A Note on Fixed Point and Common Fixed Point Theorems in 2-Metric Spaces

Aage C. T.

Department of Mathematics
North Maharashtra University, Jalgaon
cage17@gmail.com

Salunke J. N.

Department of Mathematics
North Maharashtra University, Jalgaon
drjnsalunke@gmail.com

Abstract

This paper presents some fixed point theorems and common fixed point theorems in 2-metric spaces.

Mathematics Subject Classification: 54H25, 47H10

Keywords: fixed point, 2-metric space

1 Introduction

The concept of 2-metric space was initiated by S. Gahler [9]. The study was further enhanced by B. E. Rhoades[4], K. Iseki[5], A. K. Sharma[1, 2, 3], M. S. Khan[7] and M. Ashraf[6]. Moreover B. E. Rhoades and others introduced several properties of 2-metric spaces and proved some fixed point theorems for contractive and expansion mappings. In this same way, we prove a fixed point theorem and common fixed point theorems for the mappings satisfying different types of contractive conditions in 2-metric space.

2 Preliminary Notes

Definition 2.1 A 2-metric space is a space \(X \) in which for each triple of points, \(x, y, z \), there exists a real function \(d(x, y, z) \) such that
(i) To each pair of distinct points \(x, y \) in \(X \), there exists a point \(z \in X \) such that \(d(x, y, z) \neq 0 \),

(ii) \(d(x, y, z) = 0 \), when at least two of \(x, y, z \) are equal,

(iii) \(d(x, y, z) = d(y, z, x) = d(x, z, y) \),

(iv) \(d(x, y, z) \leq d(x, y, w) + d(x, w, z) + d(w, y, z) \), for all \(w \in X \).

From the above definition it is clear that \(d(x, y, z) \) is nonnegative.

Definition 2.2 A sequence in a 2-metric space \((X, d) \) is said to be convergent with limit \(x \in X \) if \(\lim d(x_n, x, a) = 0 \), for all \(a \in X \). It follows that if the sequence \(\{x_n\} \) converges to \(x \) then \(\lim_{n \to \infty} d(x_n, a, b) = d(x, a, b) \) for all \(a, b \in X \).

Definition 2.3 A sequence in a 2-metric space \(X \) is Cauchy if \(\lim_{n,m \to \infty} d(x_m, x_n, a) = 0 \), for all \(a \in X \).

Proposition 2.4 If a sequence is convergent in a 2-metric space then it is a Cauchy sequence.

Proposition 2.5 Limit of a sequence in a 2-metric space, if exist, is unique.

Proposition 2.6 If a sequence \(\{x_n\} \) in a 2-metric space converges to \(x \) then every subsequence of \(\{x_n\} \) also converges to the same limit \(x \).

Definition 2.7 A 2-metric space \((X, d) \) is said to be complete if every Cauchy sequence in \(X \) is convergent.

3 Main Results

Theorem 3.1 Let \((X, d) \) be a complete 2-metric Space. Let \(E \) be a continuous self map of \(X \), satisfying the conditions:

\[
(i) \quad d^2(Ex, Ey, a) \leq \alpha d(x, Ex, a) d(y, Ey, a) + \beta d(x, E, a) d(y, Ex, a) + \gamma d(y, Ey, a) d(y, Ex, a) + \delta d(x, Ey, a) d(y, Ex, a),
\]

for all \(x, y, a \in X \) and \(\alpha, \beta, \gamma, \delta \geq 0 \) with \(\max \{\alpha, \delta\} < 1 \). Then \(E \) has a unique fixed point in \(X \).

