Special Finsler Spaces Admitting
Metric Like Tensor Field

S.K. Narasimhamurthy, S.T. Aveesh and Pradeep Kumar

Department of Mathematics
Kuvempu University, Jnana Sahyadri
Shimoga-577 451, Karnataka, India
nmurthysk@gmail.com

H.G. Nagaraja

Department of Mathematics
Central College, Bangalore University
Bangalore-560 001, Karnataka, India
hgnraj@yahoo.com

Abstract

In this work we modify the special Finsler spaces like C-reducible, semi-C-reducible, quasi-C-reducible are admitting the tensor field \(X_{h k} = h_{h k} + X_{00} l_{h} l_{k} \), which satisfies the condition \(C_{i j} X_{h k} = C_{i j k} \). Similarly, we have also worked out for S3-like, \(C^{h} \)-recurrent, P-reducible and T-conditions of Finsler spaces.

Mathematics Subject Classification: 53C60;

Keywords: Finsler Space, C-reducible, Semi-C-reducible, C2-like, Quasi-C-Reducible, S3-Like, P-reducible, T-Condition

1 Introduction

The terminology and notations are referred to [1], [4] and [6]. Let \(F^{n} = (M^{n}, L) \) be a Finsler space on a differentiable manifold \(M \) endowed with a fundamental function \(L(x, y) \). We use the following notations: [4][6]

\[a) \quad g_{i j} = \frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, \quad \dot{\partial}_{i} = \frac{\partial}{\partial y^{i}} \]

\[b) \quad C_{i j k} = \frac{1}{2} \dot{\partial}_{k} g_{i j} \]
c) \(h_{ij} = g_{ij} - l_il_j, \)

d) \(C^h_{hk} = C_k, C^h_l = 0, \)

e) \(h^m_k h_{mj} = h_{jk}, h^m_j l_m = 0, \)

\[(1) \]

f) \(C^m_{hr} g_{mj} = C_{hjr}, \)

g) \(l^m_m = 0, p^m_i l_m = 0, \)

h) \(h^m_j X_{mk} = X_{jk} - X_{kl} l_j, \)

i) \(X_{lo} l_j = X_{jo} l_i, X_0 = X_{00} l_i. \)

There are three kinds of torsion tensors in carton’s theory of Finsler spaces. Two of them are \(h(h\nu)\)-torsion tensor \(C_{ijk} \) and \((\nu)h\nu\)-torsion tensor \(P_{ijk} \), which are symmetric in all their indices. The contravariant components of \((\nu)h\nu\)-torsion tensor is given by

\[C^h_{ij} = g^h_{hk} C_{ijk}, \]

which may be treated as Christoffel symbols of second kind of each tangent Riemannian space of Finsler space \(F^n \). Here, \(g^h_{hk} \) is the inverse of metric tensor \(g_{hk} \) of \(F^n \). If \(l_i \) is the normalized element of support \(h_{ij} \) is the angular metric tensor given by

\[h_{ij} = g_{ij} - l_il_j, \]

Then

\[C^h_{ij} h_{hk} = C_{ijk}. \]

(2)

If \(b_i \) are components of a concurrent vector field, then \(b_i/j = -g_{ij} \) and \(b_{ij} = 0 \), where \(/j \) and \(|j \) denote the \(h \) and \(\nu \)-covariant derivatives with respect to cartons connection \(CT \). From this it follows that \(b_i \) are functions of position only, and \(C^h_{ij} b_h = 0 \). Thus if we consider a tensor field is given by \(B_{ij} = g_{ij} + \alpha l_il_j + \beta b_i b_j \), where \(\alpha \) and \(\beta \) are scalar functions, then

\[C^h_{ij} B_{hk} = C_{ijk}. \]

(3)

The purpose of the present paper is to study the existence of any symmetric covariant tensor \(X_{hk} \) which satisfies

\[X_{hk} = h_{hk} + X_{00} l_h l_k. \]

(4)

Throughout the paper we are concerned with non-Riemannian Finsler space having positive definite metric tensor \(g_{ij} \). From (4) we have,

\[C^h X_{hk} = C_k \quad \text{and} \quad C^h_{ij} X_{h0} = 0, \]

(5)

where \(C^h = C^h_{ij} g^{ij} \) and \(0 \) denotes the contraction with \(l^i \).

