Some Applications of the Result of Nunokawa to Certain Normalized Analytic Functions

Hüseyin Irmak

Department of Mathematics Education
Faculty of Education, Başkent University
Bağlica Campus, Tr-06530, Etimesgut, Ankara, Turkey
hisimya@baskent.edu.tr, hisimya@yahoo.com

Nikola Tuneski

Department of Mathematics and Informatics
Faculty of Mechanical Engineering
Karlovo II b.b., 1000 Skopje, Macedonia
nikolat@mf.edu.mk

Abstract

Let \(A \) denote the class of functions \(f(z) \) which are analytic and univalent in the unit open disk \(U \) with \(f(0) = 0 \) and \(f'(0) = 1 \). By making use of the result of M. Nunokawa [Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 152-153], several result for the properties of functions \(f(z) \in A \) defined in terms of the analytic representations of convex, starlike and close-to-convex functions are proven. In addition, certain consequences of them are pointed out.

Mathematics Subject Classification: 30C45

Keywords: analytic function, univalent function, starlike function, convex function, close-to-convex function, principal values, unit disk, differential inequalities

1 Introduction and definitions

Let \(A \) denote the class of functions \(f(z) \) normalized by \(f(0) = f'(0) - 1 = 0 \) which are analytic and univalent in the unit disk \(U = \{ z : z \in C \text{ and } |z| < 1 \} \), where \(C \) is the complex plane.
A function \(f(z) \in \mathcal{A} \) is said to be starlike with respect to the origin if and only if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in \mathcal{U})
\]
and a function \(f(z) \in \mathcal{A} \) is said to be convex with respect to the origin if and only if
\[
\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in \mathcal{U}).
\]
Furthermore, a function \(f(z) \in \mathcal{A} \) is said to be close-to-convex with respect to the origin if there exists a convex function \(g(z) \in \mathcal{A} \) such that
\[
\Re \left\{ \frac{f'(z)}{g'(z)} \right\} > 0 \quad (z \in \mathcal{U}).
\]
It is easily seen that the above inequality is equivalent to
\[
\Re \{ f'(z) \} > 0 \quad (z \in \mathcal{U}),
\]
when \(g(z) = z \). For the details of the above definitions, one may refer to [1] and [3].

In the present investigation, several sufficient conditions for the properties of functions \(f(z) \in \mathcal{A} \) defined in terms of the analytic representations of convex, starlike and close-to-convex functions are given. For their proofs, we used the well-known result of M. Nunokawa [2]. In addition, several special results depending on the main results are focused on.

2 Main Results

In order to prove one of the main results, we shall make use of the following lemma.

Lemma 2.1 [2] Let the function \(p(z) \) be analytic in \(\mathcal{U} \) and \(p(0) = 1 \). If there exists a point \(z_0 \in \mathcal{U} \) such that
\[
\Re \{ p(z) \} > 0 \quad (|z| < |z_0|), \quad \Re \{ p(z_0) \} = 0 \quad \text{and} \quad p(z_0) \neq 0,
\]
then
\[
p(z_0) = ia \quad \text{and} \quad \frac{z_0p'(z_0)}{p(z_0)} = i \frac{c}{a} \left(a + \frac{1}{a} \right),
\]
where \(a \in \mathbb{R} \setminus \{0\} \) and \(c \geq 1 \).

By applying Lemma 2.1, we now prove next theorem.
Theorem 2.2 Let $f(z) \in A$ and $w \in C^* := C \setminus \{0\}$.

(i) If $f(z)$ satisfies

$$\left| \Re \left(\frac{zf''(z)}{f'(z)} \right) \right| < \frac{|\Im(w)|}{|w|^2} \quad \text{if} \quad \Im(w) \neq 0$$

or

$$\left| \Im \left(\frac{zf''(z)}{f'(z)} \right) \right| < \frac{|\Re(w)|}{|w|^2} \quad \text{if} \quad \Re(w) \neq 0$$

for all $z \in U$, then

$$\Re \left\{ [f'(z)]^w \right\} > 0, \quad z \in U.$$

(ii) If $f(z)$ satisfies

$$\left| \Re \left(\frac{zf''(z)}{f'(z)} \right) \right| < \frac{|\Im(w)|}{|w|^2} \quad \text{if} \quad \Im(w) \neq 0$$

or

$$\left| \Im \left(\frac{zf''(z)}{f'(z)} \right) \right| < \frac{|\Re(w)|}{|w|^2} \quad \text{if} \quad \Re(w) \neq 0$$

for all $z \in U$, then

$$\Re \left\{ [f'(z)]^{1/w} \right\} > 0, \quad z \in U.$$

In (2.3) and (2.4) powers are taken by their principal value.