Proof:

Let \(x_0 \) be an arbitrary point in \(X \); define sequence \(\{x_n\} \) recurrently, \(Ex_0 = x_1, Ex_1 = x_2, \cdots Ex_n = x_{n+1}, \) where, \(n = 0, 1, 2, 3, \cdots \). Now by (i) we have

\[
d^2(x_1, x_2, a) = d^2(Ex_0, Ex_1, a)
\]
\[
\begin{align*}
&\leq \alpha d(x_0, Ex_0, a)d(x_1, Ex_1, a) + \beta d(x_0, Ex_0, a)d(x_1, Ex_0, a) \\
&\quad + \gamma d(x_1, Ex_1, a)d(x_1, Ex_0, a) + \delta d(x_0, Ex_1, a)d(x_1, Ex_0, a) \\
&= \alpha d(x_0, x_1, a)d(x_1, x_2, a) + \beta d(x_0, x_1, a)d(x_1, x_1, a) \\
&\quad + \gamma d(x_1, x_2, a)d(x_1, x_1, a) + \delta d(x_0, x_2, a)d(x_1, x_1, a)
\end{align*}
\]

i.e.
\[
\begin{align*}
d^2(x_1, x_2, a) &\leq \alpha d(x_0, x_1, a)d(x_1, x_2, a) \\
d(x_1, x_2, a) &\leq \alpha d(x_0, x_1, a)
\end{align*}
\]

Similarly,
\[
\begin{align*}
d(x_2, x_3, a) &\leq \alpha d(x_1, x_2, a) \\
&\leq \alpha \alpha d(x_0, x_1, a) \\
&= \alpha^2 d(x_0, x_1, a) \\
&\quad \cdots \\
&\quad \cdots
\end{align*}
\]

i.e.
\[
\begin{align*}
d(x_n, x_{n+1}, a) &\leq \alpha^n d(x_0, x_1, a).
\end{align*}
\]

We claim that the sequence \(\{x_n\}\) is a Cauchy sequence in \(X\).

For \(m > n\), we have
\[
\begin{align*}
d(x_n, x_m, a) &\leq d(x_n, x_m, x_{n+1}) + d(x_n, x_{n+1}, a) + d(x_{n+1}, x_m, a) \\
&= d(x_n, x_{n+1}, x_m) + d(x_n, x_{n+1}, a) + d(x_{n+1}, x_m, a) \\
&\leq \alpha^n d(x_0, x_1, x_m) + \alpha^n d(x_0, x_1, a) + d(x_{n+1}, x_m, a) \\
&\leq \alpha^n d(x_0, x_1, x_m) + \alpha^n d(x_0, x_1, a) + d(x_{n+1}, x_m, x_{n+2}) \\
&\quad + d(x_{n+1}, x_{n+2}, a) + d(x_{n+2}, x_m, a) \\
&\leq (\alpha^n + \alpha^{n+1})d(x_0, x_1, x_m) \\
&\quad + (\alpha^n + \alpha^{n+1})d(x_0, x_1, a) + d(x_{n+2}, x_m, a) \\
&\quad \cdots \\
&\leq (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(x_0, x_1, x_m) \\
&\quad + (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(x_0, x_1, a) + d(x_{m-1}, x_m, a) \\
&\leq (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(x_0, x_1, x_m) \\
&\quad + (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2} + \alpha^{m-1})d(x_0, x_1, a) \\
&\leq \frac{\alpha^n}{1 - \alpha}d(x_0, x_1, x_m) + \frac{\alpha^n}{1 - \alpha}d(x_0, x_1, a).
\end{align*}
\] (1)
Again, we have
\[
d(x_0, x_1, x_m) \leq d(x_0, x_1, x_{m-1}) + d(x_0, x_{m-1}, x_m) + d(x_{m-1}, x_1, x_m)
\]
\[
= d(x_0, x_1, x_{m-1}) + d(x_{m-1}, x_m, x_0) + d(x_{m-1}, x_m, x_1)
\]
\[
\leq d(x_0, x_1, x_{m-1}) + \alpha^{m-1}d(x_0, x_1, x_0) + \alpha^{m-2}d(x_1, x_2, x_1)
\]
\[
= d(x_0, x_1, x_{m-1})
\]
i.e.
\[
d(x_0, x_1, x_m) \leq d(x_0, x_1, x_{m-1})
\]
\[
\leq d(x_0, x_1, x_{m-2})
\]
\[
\cdots
given that if
\[
d(x_0, x_1, x_m) \leq d(x_0, x_1, x_1) = 0.
\]
Hence \(d(x_0, x_1, x_m) = 0\).