2 The Existence Of Covariant Tensor \(X_{hk} \) In C-Reducible Finsler Space:

In a C-reducible Finsler space the \((h)h\nu\)-torsion tensor \(C^h_{ij} \) is given by,[2][5]

\[C^h_{ij} = (C^h_{ij} + C^h_{ji} + C^h_{ij})/(n + 1). \]

(6)
Now contracting above equation by X_{hk}, then from equations (4) and (1)(d), we have

\[
\begin{align*}
C^h_{ij}X_{hk} &= X_{hk}(C^h_{hi} + C_i h^j_j + C_j h^h_h)/(n + 1), \\
C^h_{ij}X_{hk} &= 1/(n + 1)(C^h_{hi}(h_{hk} + X_{00l}l_k) + C_i h^j_j(h_{hk} + X_{00l}l_k) + C_j h^h_h(h_{hk} + X_{00l}l_k)) \\
C^h_{ij}X_{hk} &= 1/((n + 1))C_k h_{ij} + C_i h_{jk} + C_j h^h_h X_{00l}l_k + C_j h_{ik} + C_j h^h_h X_{00l}l_k \\
C^h_{ij}X_{hk} &= 1/(n + 1)(C_k h_{ij} + C_i h_{jk} + C_i h_{00l}l_k(l_j - l_j) + C_j h_{ik} + C_j X_{00l}l_k(l_i - l_i)) \\
C^h_{ij}X_{hk} &= 1/(n + 1)(C_k h_{ij} + C_i h_{jk} + C_j h_{ik}) \\
C^h_{ij}X_{hk} &= C_{ijh}. \tag{7}
\end{align*}
\]

Theorem 2.1 In a C-reducible Finsler space the covariant tensor field X_{hk} satisfies (4) is of the form (7).

Consider a Semi-C-reducible Finsler space C^h_{ij} is given by [3],

\[
C^h_{ij} = (C^h_{hi} h_{ij} + C_i h^h + C_j h^h)/(n + 1) + (C^h_{i} C_{j})q/C^2. \tag{8}
\]

Now contracting above equation by X_{hk} and using equations (4) and (1)(d), we have

\[
\begin{align*}
C^h_{ij}X_{hk} &= X_{hk}(C^h_{hi} h_{ij} + C_i h^h + C_j h^h)/(n + 1) + X_{hk}(C^h_{i} C_{j})q/C^2, \\
C^h_{ij}X_{hk} &= (C^h_{hi} h_{hk} + X_{00l}l_k) + C_i h^h h_{hk} + X_{00l}l_k) + C_j h^h h_{hk} + X_{00l}l_k)) \\
&\quad p/(n + 1) + (C^h_{i} C_{j})h_{hk} + X_{00l}l_k)q/C^2, \\
C^h_{ij}X_{hk} &= (C_k h_{ij} + C_i h_{jk} + C_j h_{ik})p/(n + 1) + (C_k C_{i} C_{j})q/C^2, \\
C^h_{ij}X_{hk} &= C_{ijh}. \tag{9}
\end{align*}
\]

Theorem 2.2 In a Semi-C-reducible Finsler space the tensor field X_{hk} satisfies (4) is of the form (9).

Consider a Quasi-C-reducible Finsler space C^h_{ij} is given by [3],

\[
C^h_{ij} = (C^h_{i} A_{j} + C_i A^h + C_j A^h). \tag{10}
\]

Now contracting above equation by X_{hk} and using equations (4) and (1)(d), we have

\[
\begin{align*}
C^h_{ij}X_{hk} &= (C^h_{i} A_{j} + C_i A^h + C_j A^h)X_{hk}, \\
C^h_{ij}X_{hk} &= (C^h_{i} A_{j} h_{hk} + X_{00l}l_k) + C_i A^h h_{hk} + X_{00l}l_k(k) \\
&\quad + C_j A^h h_{hk} + X_{00l}l_k(k), \\
C^h_{ij}X_{hk} &= (C_k A_{ij} + C_i A_{jk} + C_j A_{ik}), \\
C^h_{ij}X_{hk} &= C_{ijh}. \tag{11}
\end{align*}
\]

Theorem 2.3 In a Quasi-C-reducible Finsler space the tensor field X_{hk} satisfies (4) is of the form (11) if $A^h h_{hk} = 0$.

