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Abstract

The Newton - Krylov iteration is the most prominent iterative method for
solving non-linear system of equations (F(x)). Roughly speaking, the Newton -
Krylov iteration consists of solving a series of linear systems (Jacobian systems)
of the form J x = b. Solving non-linear system of equations is very costly due
to time involved in solving the large Jacobian systems. We adaptively define
the tolerance of linear systems J x = b based on the accuracy of the global
system (F(x)). We prove the convergence of the method. Reported numerical
work shows that the new approach is computationally very efficient.
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1 Introduction

This reseach is concerned with efficient solution of non-linear system of equations
with symmetric Jacobian. Let us consider the nonlinear system F(x) = 0. Here,
F is vector function. That is F = [F1, F2, . . . , Fn]T, and x is the unknown vector.
Let the vector be x = (x1, x2, . . . , xn)T. A Newton iteration for solving F(x) = 0 is
given as

J(xk)Δxk = −F(xk), (1)
xk+1 = xk + Δxk k = 0, 1, 2, . . . ,m. (2)

Here, the equation (1) is referred to as the Newton correction step, and J is the
Jacobian (J = [∂Fi/∂xj ]) [6, 8]. We assume that the Jacobian is symmetric in
nature. For starting the above Newton iteration, we need to assume an initial value,
x0, of the solution vector, x. It is known that if the initial guess (x0) is close to
the exact solution, and the Jacobian is invertible then the above Newton iteration
will converge quadratically. That is ‖F(xk+1)‖ ≤ C ‖F(xk)‖2. The most costly part
of a Newton iteration is solving the Newton correction step equation (1). Roughly
speaking, the Newton method consists of solving a series of Newton correction steps
[7]. Solving equations (1) to a fixed tolerance can be computationally very expensive.
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Let us define the tolerance of the Newton correction steps adaptively. Newton
iteration where the tolerance of the correction step is defined adaptively is called
Adaptive Newton method. Let the tolerance of the kth Newton correction step be
rk. Thus, at the kth step, we solve the equation

J(xk)Δxk = −F(xk) + rk. (3)

Let us further assume that after k Newton iterations the tolerance rk, and the norm
of the vectors F(xk) (residual vector) and Δxk (difference vector) are related as

‖rk‖ ≤ C1 ‖F(xk)‖2 and ‖rk‖ ≤ C2 ‖Δxk
2‖. (4)

Then, we prove the following quadratic convergence results for the Newton iteration

‖F(xk+1)‖ ≤ C ‖F(xk)‖2 and ‖xk+1 − x�‖ ≤ C ‖xk − x�‖2.

Here, x� is the exact solution of the nonlinear system F. Let us first show that if the
Jacobian matrix is symmetric and Lipschitz continuous then its inverse is bounded.
For a symmetric matrix A, there exists a number k > 0 such that the following two
inequalities are equivalent

‖A−1‖ ≤ 1
k

and ‖Av‖ ≥ k ‖v‖, (5)

see [9]. Here, A−1 is the inverse of the matrix A. For a Lipschitz continuous matrix
B, there exists a number L > 0 such that

‖B(y) − B(x)‖ ≤ L ‖y − x‖. (6)

Now let us bound the inverse of the Jacobian matrix. For a vector v, we can write

‖J(xk)v‖ = ‖J(xk+1)v + (J(xk) − J(xk+1))v‖. (7)

Using the following inequality ‖a + b‖ ≥ ‖a‖ − ‖b‖. We get

‖J(xk)v‖ ≥ ‖J(xk+1)v‖ − ‖(J(xk) − J(xk+1))v‖, (8)

using the inequality (5), and also the matrix norm inequality ‖Ax‖ ≤ ‖A‖ ‖x‖

‖J(xk)v‖ ≥ k ‖v‖ − ‖J(xk) − J(xk+1)‖ ‖v‖. (9)

Using the Lipschitz continuity of the Jacobian given by the equation (6), we get

‖J(xk)v‖ ≥ k ‖v‖ − L ‖xk − xk+1‖ ‖v‖, (10)
≥ (k − L ‖xk − xk+1‖) ‖v‖. (11)

Since the Jacobian is symmetric. Thus, using the inequality (5), the inverse of the
Jacobian is bounded as

‖J(xk)
−1‖ ≤

(
1

k − L ‖xk − xk+1‖
)

(12)



Convergence of an Adaptive Newton Method 281

2 Convergence of the Adaptive Newton Method

From the multi dimensional mean value lemma

‖F(x) − F(y) − J(y) (x − y)‖ ≤ l

2
‖x − y‖2 . (13)

By the equations (2) and (3)

xk+1 = xk − J(xk)
−1 [F(xk) + rk] .

Combining the mean value lemma (13) and the above equation

∥∥F(xk+1) − F(xk) + J(xk)
[
J(xk)−1 (F(xk) + rk)

]∥∥ ≤ l

2

∥∥∥J(xk)
−1 (F(xk) + r)

∥∥∥2
,

since J J−1 = I

‖F(xk+1) − F(xk) + F(xk) + r‖ ≤ l

2

∥∥J(xk)−1 (F(xk) + rk)
∥∥2

,

using ‖x + y‖ ≤ ‖x‖ − ‖y‖

‖F(xk+1)‖ ≤ l

2

∥∥J(xk)−1 (F(xk) + rk)
∥∥2 + ‖rk‖,

≤ l

2

[
‖J(xk)

−1‖2 ‖F(xk) + rk‖2
]

+ ‖rk‖,

≤ l

2

[
‖J(xk)

−1‖2 (‖F(xk)‖ + ‖rk‖)2
]

+ ‖rk‖,

≤ l

2

[
‖J(xk)

−1‖2
(‖F(xk)‖2 + ‖rk‖2 + 2 ‖F(xk)‖ rk

)]
+ ‖rk‖,

≤ l

2

[
‖J(xk)

−1‖2
(‖F(xk)‖2 + C1

2‖F(xk)‖4 + 2C1 ‖F(xk)‖3
)]

+ C1‖F(xk)‖2,

≤ l

2
‖F(xk)‖2

[
‖J(xk)

−1‖2
(
1.0 + C1

2 + 2C1 ‖F(xk)‖
)

+ C1

]
.