As \(n, m \to \infty\) in eq (1), we have
\[
d(x_n, x_m, a) \to 0.
\]

Thus \(\{x_n\}\) is a Cauchy sequence in the complete 2-metric space, there exist a point \(u \in X\) such that \(\{x_n\} \to u\). Since \(E\) is continuous, by proposition (2.6) we have
\[
E(u) = \lim E(x_n) = \lim x_{n+1} = u.
\]

Thus \(E(u) = u\). So \(E\) has a fixed point.

Uniqueness:

In order to prove that \(u\) is the unique fixed point of \(E\). Consider \(u, v\) as fixed point of \(E\). Then \(d(u, v, a) = d(Eu, Ev, a)\) and
\[
d^2(u, v, a) = d^2(Eu, Ev, a)
\]
\[
\leq \alpha d(u, Eu, a)d(v, Ev, a) + \beta d(u, Eu, a)d(v, Eu, a)
\]
\[
+ \gamma d(v, Ev, a)d(v, Eu, a) + \delta d(u, Ev, a)d(v, Eu, a)
\]
\[
= \alpha d(u, u, a)d(v, v, a) + \beta d(u, u, a)d(v, v, a)
\]
\[
+ \gamma d(v, v, a)d(v, v, a) + \delta d(u, v, a)d(v, u, a)
\]
\[
= \delta d^2(u, v, a)
\]
i.e. \(d^2(u, v, a) \leq \delta d^2(u, v, a)\). This proves that \(d^2(u, v, a) = 0\) i.e. \(d(u, v, a) = 0\) for all \(a \in X\), since \(\delta < 1\). Therefore \(u = v\) and hence uniqueness of fixed point follows.
Theorem 3.2 Let \((X,d)\) be a complete 2-metric space. Let \(E\) and \(T\) be two continuous self mappings of \(X\), satisfying the conditions:

(i) \(ET = TE\), \(E(X) \subset T(X)\)

(ii)
\[
d^2(Ex, Ey, a) \leq \alpha d(Tx, Ex, a)d(Ty, Ey, a) + \beta d(Tx, Ex, a)d(Ty, Ex, a) \\
+ \gamma d(Ty, Ey, a)d(Ty, Ex, a) + \delta d(Tx, Ey, a)d(Ty, Ex, a),
\]

for all \(x, y, a \in X\) and \(\alpha, \beta, \gamma \geq 0\) with \(\max \{\alpha, \delta\} < 1\). Then \(E\) and \(T\) have a unique common fixed point in \(X\).

Proof:
Let \(x_0\) be an arbitrary point in \(X\), since \(E(X) \subset T(X)\), we can choose \(x_1 \in X\) such that \(Ex_0 = Tx_1, Ex_1 = Tx_2, \ldots, Ex_n = Tx_{n+1}\). For \(n = 1, 2, 3, \ldots\) we have \(d(Tx_{n+1}, Tx_{n+2}, a) = d(Ex_n, Ex_{n+1}, a)\), for all \(a \in X\).

