) Let $(1,2)\text{ad}(\{x\})$ is (1,2)α-closed for each $x \in X$.

Then $(1,2)\text{ad}(\{x\}) \cap (1,2)\text{ad}(\{y\}) = \phi$ or $(1,2)\text{ad}(\{x\}) \cap (1,2)\text{ad}(\{y\}) = \phi$ or y.

If it is y then y is (1,2)α-closed and so $(1,2)\text{acl}(\{x\}) \cap (1,2)\text{acl}(\{y\}) = \{y\}$. If it
is ϕ, then $(1,2)\text{acl}(\{x\}) \cap (1,2)\text{acl}(\{y\}) = \phi$ or $\{x\}$.

Case (ii) Let $(1,2)\text{acl}((1,2)\text{ad}(\{x\})) = (1,2)\text{acl}(\{x\})$, then we have
$(1,2)\text{acl}(\{x\}) \cap (1,2)\text{ad}(\{y\}) = \phi$ and hence $(1,2)\text{acl}(\{x\}) \cap (1,2)\text{ad}(\{y\}) = \phi$ or
$\{y\}$.

Remark 3.16 The spaces $\mathcal{U}R_T$ and $\mathcal{U}T_{YS}$ are independent of each other
can be seen from Example 3.6 in which X is X is $\mathcal{U}T_{YS}$ but not $\mathcal{U}R_T$ and also
from the following Example.

Example 3.17 Let $X = \{a,b,c,d\}, \tau_1 = \{\phi,X,\{a\},\{a,b\},\{c,d\},\{a,c,d\}\}$, $\tau_2 =
\{\phi, X\}, (1,2)\alpha \mathcal{O}(X) = \tau_1$. This space X is not $\mathcal{U}T_{YS}$ but it is $\mathcal{U}R_T$.

References

[1] Athisaya Ponmani,S.and Lellis Thivagar,M., Remarks on ultra semi-

Some weak separation axioms

[5] Y. Lee, K. K. Dube and B. N. Patel, Semi-Open sets with the axioms between \(T_0 \) and \(T_1 \), *Jour. of Nat. Sci. (Korea)* **3(1)**, (1993) 1-10.

Received: April 1, 2008