Proof (i) Let us define a function $p(z)$ by

$$p(z) = [f'(z)]^w \quad (w \in C^*; z \in U).$$

Clearly, $p(z)$ is analytic in U with $p(0) = 1$ and

$$zf''(z) = \frac{1}{w} \frac{zp'(z)}{p(z)}.$$

If there exists a point $z_0 \in U$ such that

$$\Re\{p(z)\} > 0 \quad (|z| < |z_0|), \quad \Re\{p(z_0)\} = 0 \quad \text{and} \quad p(z_0) \neq 0,$$

from Lemma 2.1, we have that

$$p(z_0) = ia \quad \text{and} \quad \frac{z_0p'(z_0)}{p(z_0)} = i \frac{c}{2} \left(a + \frac{1}{a} \right),$$
where \(a \in \mathcal{R} \setminus \{0\} \) and \(c \geq 1 \). Further, (2.5) and (2.6) imply
\[
\Re \left(\frac{z_0 f''(z_0)}{f'(z_0)} \right) = \Re \left(\frac{1}{w} \frac{z_0 f'(z_0)}{p(z_0)} \right) = \frac{c}{2 |w|^2} \Im m(w) \left(a + \frac{1}{a} \right)
\]
and
\[
\Im m \left(\frac{z_0 f''(z_0)}{f'(z_0)} \right) = \Im m \left(\frac{1}{w} \frac{z_0 f'(z_0)}{p(z_0)} \right) = \frac{c}{2 |w|^2} \Re(w) \left(a + \frac{1}{a} \right).
\]
Concerning that the function \(h(a) = |a + \frac{1}{a}| \) has minimal value 2, we receive
\[
\left| \Re \left(\frac{z_0 f''(z_0)}{f'(z_0)} \right) \right| \begin{cases} \geq \frac{3m(w)}{|w|^2} & \text{if } \Im m(w) \neq 0 \\ = 0 & \text{if } \Im m(w) = 0 \end{cases}
\]
and
\[
\left| \Im m \left(\frac{z_0 f''(z_0)}{f'(z_0)} \right) \right| \begin{cases} \geq \frac{\Re(w)}{|w|^2} & \text{if } \Re(w) \neq 0 \\ = 0 & \text{if } \Re(w) = 0 \end{cases},
\]
which is contradiction with (2.1) or (2.2). Hence, \(\Re \{p(z)\} > 0 \) for all \(z \in \mathcal{U} \), i.e., (2.3) holds.

(ii) We can easily receive inequality (2.4) if we repeat the proof of part (i) with \(1/w \) in stead of \(w \).

By using the similar techniques as in the proof of Theorem 2.2 one can verify the results given in Theorems 2.3 and 2.4.

Theorem 2.3 Let \(f(z) \in \mathcal{A} \) and \(w \in \mathcal{C}^* := \mathcal{C} \setminus \{0\} \).

(i) If \(f(z) \) satisfies
\[
\left| \Re \left(\frac{z f'(z)}{f(z)} \right) - 1 \right| \begin{cases} < \frac{3m(w)}{|w|^2} & \text{if } \Im m(w) \neq 0 \\ \neq 0 & \text{if } \Im m(w) = 0 \end{cases}
\]
or
\[
\left| \Im m \left(\frac{z f'(z)}{f(z)} \right) - 1 \right| \begin{cases} < \frac{\Re(w)}{|w|^2} & \text{if } \Re(w) \neq 0 \\ \neq 0 & \text{if } \Re(w) = 0 \end{cases},
\]
for all \(z \in \mathcal{U} \), then
\[
\Re \left\{ \left[\frac{f(z)}{z} \right]^w \right\} > 0, \quad z \in \mathcal{U}.
\]

(ii) If \(f(z) \) satisfies
\[
\left| \Re \left(\frac{z f'(z)}{f(z)} \right) - 1 \right| \begin{cases} < |\Im m(w)| & \text{if } \Im m(w) \neq 0 \\ \neq 0 & \text{if } \Im m(w) = 0 \end{cases}
\]
or
\[
\left| \Im m \left(\frac{z f'(z)}{f(z)} \right) - 1 \right| \begin{cases} < |\Re(w)| & \text{if } \Re(w) \neq 0 \\ \neq 0 & \text{if } \Re(w) = 0 \end{cases},
\]
for all \(z \in \mathcal{U} \), then
\[
\Re \left\{ \left[\frac{f(z)}{z} \right]^{1/w} \right\} > 0, \quad z \in \mathcal{U}.
\]

The powers are taken by their principal value.