\[
d^2(Tx_{n+1}, Tx_{n+2}, a) \\
= d^2(Ex_n, Ex_{n+1}, a) \\
\leq \alpha d(Tx_n, Ex_n, a)d(Tx_{n+1}, Ex_{n+1}, a) + \beta d(Tx_n, Ex_n, a)d(Tx_{n+1}, Ex_n, a) \\
+ \gamma d(Tx_{n+1}, Ex_{n+1}, a)d(Tx_{n+1}, Ex_n, a) + \delta d(Tx_n, Ex_{n+1}, a)d(Tx_{n+1}, Ex_n, a) \\
= \alpha d(Tx_n, Tx_{n+1}, a)d(Tx_{n+1}, Tx_{n+2}, a) + \beta d(Tx_n, Tx_{n+1})d(Tx_{n+1}, Tx_{n+2}, a) \\
+ \gamma d(Tx_{n+1}, Tx_{n+2}, a)d(Tx_{n+1}, Tx_{n+1}, a) + \delta d(Tx_n, Tx_{n+2}, a)d(Tx_{n+1}, Tx_{n+1}, a) \\
= \alpha d(Tx_n, Tx_{n+1}, a)d(Tx_{n+1}, Tx_{n+2}, a),
\]

\[
\Rightarrow \, d(Tx_{n+1}, Tx_{n+2}, a) \leq \alpha d(Tx_n, Tx_{n+1}, a).
\]

Also \(d(Tx_n, Tx_{n+1}, a) \leq \alpha d(Tx_{n-1}, Tx_n, a)\) for all \(a \in X\). Hence

\[
d(Tx_{n+1}, Tx_{n+2}, a) \leq \alpha^n d(Tx_1, Tx_2, a) \\
\leq \alpha^{n+1} d(Tx_0, Tx_1, a).
\]

We claim that the sequence \(\{Tx_n\}\) is a Cauchy sequence in \(X\).
For \(m > n\), we have

\[
d(Tx_n, Tx_m, a) \leq d(Tx_n, Tx_m, Tx_{n+1}) + d(Tx_n, Tx_{n+1}, a) + d(Tx_{n+1}, Tx_m, a) \\
= d(Tx_n, Tx_{n+1}, Tx_m) + d(Tx_n, Tx_{n+1}, a) + d(Tx_{n+1}, Tx_m, a) \\
\leq \alpha^n d(Tx_0, Tx_1, Tx_m) + \alpha^n d(Tx_0, Tx_1, a) + d(Tx_{n+1}, Tx_m, a) \\
\leq \alpha^n d(Tx_0, Tx_1, Tx_m) + \alpha^n d(Tx_0, Tx_1, a) \\
+ d(Tx_{n+1}, Tx_m, Tx_{n+2}) \\
+ d(Tx_{n+1}, Tx_{n+2}, a) + d(Tx_{n+2}, Tx_m, a) \\
\leq (\alpha^n + \alpha^{n+1})d(Tx_0, Tx_1, Tx_m)
\]
\begin{align*}
+ (\alpha^n + \alpha^{n+1})d(Tx_0, Tx_1, a) + d(Tx_{n+2}, Tx_m, a) \\
\cdots \\
\leq (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(Tx_0, Tx_1, Tx_m) \\
+ (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(Tx_0, Tx_1, a) \\
+ d(Tx_{m-1}, Tx_m, a) \\
\leq (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2})d(Tx_0, Tx_1, Tx_m) \\
+ (\alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-2} + \alpha^{m-1})d(Tx_0, Tx_1, a) \\
\leq \frac{\alpha^n}{1 - \alpha}d(Tx_0, Tx_1, Tx_m) + \frac{\alpha^n}{1 - \alpha}d(Tx_0, Tx_1, a).
\end{align*}

Again, we have
\begin{align*}
 d(Tx_0, Tx_1, Tx_m) &\leq d(Tx_0, Tx_1, Tx_{m-1}) + d(Tx_{m-1}, Tx_0) \\
 &\leq d(Tx_0, Tx_1, Tx_{m-1}) + d(Tx_{m-1}, Tx_0) \\
 &= d(Tx_0, Tx_1, Tx_{m-1}) + d(Tx_1, Tx_0) \\
 &\leq d(Tx_0, Tx_1, Tx_{m-1}) + \alpha^{m-1}d(Tx_0, Tx_1, Tx_0) \\
 &\leq d(Tx_0, Tx_1, Tx_{m-1}) + \alpha^{m-1}d(Tx_0, Tx_1, Tx_0) \\
 &= d(Tx_0, Tx_1, Tx_{m-1}).
\end{align*}
i.e.
\begin{align*}
 d(Tx_0, Tx_1, Tx_m) &\leq d(Tx_0, Tx_1, Tx_{m-1}) \\
 &\leq d(Tx_0, Tx_1, Tx_{m-2}) \\
 \cdots \\
\end{align*}

