On the Radial Solutions of a Degenerate Elliptic Equation with Convection Term

Arij Bouzelmate and Abdelilah Gmira

Département de Mathématiques et Informatique
Faculté des Sciences, B-P-2121 Téouan, Maroc
gmira@fst.ac.ma

Guillermo Reyes

Departamento de Matemáticas.Universidad Carlos III de Madrid, Leganés, Madrid 28911, Spain
greyes@math.uc3m.es

Abstract

In this paper, we study existence and uniqueness of radial solutions for the degenerate elliptic equation

$$\Delta_p U + \alpha x \cdot \nabla U + \beta x \cdot \nabla(|U|^{q-1}U) + U = 0 \quad \text{in } \mathbb{R}^N$$

where $p > q+1 > 2$, $N \geq 1$, $\alpha \in \mathbb{R}$, $\beta \leq 0$. We give also a classification of solutions and the behaviour of those which are positive.

Mathematics Subject Classification: 34L30, 35K55, 35K65, 35B40

Keywords: non linear degenerate elliptic equation, existence of solutions, classification of solutions, asymptotic behaviour

1 Introduction

In this paper, we are concerned with the following degenerate elliptic equation

$$\Delta_p U + \alpha x \cdot \nabla U + \beta x \cdot \nabla(|U|^{q-1}U) + U = 0 \quad \text{in } \mathbb{R}^N$$

where $p > 2$, $q > 1$, $\alpha \in \mathbb{R}$ and $\beta \leq 0$. More precisely, the main motivation of this work is to continue the study of (1.1); introduced by authors [4] in the study of self-similar solutions of the following parabolic equation

$$u_t = \Delta_p u + x \cdot \nabla(|u|^{q-1}u) \quad \text{in } \mathbb{R}^N \times (0, +\infty)$$
which may be viewed as a non-linear Ornstein-Uhlenbeck equation. The corresponding linear equation appears in [8] and [5]. It is worth mentioning that if the convection term in the parabolic equation (1.2) is replaced by $|u|^{q-1}u$, we get the p-Laplace heat equation with a source term. This equation was studied by [6],[10],[3] and [1]. As, if the convection term is replaced by $|\nabla u|^q$, we obtain the generalised KPZ equation, whose self-similar solutions were studied by [12] for $p = 2$ and by [7] for $p > 2$. Equation (1.2) has a special scaling invariance in the sense that u is a solution if and only if u_λ defined by

$$u_\lambda(x, t) = \lambda^\gamma u(\lambda^\sigma x, \lambda t)$$

is a solution for all $\lambda > 0$. A solution u is said to be self-similar if $u_\lambda = u$, for all $\lambda > 0$.

It can be easily seen that u is a self-similar solution to (1.2) if and only if u has the form

$$u(x, t) = t^{-\gamma} U(c x t^{-\sigma}), \quad (1.3)$$

defined for $x \in \mathbb{R}^N$ and $t > 0$; with

$$\gamma = \frac{1}{q-1}, \quad \sigma = \frac{q + 1 - p}{p(q-1)}, \quad c = (q-1)^{-1/p} \quad (1.4)$$

and U satisfies equation (1.1) with

$$\alpha = \frac{q + 1 - p}{p}, \quad \beta = (q - 1).$$

Looking for radial solutions $U(x) = u(|x|)$, where $u : \mathbb{R}^+ \rightarrow \mathbb{R}$ it is easy to see that the elliptic equation (1.1) is reduced to the following O.D.E

$$(|u'|^{p-2} u')' + \frac{N-1}{r} |u'|^{p-2} u' + \alpha r u' + \beta r (|u|^{q-1})' + u = 0. \quad (1.5)$$

If $\beta = 0$, equation (1.5) becomes

$$(|u'|^{p-2} u')' + \frac{N-1}{r} |u'|^{p-2} u' + \alpha r u' + u = 0. \quad (1.6)$$

By a simple scaling, this last equation can be written in the following form

$$(|u'|^{p-2} u')' + \frac{N-1}{r} |u'|^{p-2} u' + \epsilon (r u' + \gamma u) = 0. \quad (1.7)$$

with $\epsilon = \pm 1$ and $\gamma \in \mathbb{R}$. Let us mention that equation (1.7) have been considered by [11] for $1 < p < 2$, $\gamma > 0$ and $\epsilon = 1$. Recently a complete study was presented in [2] for $1 < p < 2$, $\epsilon = \pm 1$ and $\gamma \in \mathbb{R}$. Note also that for $p > 2$ a carefully analysis of radial solutions of equation (1.1) was made by the authors in [4] when $\beta > 0$. The main purpose of this paper is to continue the
study of the case $\beta \leq 0$. More precisely we are concerned with the following initial-value problem

$$\begin{cases}
\frac{(|u'|^{p-2}u')'}{r} + \frac{N-1}{r}|u'|^{p-2}u' + \alpha u' + \beta r(|u|^{q-1}u)' + u = 0 \text{ in } [0, +\infty[, \\
u(0) = A, \quad u'(0) = 0,
\end{cases}$$