Special Finsler spaces
3 The Existence Of Covariant Tensor X_{hk} In S3-Like Finsler Space:

In a S3-like Finsler space, whose $\nu-$ curvature tensor of cartons connection C is given by [5],

$$L^2S^m_{hk} = S(h_{ih}h^m_k - h_{ik}h^m_h).$$

(12)

Contacting above equation by X_{mj} and using equations (4) and (1)(d), we have

\[
\begin{align*}
L^2S^m_{ihk}X_{mj} &= S(h_{ih}h^m_k X_{mj} - h_{ik}h^m_h X_{mj}), \\
L^2S^m_{ihk}X_{mj} &= S[h_{ih}h^m_k (h_{mj} - X_{00}l_m l_j) - h_{ik}h^m_h (h_{mj} - X_{00}l_m l_j)], \\
L^2S^m_{ihk}X_{mj} &= S[h_{ih}h_{jk} - X_{00}h_{ik}h^m_h l_m l_j - h_{ik}h_{hj} + X_{00}h_{ik}h^m_h l_m l_j], \\
L^2S^m_{ihk}X_{mj} &= S[h_{ih}h_{jk} - h_{ik}h_{hj}], \\
L^2S^m_{ihk}X_{mj} &= S_{hijk}.
\end{align*}
\]

(13)

Theorem 3.1 In a S3-like Finsler space, the covariant tensor field X_{mj} satisfies (4) is of the form (13).

Next we consider S4-like Finsler space, whose ν-curvature tensor of cartons connection C is given by [7],

$$L^2S^m_{ihk} = h^m_i M_{ik} + h_{ik}M^m_h - h_{hk}M^m_i - h^m_i M_{hk}.$$

(14)

Contacting above equation by X_{mj} and using equations (4) and (1)(d), we have

\[
\begin{align*}
L^2S^m_{ihk}X_{mj} &= h^m_i M_{ik}X_{mj} + h_{ik}M^m_h X_{mj} - h_{hk}M^m_i X_{mj} - h^m_i M_{hk}X_{mj}, \\
L^2S^m_{ihk}X_{mj} &= h_{hj}M_{ik} + h_{ik}M_{hj} - h_{hk}M_{ij} - h_{ij}M_{hk}, \\
L^2S^m_{ihk}X_{mj} &= L^2S_{hijk}.
\end{align*}
\]

(15)

Theorem 3.2 In a S4-like Finsler space, the covariant tensor field X_{ij} satisfies (4) is of the form (15).

Next we consider a ν-curvature tensor of Cartons connection C is given by [2],

$$S^m_{ihk} = C^m_{hr}C^r_{ik} - C^m_{kr}C^r_{ih}.$$

(16)

Contacting above equation by X_{mj} and using equations (4) and (1)(d), we have

\[
\begin{align*}
S^m_{ihk}X_{mj} &= C^m_{hr}C^r_{ik}X_{mj} - C^m_{kr}C^r_{ih}X_{mj}, \\
S^m_{ihk}X_{mj} &= C^m_{hr}C^r_{ik}(h_{mj} + X_{00}l_m l_j) - C^m_{kr}C^r_{ih}(h_{mj} + X_{00}l_m l_j), \\
S^m_{ihk}X_{mj} &= C_{hjr}C^r_{ik} - C_{krj}C^r_{ih}, \\
S^m_{ihk}X_{mj} &= S_{hijk}.
\end{align*}
\]

(17)
Theorem 3.3 In a ν-curvature tensor, the covariant tensor field X_{mj} satisfies (4) is of the form (17).

Now we concerned with a space of scalar curvature in Berwald’s sense. It is characterized by the equation is [2]

$$R_{ij} = h^i_k k_j - h^i_j k_k.$$

(18)

where h_{ik} is the angular metric tensor and the scalar curvature K is a function scalar field.

Contacting above equation by X_{il} and using equations (4) and (1)(d), we get

$$R_{ij} X_{il} = h^i_k K_j X_{il} - h^i_j K_k X_{il},$$

$$R_{ij} X_{il} = h^i_k K_j h_{il} - h^i_j K_k X_{il},$$

$$R_{ij} X_{il} = K_j h_{ki} - K_k h_{jl},$$

$$R_{ij} X_{il} = R_{ijk}.$$

(19)

Theorem 3.4 In a space of scalar curvature tensor, the covariant tensor field X_{il} satisfies (4) is of the form (19).