In this way
\begin{align*}
 d(Tx_0, Tx_1, Tx_m) &\leq d(Tx_0, Tx_1, Tx_1) = 0.
\end{align*}

Hence \(d(Tx_0, Tx_1, Tx_m) = 0\).

As \(n, m \to \infty\) in eq (2), we have
\[d(Tx_n, Tx_m, a) \to 0.\]

Thus \(\{Tx_n\}\) is a Cauchy sequence in the complete 2-metric space, the sequence \(\{Tx_n\}\), \(n \in \mathbb{N}\) converges to some \(u \in X\).

\[\lim_{n \to \infty} Tx_n = u = \lim_{n \to \infty} Tx_{n+1} = \lim_{n \to \infty} Ex_n.\]
Now $TEx_n = ETx_n$ and continuity of T, E (using $n \to \infty$) yield $Tu = Eu$. We claim that $Tu = u$.

\[
\begin{align*}
d^2(Tu, u, a) &= \lim_{n \to \infty} d^2(Eu, Ex_n, a) \\
&\leq \lim_{n \to \infty} \left[\alpha d(Tu, Eu, a)d(Tx_n, Ex_n, a) + \beta d(Tu, Eu, a)d(Tx_n, Eu, a) + \gamma d(Tx_n, Ex_n, a)d(Tx_n, Eu, a) + \delta d(Tx_n, Eu, a)d(Tx_n, Eu, a) \right] \\
&= \alpha d(Tu, Tu, a)d(u, u, a) + \beta d(Tu, Tu, a)d(u, Tu, a) + \gamma d(u, u, a)d(v, u, a) + \delta d(u, v, a)d(v, u, a) \\
&= \delta d^2(Tu, u, a).
\end{align*}
\]

Since $\delta < 1$, we have $d^2(Tu, u, a) = 0 \Rightarrow d(Tu, u, a) = 0$ for all $a \in X$. This implies that $Tu = u$. Therefore $Tu = Eu = u$. Thus u is common fixed point of E and T.

Uniqueness:

For the uniqueness of the common fixed point. Consider u, v as common fixed points of E and T; so $d(u, v, a) = d(Eu, Ev, a)$. Then from (ii)

\[
\begin{align*}
d^2(u, v, a) &= d^2(Eu, Ev, a) \\
&\leq \alpha d(Tu, Eu, a)d(Tv, Ev, a) + \beta d(Tu, Eu, a)d(Tv, Eu, a) + \gamma d(Tv, Ev, a)d(Tv, Eu, a) + \delta d(Tv, Eu, a)d(Tv, Eu, a) \\
&= \alpha d(u, u, a)d(v, v, a) + \beta d(u, u, a)d(v, u, a) + \gamma d(v, v, a)d(v, u, a) + \delta d(u, v, a)d(v, u, a) \\
&= \delta d^2(u, v, a).
\end{align*}
\]

So $d^2(u, v, a) \leq \delta d^2(u, v, a)$.

This gives $d^2(u, v, a) = 0$ i.e. $d(u, v, a) = 0$ for all $a \in X$, since $\delta < 1$. Hence $u = v$ which show that E and T have a common fixed point.

