On Critical Exponent for Existence of Positive Solutions for Some Semipositone Problems Involving the Weight Function

G. A. Afrouzi, J. Vahidi and S. H. Rasouli

Abstract

In this paper, we study existence of positive solution for the semipositone problem of the form

\[-\Delta u = \lambda m(x)u^\alpha - c, \quad x \in \Omega,\]
\[u(x) = 0, \quad x \in \partial\Omega,\]

where \(\Delta\) denote the Laplacian operator, \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\) with \(\partial\Omega\) of class \(C^2\), \(\lambda, c\) are positive parameters and the weight \(m(x)\) satisfying \(m(x) \in C(\Omega)\) and \(m(x) \geq m_0 > 0\) for \(x \in \Omega\). A critical exponent is obtained for existence of positive solution by applying the method of sub-super solution.

Mathematics Subject Classification: 35J55

Keywords: Semipositone problem; Positive solutions, Method of sub-super solution

1 Introduction

In this work, we consider the existence of positive solution to boundary value problem of the form

\[-\Delta u = \lambda m(x)u^\alpha - c, \quad x \in \Omega,\]
\[u(x) = 0, \quad x \in \partial\Omega,\]

(1)
where Δ denote the Laplacian operator, Ω is a smooth bounded domain in \mathbb{R}^N with $\partial \Omega$ of class C^2, λ, c are positive parameters and the weight $m(x)$ satisfying $m(x) \in C(\Omega)$ and $m(x) \geq m_0 > 0$ for $x \in \Omega$.

Here we consider the challenging semipositone case $c > 0$. Semipositone problems have been of great interest during the past two decades, and continue to pose mathematically difficult problems in the study of positive solutions (see [6, 7]). We refer to [1, 2, 3] for additional results in semipositone problems. Our approach is based on the method of sub-super solutions, see [4, 8].

2 Existence results

We first give the definition of sub-super solution of (1). A super solution to (1) is defined as a function $z \in C^2(\Omega)$ such that

$$-\Delta z \geq \lambda g(x, z) \quad x \in \Omega,$$

$$z \geq 0, \quad x \in \partial \Omega.$$

Sub solutions are defined similarly with the inequalities reversed and it is well known that if there exists a sub solution ψ and a super solution z to (1) such that $\psi(x) \leq z(x)$ for $x \in \bar{\Omega}$, then (1) has a solution u such that $\psi(x) \leq u(x) \leq z(x)$ for $x \in \bar{\Omega}$. Further note that if $\psi(x) \geq 0$ for $x \in \Omega$ then $u \geq 0$ for $x \in \Omega$.

To precisely state our existence result we consider the eigenvalue problem

$$\begin{cases}
-\Delta \phi = \lambda \phi, & x \in \Omega, \\
\phi = 0, & x \in \partial \Omega.
\end{cases}$$

(2)

Let $\phi_1 \in C^1(\Omega)$ be the eigenfunction corresponding to the first eigenvalue λ_1 of (2) such that $\phi_1(x) > 0$ in Ω, and $\|\phi_1\|_\infty = 1$. It can be shown that $\frac{\partial \phi_1}{\partial n} < 0$ on $\partial \Omega$. Here n is the outward normal. This result is well known (see [5]), and hence, depending on Ω, there exist positive constants k, η, μ such that

$$\begin{align*}
\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 & \leq -k, \quad x \in \bar{\Omega}_\eta, \\
\phi_1 & \geq \mu, \quad x \in \Omega_0 = \Omega \setminus \bar{\Omega}_\eta,
\end{align*}$$

(3)

with $\bar{\Omega}_\eta = \{x \in \Omega \mid d(x, \partial \Omega) \leq \eta\}$.

We will also consider the unique solution, $\zeta \in C^1(\bar{\Omega})$, of the boundary value problem

$$\begin{cases}
-\Delta \zeta = 1, & x \in \Omega, \\
\zeta = 0, & x \in \partial \Omega,
\end{cases}$$

(4)
to discuss our existence result. It is known that $\zeta > 0$ in Ω and $\frac{\partial \zeta}{\partial n} < 0$ on $\partial \Omega$.

Our main result is as follows:

Theorem 2.1. If $\alpha < 1$, then there exist positive constants $c_0 = c_0(\Omega)$ and $\lambda^* = \lambda^*(\Omega, c)$ such that (1) has a positive solution for $c \leq c_0$ and $\lambda \geq \lambda^*$.

Proof. To obtain the existence of positive solution to problem (1), we constructing a positive subsolution ψ and supersolution z. We shall verify that $\psi = \frac{1}{2} \phi_1^2$ is a subsolution of (1). Since $\nabla \psi = \phi_1 \nabla \phi_1$, a calculation shows that

\[
-\Delta \psi = -\Delta \left(\frac{1}{2} \phi_1^2 \right) = -(|\nabla \phi_1|^2 + \phi_1 \Delta \phi_1) = [\phi_1 (-\Delta \phi_1) - |\nabla \phi_1|^2] = \lambda_1 \phi_1^2 - |\nabla \phi_1|^2.
\]

Then ψ is a subsolution if

\[
\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \leq \lambda m(x) \psi^\alpha - c.
\]

Now $\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \leq -k$ in $\bar{\Omega}_\eta$, and therefore
if $c \leq c_0 = k$, then

\[
\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \leq \lambda m(x) \psi^\alpha - c,
\]

Furthermore, we note that $\phi_1 \geq \mu > 0$ in $\Omega_0 = \Omega \setminus \bar{\Omega}_\eta$, also in Ω_0 we have

\[
\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \leq \lambda_1 \leq \lambda m(x) \psi^\alpha - c,
\]

if

\[
\lambda \geq \lambda^* = \frac{\lambda_1 + c}{\mu^\alpha m_0}.
\]

Hence if $c \leq c_0$ and $\lambda \geq \lambda^*$ then (3) is satisfy and ψ is a subsolution.

Next, we construct a supersolution z of (1). We denote $z = A \zeta(x)$, where the constant $A > 0$ is large and to be chosen later. We shall verify that z is a
supersolution of (1). A calculation shows that
\[-\Delta z = A(-\Delta \zeta) = A.\]

Thus \(z\) is a supersolution if
\[A \geq \lambda m(x) z^\alpha - c,\]
and therefore if \(A \geq A_0\) where
\[A_0 = (\lambda \|m\|_\infty \|\xi\|_\infty \|\zeta\|_\infty) \frac{1}{1-\alpha},\]
we have
\[-\Delta z \geq \lambda m(x) z^\alpha - c,\]
and hence \(z\) is supersolution of (1). Since \(\zeta > 0\) and \(\partial \zeta/\partial n < 0\) on \(\partial \Omega\), we can choose \(A\) large enough so that \(\psi \leq z\) is also satisfied. Thus, by comparison principle, there exists a solution \(u\) of (1) with \(\psi \leq u \leq z\). This completes the proof of Theorem 2.1.

References

Received: November 27, 2007