Theorem 2.4 Let \(f(z) \in \mathcal{A} \), \(w \in \mathbb{C}^* := \mathbb{C} \setminus \{0\} \) and let \(\mathcal{F}(z) \) be defined by
\[
\mathcal{F}(z) = (1 - \lambda)f(z) + \lambda z f'(z) \quad (0 \leq \lambda \leq 1).
\]

(i) If \(f(z) \) satisfies
\[
\left| 1 + \Re \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} \right| \begin{cases} < \frac{|\Im m(w)|}{|w|^2} & \text{if } \Im m(w) \neq 0 \\ \neq 0 & \text{if } \Im m(w) = 0 \end{cases}
\]
or
\[
\Im m \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} \begin{cases} < \frac{|\Re e(w)|}{|w|^2} & \text{if } \Re e(w) \neq 0 \\ \neq 0 & \text{if } \Re e(w) = 0 \end{cases}
\]
for all \(z \in \mathcal{U} \), then
\[
\Re \left\{ \left[\frac{z \mathcal{F}(z)}{\mathcal{F}(z)} \right]^w \right\} > 0, \quad z \in \mathcal{U}.
\]

(ii) If \(f(z) \) satisfies
\[
\left| 1 + \Re \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} \right| \begin{cases} < |\Im m(w)| & \text{if } \Im m(w) \neq 0 \\ \neq 0 & \text{if } \Im m(w) = 0 \end{cases}
\]
or
\[
\Im m \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} \begin{cases} < |\Re e(w)| & \text{if } \Re e(w) \neq 0 \\ \neq 0 & \text{if } \Re e(w) = 0 \end{cases}
\]
for all \(z \in \mathcal{U} \), then
\[
\Re \left\{ \left[\frac{z \mathcal{F}'(z)}{\mathcal{F}(z)} \right]^{1/w} \right\} > 0, \quad z \in \mathcal{U}.
\]

The powers are taken by their principal value.

By putting \(w := 1 \) in Theorem 2.2 and Theorem 2.3, respectively, we find that:

Corollary 2.5 Let \(f(z) \in \mathcal{A} \) and also let
\[
\Re \left(\frac{z f''(z)}{f'(z)} \right) \neq 0 \quad \text{or} \quad \Im m \left(\frac{z f''(z)}{f'(z)} \right) < 1
\]
for all \(z \in \mathcal{U} \). Then \(\Re \{ f'(z) \} > 0 \), \(z \in \mathcal{U} \), i.e., \(f(z) \) is a close-to-convex function.
Corollary 2.6 Let $f(z) \in \mathcal{A}$ and also let
\[\Re \left(\frac{zf'(z)}{f(z)} \right) \neq 1 \quad \text{or} \quad \Re \left(\frac{zf'(z)}{f(z)} - 1 \right) < 1 \]
for all $z \in \mathcal{U}$. Then $\Re \left\{ \frac{f(z)}{z} \right\} > 0$.

By taking $w := 1$ and $\lambda := 0$ in Theorem 2.4, we get that:

Corollary 2.7 Let $f(z) \in \mathcal{A}$ and also let
\[\Re \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} \neq -1 \]
or
\[\Re \left\{ z \left(\frac{f''(z)}{f'(z)} - \frac{f'(z)}{f(z)} \right) \right\} < 1 \]
for all $z \in \mathcal{U}$. Then $\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0$, $z \in \mathcal{U}$, i.e., $f(z)$ is a starlike function.

By taking $w := 1$ and $\lambda := 1$ in Theorem 2.4, we also get that:

Corollary 2.8 Let $f(z) \in \mathcal{A}$ and also let
\[\Re \left\{ z \left(\frac{(zf'(z))^n}{(zf'(z))^m} - \frac{(zf'(z))^m}{zf'(z)} \right) \right\} \neq -1 \]
or
\[\Re \left\{ z \left(\frac{(zf'(z))^n}{(zf'(z))^m} - \frac{(zf'(z))^m}{zf'(z)} \right) \right\} < 1 \]
for all $z \in \mathcal{U}$. Then $\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > -1$, $z \in \mathcal{U}$, i.e., $f(z)$ is a convex function.

Acknowledgements. The work on this paper was supported by the Joint Research Project financed by The Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.17-1383/1) and The Scientific and Technical Research Council of Turkey (TUBITAK) (Project No. TBGA-U-105T056).

References

Received: November 15, 2006