Theorem 3.3 Let (X, d) be a complete 2-metric space. Let E, F and T be three continuous self mappings of X, satisfying the conditions:

(i) $ET = TE, FT = TF, E(X) \subset T(X), F(X) \subset T(X)$

(ii)

\[
\begin{align*}
d^2(Ex, Fy, a) &\leq \alpha d(Tx, Ex, a)d(Ty, Fy, a) + \beta d(Tx, Ex, a)d(Ty, Ex, a) + \gamma d(Ty, Fy, a)d(Ty, Ex, a) + \delta d(Ty, Fy, a)d(Ty, Ex, a),
\end{align*}
\]

for all $x, y, a \in X$ and $\alpha, \beta, \gamma \geq 0$ with $\max\{\alpha, \delta\} < 1$. Then E, F and T have a unique common fixed point in X.
Proof:
Let \(x_0 \) be a point in \(X \). Since \(E(X) \subset T(X) \), we can choose a point \(x_1 \) in \(X \) such that \(Tx_1 = Ex_0 \), also \(F(X) \subset T(X) \). We can choose a point \(x_2 \) in \(X \) such that \(Tx_2 = Fx_1 \). In general we can choose the point

\[
\begin{align*}
Tx_{2n+1} &= Ex_{2n} \\
Tx_{2n+2} &= Fx_{2n+1}.
\end{align*}
\] (3)

\[
\begin{align*}
Tx_{2n+1} &= Ex_{2n} \\
Tx_{2n+2} &= Fx_{2n+1}.
\end{align*}
\] (4)

For every \(n \in N \), we have

\[
d^2(Tx_{2n+1}, Tx_{2n+2}, a) = d^2(Ex_{2n}, Fx_{2n+1}, a) \\
\leq \alpha d(Tx_{2n}, Ex_{2n}, a)d(Tx_{2n+1}, Fx_{2n+1}, a) \\
+ \beta d(Tx_{2n}, Ex_{2n}, a)d(Tx_{2n+1}, Ex_{2n}, a) \\
+ \gamma d(Tx_{2n+1}, Fx_{2n+1}, a)d(Tx_{2n+1}, Ex_{2n}, a) \\
+ \delta d(Tx_{2n}, Fx_{2n+1}, a)d(Tx_{2n+1}, Ex_{2n}, a) \\
= \alpha d(Tx_{2n}, Tx_{2n+1}, a)d(Tx_{2n+1}, Tx_{2n+2}, a) \\
+ \beta d(Tx_{2n}, Tx_{2n+1}, a)d(Tx_{2n+1}, Tx_{2n+1}, a) \\
+ \gamma d(Tx_{2n+1}, Tx_{2n+2}, a)d(Tx_{2n+1}, Tx_{2n+1}, a) \\
+ \delta d(Tx_{2n}, Tx_{2n+1}, a)d(Tx_{2n+1}, Tx_{2n+1}, a).
\]

Thus, \(d^2(Tx_{2n+1}, Tx_{2n+2}, a) \leq \alpha d(Tx_{2n}, Tx_{2n+1}, a)d(Tx_{2n+1}, Tx_{2n+2}, a) \)
i.e. \(d(Tx_{2n+1}, Tx_{2n+2}, a) \leq \alpha d(Tx_{2n}, Tx_{2n+1}, a), \) for \(n = 1, 2, 3, \cdots \). Similarly we have

\[
d(Tx_{2n}, Tx_{2n+1}, a) \leq \alpha d(Tx_{2n-1}, Tx_{2n}, a) \quad \text{etc.}
\]

Hence

\[
d(Tx_{2n+1}, Tx_{2n+2}, a) \leq \alpha^n d(Tx_1, Tx_0, a), \quad \text{for all } n \in N, \ a \in X.
\]

As same procedure in equation (2) we have the sequence \(\{Tx_n\} \) as a Cauchy sequence in complete 2-metric space. This implies the sequence \(\{Tx_n\}, n \in N \) converges to some \(u \) in \(X \). So by (3) and (4), \((Ex_{2n}), n \in N \), and \((Fx_{2n+1}), n \in N \) also converges to the some point \(u \). Thus

\[
\lim_{n \to \infty} Tx_n = u = \lim_{n \to \infty} Ex_{2n} = \lim_{n \to \infty} Fx_{2n+1}.
\]