4 The Existence Of Covariant Tensor X_{hk} In P-Reducible Finsler Space:

The P-reducible Finsler space is given as [5],

$$P^m_{jk} = (h^m_{jk} P_k + h^m_{jk} P_m + h^m_{jk} P_j)/(n + 1),$$ \hspace{1cm} (20)

Contacting above equation by X_{mi} and using equations (4) and (1)(d), we have

$$P^m_{jk} X_{mi} = (h^m_{jk} P_k X_{mi} + h^m_{jk} P^m_{jk} X_{mi} + h^m_{jk} P_j X_{mi})/(n + 1),$$

$$P^m_{jk} X_{mi} = (h^m_{jk} P_k (h_{mi} + X_{00} l_ml_l) + h^m_{jk} P^m_{jk} (h_{mi} + X_{00} l_ml_l) +$$

$$h^m_{jk} P^m_{jk} (h_{mi} + X_{00} l_ml_l))/(n + 1),$$

$$P^m_{jk} X_{mi} = (h_{ij} P_k + h_{jk} P_l + h_{ki} P_j)/(n + 1),$$

$$P^m_{jk} X_{mi} = P_{ijk}.$$ \hspace{1cm} (21)

Theorem 4.1 In a P-reducible Finsler space, the covariant tensor field X_{mi} satisfies (4) is of the form (21).

5 The Existence Of Covariant Tensor X_{hk} In C^h-Recurrent Finsler Space:

Now we consider a C^h-recurrent Finsler space is given as [2],

$$C^m_{jk/h} = \alpha C^m_{jk}.$$ \hspace{1cm} (22)
Contacting above equation by X_{mi} and using equations (4) and (1)(d), we can written as
\[
\begin{align*}
C_{jk/h}^m X_{mi} &= \alpha_h C_{jk}^m X_{mi}, \\
C_{jk/h}^m X_{mi} &= \alpha_h C_{jk}^m (h_{mi} + X_{00l}l_i), \\
C_{jk/h}^m X_{mi} &= \alpha_h C_{ijk}, \\
C_{jk/h}^m X_{mi} &= C_{ijk/h}.
\end{align*}
\tag{23}
\]

Theorem 5.1 In a C^h-recurrent Finsler space, the covariant tensor field X_{mi} satisfies (4) is of the form (23).

6 The Existence Of Covariant Tensor X_{hk} In T-Condition :

Finsler space satisfying T-condition can be defined as,[6]
\[
T^m_{ij} = L c^m_{ij} + l^m c_{ijk} + l_i c^m_{jk} + l_j c^m_{ik} + l_k c^m_{ij} = 0,
\tag{24}
\]
Contacting above equation by X_{hm} and using equations (4) and (1)(d), we have

\[
\begin{align*}
T^m_{ijk} X_{hm} &= L C^m_{ij/k} X_{hm} + l^m C_{ijk} X_{hm} + l_i C^m_{jk} X_{hm} + l_j C^m_{ik} X_{hm} + l_k C^m_{ij} X_{hm} = 0, \\
T^m_{ijk} X_{hm} &= L C^m_{ij/k} X_{hm} + l^m C_{ijk} (h_{hm} + X_{00l}l_m) + l_i C^m_{jk} (h_{hm} + X_{00l}l_m) + \\
&\hspace{1cm} l_j C^m_{ik} (h_{hm} + X_{00l}l_m) + l_k C^m_{ij} (h_{hm} + X_{00l}l_m) = 0, \\
T^m_{ijk} X_{hm} &= L C_{ij/k} + l^m C_{ijk} + l_i C_{ijk} + l_j C_{ijk} + l_k C_{ijk} = 0, \\
T^m_{ijk} X_{hm} &= T_{ijk} + X_{00l}C_{ijk} = 0, \\
T^m_{ijk} X_{hm} &= T_{ijk} = 0.
\end{align*}
\tag{25}
\]

Theorem 6.1 If the Finsler space satisfying T-condition, then the covariant tensor field X_{hm} satisfies (4) is of the form (25) provided $X_{00l}C_{ijk} = 0$.

Finsler space satisfying generalized T-condition can be defined as [5],
\[
T^h_j = L C^h_{ij} + l^h C_j + l_j C^h = 0.
\tag{26}
\]
Contacting above equation by X_{ih} and using equations (4) and (1)(d), we obtain

\[
\begin{align*}
T^h_j X_{ih} &= L C^h_{ij} X_{ih} + l^h C_j X_{ih} + l_j C^h X_{ih} = 0, \\
T^h_j X_{ih} &= L C^h_{ij} (h_{ih} + X_{00l}l_h) + l^h C_j (h_{ih} + X_{00l}l_h) + l_j C^h (h_{ih} + X_{00l}l_h) = 0, \\
T^h_j X_{ih} &= L C_{ij} + l_i C_j + l_j C_i = 0, \\
T^h_j X_{ih} &= T_{ij}.
\end{align*}
\tag{27}
\]
Theorem 6.2 If the Finsler space satisfying generalized T-Condition, then the covariant tensor field X_{ih} satisfies (4) is of the form (27).

References

Received: September 24, 2008