Thus,

‖F(xk+1)‖ ≤ C ‖F(xk)‖2

This is our first main result. The fundamental theorem of calculus asserts that there
is t ∈ [0, 1] such that

F(z) − F(x) =
∫ 1

0
J [x + t (z − x)] (z − x) dt. (14)

By the equations (2) and (3)

xk+1 − x� = xk − J(xk)
−1 [F(xk) + rk] − x�,
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where x� is the exact solution of the system F(x) = 0,

xk+1 − x� = (xk − x�) + J(xk)
−1 [F(x�) − F(xk)] − J(xk)−1 rk.

Using equation (14)

xk+1 − x� = (xk − x�) + J(xk)
−1

(∫ 1

0
[J(xk + t (xk − x�))] (x� − xk) dt

)
− J(xk)

−1 rk,

= (xk − x�) + J(xk)
−1

(∫ 1

0
[J(xk + t (xk − x�))] (x� − xk) dt

)
− J(xk)

−1 rk,

= J(xk)
−1

∫ 1

0
[J(x + t (x� − xk)) − J(xk)] (x� − xk) dt − J(xk)−1 rk.

Taking norm of both the sides of the above equation and using ‖x − y‖ ≤ ‖x‖+‖y‖,
‖x y‖ ≤ ‖x‖ ‖y‖, ‖∫ x‖ ≤ ∫ ‖x‖

‖xk+1 − x�‖ ≤ ‖J(xk)
−1‖

∫ 1

0
‖J(xk + t (x� − xk)) − J(xk)‖ ‖x� − xk‖ dt + ‖J(xk)

−1‖ ‖rk‖,

by the Lipschitz continuity of the Jacobian. That is ‖J(xk + t (x� − xk)) − J(xk)‖ ≤
L t ‖x� − xk‖. We get

‖xk+1 − x�‖ ≤ ‖x� − xk‖ ‖J(xk)
−1‖

∫ 1

0
L t ‖x� − xk‖ dt + ‖J(xk)

−1‖ ‖rk‖,

≤ ‖x� − xk‖2 ‖J(xk)
−1‖ L

2
+ ‖J(xk)

−1‖ ‖rk‖, (15)

since ‖rk‖ ≤ C2 ‖x� − xk‖2

‖xk+1 − x�‖ ≤ ‖x� − xk‖2 ‖J(xk)
−1‖ L

2
+ C2 ‖J(xk)

−1‖ ‖x� − xk‖2.

Thus,

‖xk+1 − x�‖ ≤ ‖xk − x�‖2
[
‖J(xk)

−1‖L
2 + ‖J(xk)

−1‖
]

3 Numerical Work

We are solving the simplified Poisson Boltzmann equation (16) on Ω = [−1, 1] ×
[−1, 1] with k = 1.0 [3, 4, 5]. Problems with discontinuity in ε are of practical appli-
cations [4]. The domain Ω is divided into four equal sub-domains as shown in the
Figure 1 based on the medium properties ε. It should be noted that elliptic problems
with discontinuous coefficients can produce very ill conditioned linear systems.

− div (ε grad p) + k sinh(p) = f in Ω and p(x, y) = x3 + y3 on ∂ΩD. (16)
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ε1 = 1000.0 ε2 = 1.0

ε3 = 1000.0ε4 = 1.0

Figure 1: In the sub-domain Ωi, ε = εi,
i = 1, . . . , 4.
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Figure 2: Computational efficiency of
Quasi-Newton and Newton methods.
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Figure 3: Convergence of residual vector
A(p).
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Figure 4: Convergence of the difference
vector Δp.

Here, the source function f is

f = 2 y (y − 1) + 2x (x − 1) − 100 (x − 1) y (y − 1) exp [x (x − 1) y (y − 1)] .

For solving the linear systems, formed by the method of finite volumes [1, 2], we
are using the ILU-preconditioned Conjugate-Gradient (CG) solver. For the Newton
algorithm the tolerance of the CG method is 1.0 × 10−15, while for the quasi-Newton
method the tolerance of the CG varies with the Newton iteration k as follows:
1.0 × 10−(k+1), k = 0, 2, . . . , 14. The distribution of ε is given by the Figure 1.
Thus, in the first and third quadrants of the domain ε = 100.0, and in the second
and fourth quadrants of the domain ε = 1.0.

Figures 2, 3 and 4 report the outcome of our numerical work. The Figures 3 and
4 compare convergence of the Quasi-Newton and Newton methods. While the Figure
2 is comparing the computational efficiency of the Quasi-Newton and the Newton
methods. In the Figures 3 and 4, it is interesting to note that the convergence rate of
both the methods is same. The Figure 2 presents the computational work required



284 Sanjay Kumar Khattri

by the Quasi-Newton and Newton methods. We observe here that our approach
require approximately half the work needed by the Newton method. Thus, even
if initial iterations of the Newton-Krylov algorithm are solved approximately, the
convergence rate of the algorithm remains unaffected, and such an approximation
saves a substantial amount of computational effort.
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