Using \(ET = TE, FT = TF \) and continuity of \(E, F \) and \(T \), we obtain

\[
Fu = Tu = Eu
\] (5)

Thus

\[
E(Eu) = E(Tu) = T(Eu) = T(Fu) = F(Tu) = F(Eu)
\] (6)
So by (3), (4), (5) and (6) we have,
\[d^2(Eu, F(Eu), a) \leq \alpha d(Tu, Eu, a)d(T(Eu), F(Eu), a) \\
+ \beta d(Tu, Eu, a)d(T(Eu), Eu, a) \\
+ \gamma d(T(Eu), F(Eu), a)d(T(Eu), Eu, a) \\
+ \delta d(Tu, F(Eu), a)d(T(Eu), Eu, a) \\
= \alpha d(Eu, Eu, a)d(T(Eu), F(Eu), a) \\
+ \beta d(Eu, Eu, a)d(T(Eu), Eu, a) \\
+ \gamma d(T(Eu), F(Eu), a)d(T(Eu), Eu, a) \\
+ \delta d(Eu, F(Eu), a)d(F(Eu), Eu, a) \\
= \delta d(Eu, F(Eu), a)d(Eu, F(Eu), a) \\
= \delta d^2(Eu, F(Eu), a) \]
i.e. \(d^2(Eu, F(Eu), a) \leq \delta d(Eu, F(Eu), a)d(Eu, F(Eu), a) \)
\(\Rightarrow d(Eu, F(Eu), a) \leq \delta d(Eu, F(Eu), a) \), which gives \(d(Eu, F(Eu), a) = 0 \) for all \(a \in X \), since \(\delta < 1 \). Hence
\[Eu = F(Eu) \] (7)
From (6) & (7) we have \(Eu = F(Eu) = T(Eu) = E(Eu) \). Hence \(Eu \) is a common fixed point of \(E, F \) and \(T \).

Uniqueness:
Let \(x \) and \(y \) be two common fixed points of \(E, F \) and \(T \). So \(d(x, y, a) = d(Ex, Fy, a) \). Then by (ii), we have
\[d^2(x, y, a) = d^2(Ex, Fy, a) \]
\[\leq \alpha d(Tx, Fx, a)d(Ty, Fy, a) + \beta d(Tx, Ex, a)d(Ty, Ey, a) \\
+ \gamma d(Ty, Fy, a)d(Ty, Ex, a) + \delta d(Tx, Fy, a)d(Ty, Ex, a) \]
So \(d^2(x, y, a) \leq \delta d^2(x, y, a) \). Since \(\delta < 1 \). We have \(d^2(x, y, a) = 0 \) \(\Rightarrow d(x, y, a) = 0 \). Hence \(x = y \). So \(E, F \) and \(T \) have unique common fixed point.

Theorem 3.4 Let \((X, d) \) be a complete 2-metric space. Let \(E, F \) and \(T \) be three continuous self mappings of \(X \), satisfying the conditions:

(i) \(ET = TE, FT = TF, E(X) \subset T(X), F(X) \subset T(X) \)

(ii) \[d^2(E^p x, F^q y, a) \leq \alpha d(Tx, E^p x, a)d(TEy, F^q y, a) + \beta d(Tx, E^p x, a)d(TEy, E^p x, a) \\
+ \gamma d(Ty, F^q y, a)d(Ty, E^p x, a) + \delta d(Tx, F^q y, a)d(Ty, E^p x, a) \]

For all \(x, y, a \in X \), \(Tx \neq Ty \) and \(\alpha, \beta, \gamma \geq 0 \) with \(\max\{\alpha, \delta\} < 1 \). If some positive integer \(p, q \) exist such that \(E^p, F^q \) and \(T \) are continuous, Then \(E, F \) and \(T \) have a unique common fixed point in \(X \).
Proof:

It follows from (i)

\[E^p T = T E^p, F^q T = T F^q, E^p (X) \subset T (X) \quad \text{and} \quad F^q (X) \subset T (X) \] (8)

