On the Continuity of Restriction Maps

Yüksel Soykan

Zonguldak Karaelmas University
Art and Science Faculty
Department of Mathematics
67100, Zonguldak, Turkey
yuksel_soykan@hotmail.com

Abstract
In this paper, we prove that the restriction maps define continuous linear operators on the Hardy space of unit disk.

Mathematics Subject Classification. 30D55, 42B30, 58C07

Keywords: Hardy spaces, Restriction Maps, Continuity of Maps

1 Introduction

As usual, we define the Hardy space $H^2 = H^2(\Delta)$ as the space of all functions $f : z \to \sum_{n=0}^{\infty} a_n z^n$ for which the norm $\|f\|_{H^2} = \left(\sum_{n=0}^{\infty} |a_n|^2 \right)^{1/2}$ is finite. Here, Δ is the open unit disc. If $f \in H^2$ then we also have $\|f\|_{H^2}^2 = \frac{1}{2\pi} \int_{\partial \Delta} |f(z)|^2 |dz|$ where $\partial \Delta$ is the boundary of Δ. The reader is referred to [1], [2], [3], and references therein for the basic properties of these spaces.

Let ω be an analytic and conformal map in a neighbourhood of $I = [0, 1]$ onto Δ and let $\gamma = \omega(I) \subseteq \overline{\Delta}$. If $S \subseteq \Delta$ is a simply connected domain, define the measure μ by

$$\mu(S) = \frac{\text{arc length measure of } (S \cap \gamma)}{2\pi}.$$

Note that

$$d\mu = \frac{|dz|}{2\pi} = \frac{1}{2\pi i} \frac{dz}{z}.$$

Definition 1 For $0 < h < 1$ and $\theta \in (0, 2\pi)$ let $E_{h\theta} = \{ re^{\theta} : 1 - h \leq r < 1; \theta_0 \leq \theta \leq \theta_0 + h \}$. A positive measure μ on $\overline{\Delta}$ is called a Carleson measure if there is some constant A such that $\mu(E_{h\theta}) \leq Ah$ for every h and for every θ.
The main aim of this work is to prove the following theorem. For similar work regarding restriction maps, see [4].

Theorem 1 Let \(\omega \) be analytic and conformal in a neighbourhood \(N \) of \(I = [0, 1] \) onto \(\Delta \) and let \(\gamma = \omega(I) \subseteq \overline{\Delta} \) (note that by definition then \(\gamma \) is an analytic arc). Then for every \(f \in H^2(\Delta) \), there is a constant \(C > 0 \) such that

\[
\int_{\gamma} |f(z)|^2 \frac{|dz|}{2\pi} \leq C^2 \|f\|_{H^2}^2
\]

(i.e. the restriction \(f \to f|_{\gamma} \) defines a continuous linear operator mapping \(H^2(\Delta) \) into \(L^2(\gamma, |dz|/2\pi) \)).

The proof is based on the Carleson theorem which we now state for the convenience. For a proof, see Duren [2].

Theorem 2 (Carleson) Suppose that \(\mu \) is a finite measure on \(|z| < 1 \). Then \(\mu \) is a Carleson measure if and only if there exists a constant \(C \) such that

\[
\int_{|z| < 1} |f(z)|^2 d\mu(z) \leq C^2 \|f\|_{H^2}^2 \quad \text{for all } f \in H^2.
\]

2 Proof of Theorem 1

Before giving the proof of Theorem 1 we need also two lemmas.

Lemma 3 Let

\[
F(s, t) = \begin{cases}
\frac{\omega(s) - \omega(t)}{s - t}, & \text{if } s \neq t \\
\omega'(t), & \text{if } s = t
\end{cases}
\]

Then there is some \(\delta > 0 \) such that \(|F(s, t)| \geq \delta \) on \(I \times I \) so that

\[
|\omega(s) - \omega(t)| \geq \delta |s - t|
\]

for \(s, t \in I \).

Proof. Let \(\Gamma \subset N \) be a curve. For \(s \neq t \)

\[
F(s, t) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\omega(\zeta)}{s - t} (\frac{1}{\zeta - s} - \frac{1}{\zeta - t}) d\zeta = \frac{1}{2\pi i} \int_{\Gamma} \frac{\omega(\zeta)}{(\zeta - s)(\zeta - t)} d\zeta
\]

also true for \(s = t \). So \(F \) is continuous on \(I \times I \) and nowhere 0 on \(I \times I \). Hence \(\inf_{s, t \in I} |F(s, t)| = \delta > 0 \).
Lemma 4 Let \(z_1 = r_1 e^{i\theta_1}, \ z_2 = r_2 e^{i\theta_2} \) where \(0 \leq r_1, r_2 \leq 1 \) (i.e. \(r_1, r_2 \in \Delta \)) and \(\theta_1, \theta_2 \in \mathbb{R} \). Then
\[
|z_1 - z_2| \leq (r_1 - r_2)^2 + (\theta_1 - \theta_2)^2.
\]

Proof. We have
\[
|z_1 - z_2| = (r_1 \cos \theta_1 - r_2 \cos \theta_2)^2 + (r_1 \sin \theta_1 - r_2 \sin \theta_2)^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2).
\]

Now
\[
\cos x \geq 1 - \frac{x^2}{2}
\]
for all \(x \in \mathbb{R} \). Hence
\[
|z_1 - z_2| \leq r_1^2 + r_2^2 - 2r_1r_2 + 2\frac{r_1r_2}{2}(\theta_1 - \theta_2)^2
\leq (r_1 - r_2)^2 + (\theta_1 - \theta_2)^2.
\]

Proof of Theorem 1:
Note that if \(\gamma = \omega(I) \subseteq \partial \Delta \), then it is easy to see the validity of the required inequality. Now we consider the other cases of \(\gamma \) (i.e. \(\gamma \subseteq \overline{\Delta} \) but \(\gamma \nsubseteq \partial \Delta \)). Let \(\theta \in (0, 2\pi) \) and \(0 < h < 1 \). Suppose \(\omega(t) \in E_{h\theta} \). For every \(s \in I \), we have \(\delta^2 |s - t|^2 \leq |\omega(s) - \omega(t)|^2 \). Suppose \(\omega(s) = r_1 e^{i\theta_1} \) and \(\omega(t) = r_1 e^{i\theta_2} \). Then
\[
(r_1 - r_2)^2 + (\theta_1 - \theta_2)^2 \geq \delta^2 |s - t|^2.
\]

So if \(|s - t|^2 \geq \frac{3h^2}{\delta^2} \), then
\[
(r_1 - r_2)^2 + (\theta_1 - \theta_2)^2 \geq 3h^2
\]
and so either
\[
|r_1 - r_2| > h \text{ or } |\theta_1 - \theta_2| > h
\]
for any argument \(\theta_1 \) for \(\omega(s) \), \(\theta_2 \) for \(\omega(t) \). In other case \(\omega(s) \notin E_{h\theta} \). So
\[
\omega^{-1}(E_{h\theta} \cap \gamma) \subseteq [t - \frac{\sqrt{3}}{\delta}h, \ t + \frac{\sqrt{3}}{\delta}h]
\]
and then
\[
\mu(E_{h\theta}) = \frac{\text{arc length measure of } (E_{h\theta} \cap \gamma)}{2\pi} = \frac{1}{2\pi} \int_{\omega^{-1}(E_{h\theta} \cap \gamma)} |\omega'(s)| \, ds
\leq \frac{1}{2\pi} \left(\frac{2\sqrt{3}}{\delta} \|\omega'\|_{\infty} \right) h = Ah.
\]
Now required result follows from Theorem 2.
References

Received: January 29, 2008