By theorem (3.2), we have \(T, E^p \) and \(F^q \) have a unique common fixed \(u \in X \). Then

\[T (E u) = E (T u) = E (u) = E (E^p u) = E^p (E u) \] (9)

and

\[T (F u) = F (T u) = F (u) = F (F^q u) = F^q (F u). \] (10)

By (ii)

\[
\begin{align*}
&d^2(E u, F u, a) = d^2(E^p(E u), F^q(F u), a) \\
&\quad \leq \alpha d(T(E u), E^p(E u), a)d(T E(F u), F^q(F u), a) \\
&\quad + \beta d(T(E u), E^p(E u), a)d(T E(F u), F^q(F u), a) \\
&\quad + \gamma d(T(F u), F^q(F u), a)d(T(F u), E^p(E u), a) \\
&\quad + \delta d(T(E u), F^q(F u), a)d(T(F u), E^p(E u), a) \\
&\quad = \delta d^2(E u, F u, a) \quad \text{for all} \ a \in X.
\end{align*}
\]

By (9) and (10)

\[\Rightarrow d(E u, F u, a) = 0 \quad \text{for all} \ a \in X, \ \text{since} \ \delta < 1. \]

This shows that \(E u = F u \). Hence \(E u \) is common fixed point of \(T, E^p \) and \(F^q \) is a common fixed point of \(T \) and \(F^q \). The uniqueness of \(u \), from (9) and (10) implies \(u = E u = F u = T u \). This completes the proof of the theorem.

Theorem 3.5 Let \((X, d)\) be a complete 2-metric space. Let \(E, F \) and \(T \) be three continuous self mappings of \(X \), satisfying the conditions:

(i) \(E F T = T E F, F E T = T E F, E F (X) \subset T (X), F E (X) \subset T (X) \)

(ii)

\[
\begin{align*}
&d^2(E F x, F E y, a) \leq \alpha d(T x, E F y, a)d(T y, F E y, a) + \beta d(T x, E F x, a)d(T y, E F x, a) \\
&\quad + \gamma d(T y, F E y, a)d(T y, E F x, a) + \delta d(T x, F E y, a)d(T y, E F x, a).
\end{align*}
\]

For all \(x, y, a \in X \), with \(T x \neq T y \) and \(\alpha, \beta, \gamma \geq 0 \) with \(\alpha < 1, 0 \leq \delta < 1 \). Further if \(T, E F \) and \(F E \) are continuous, then \(E, F \) and \(T \) have a unique common fixed point in \(X \).
Proof: - Let $EF = S_1$ and $FE = S_2$ then by (ii)

$$d^2(S_1x, S_2y, a) \leq \alpha d(Tx, S_1y, a)d(Ty, S_2y, a)$$
$$+ \beta d(Tx, S_1x, a)d(Ty, S_1x, a)$$
$$+ \gamma d(Ty, S_2y, a)d(Ty, S_1x, a)$$
$$+ \delta d(Tx, S_2y, a)d(TyS_1x, a),$$

For all $x, y \in X$ and $\alpha, \beta, \gamma \geq 0$ with $\alpha < 1, 0 \leq \delta < 1$. And conditions $S_2T = TS_2, S_1T = TS_1, S_1(X) \subset T(X)$ and $S_2(x) \subset T(X)$ are satisfied. Further T, S_1 and S_2 are continuous self mapping of X. Therefore by theorem (3.3), there exists a unique fixed point u such that $u = S_1u = S_2u = Tu$ also, $Eu = E(S_2u) = EF(Eu) = S_1(Eu)$ and $Fu = F(S_1u) = FE(Fu) = S_2(Fu)$. This means that Eu is a fixed point of S_1 and Fu is a fixed point of S_2. The uniqueness of u implies $u = Tu = Eu = Fu$. This completes the proof of the theorem.

References

Received: July 2, 2008