(E1) (E2)

where $p > q + 1 > 2$, $N \geq 1$, $\alpha \in \mathbb{R}$, $\beta \leq 0$, $A \neq 0$. We will mainly discuss: Existence and uniqueness of solutions of (P) as well as their classification. Also, qualitative behavior of positives solutions are presented. This paper will be divided into three sections. In section 2 we prove existence and uniqueness of solutions of problem (P). First we recall some known result about local existence obtained by the authors [4]; this is derived using the Banach Fixed Point Theorem. Secondly for global existence we write equation (E1) as a first order system in three space dimensions for which we establish a suitable tubular surfaces used as a barrier for the solutions in this space. Section 3 concerns the asymptotic behaviour of positive solutions as $r \to \infty$, where the sign of some explicit functional depending of the solution and its derivative plays an important part. Finally section 4 examines the classification of solutions according to their behaviour at infinity depending on the parameters α and β.

2 Existence and uniqueness

Unless otherwise specified, we assume throughout that

$$p > q + 1 > 2, \quad N \geq 1, \quad \alpha \in \mathbb{R}, \quad \beta \leq 0.$$

In this section, we investigate existence and uniqueness of solutions of problem (P). First of all note that equation (E1) is invariant under the change of unknown $u \to v = -u$, i.e., if u solves (P) with $u(0) = A$, then $v = -u$ solves the same problem with $v(0) = -A$. Then we don’t lose of generality we can restrict ourselves to the case $A > 0$. By a solution of (P) we mean a function u defined in $[0, +\infty]$ such that $|u'|^{p-2}u' \in C^1([0, +\infty])$ and satisfies (E1) and (E2).

Theorem 2.1 *Problem (P) has a unique solution $u(\cdot, A, \alpha, \beta)$.*

Proof: First of all we note that local existence and uniqueness can be established exactly in the same way as given in [4] for $\beta > 0$. In fact we have just to convert the initial value problem (P) to a fixed problem of some operator. To this end we remark that solving (P) is equivalent to find a function $u \in [0, +\infty]$ such that $|u'|^{p-2}u' \in C^1([0, +\infty])$ and satisfies

$$\mathcal{T}[u](r) = A - \int_0^r G(F[u](s))ds$$
where
\[G(s) = |s|^{(2-p)/(p-1)}s, \quad s \in \mathbb{R}. \]

and
\[
F[u](s) = \alpha su(s) + \beta s |u|^{q-1} u(s) + s^{1-N} \int_0^s \sigma^{N-1} \left[-\beta N |u|^{q-1}(\sigma) + (1-N\alpha)\right] u(\sigma) d\sigma.
\]

Now take \(R > 0, A, M > 0 \) and consider the following complete metric space:
\[X = \{ \varphi \in C([0, R]) : \| \varphi - A \|_0 \leq M \}. \]

where \(C([0, R]) \) is the Banach space of real continuous functions on \([0, R]\) with the uniform norm, denoted by \(\| \cdot \|_0 \). In order to conclude we prove that \(T \) is a contraction mapping from \(X \) into itself. The Banach Fixed Point Theorem then establishes the existence of a fixed point i.e a solution to (P). Note that it easy to prove that \((|u'|^{p-2}u')'(0) = -A/N. It remains to prove global existence. So we must to extend the local solutions to the whole \(\mathbb{R}_+ \). Recall that global existence is derived in [4] from the energy function for the case \(\beta > 0 \) and \(\alpha \geq 0 \). But this method is not valid here. So, we transform the problem (P) to the following first order autonomous system in the space \((X, Y, r)\)
\[
\begin{cases}
X' = |Y|^{-\frac{p-2}{p-1}} Y, \\
Y' = -\frac{N-1}{r} Y - \alpha r |Y|^{-\frac{p-2}{p-1}} Y - \beta qr |X|^{q-1} |Y|^{-\frac{p-2}{p-1}} Y - X, \\
r' = 1
\end{cases}
\]

where \(X = u, \ Y = |u'|^{p-2}u', \ \prime := d/dt \) and \((X(0), Y(0), r(0)) = (A, 0, 0)\). The idea of the proof is that of constructing a suitable tubular surface which serves as a barrier for the solutions in this space. Below, \(r_A > 0 \) is such that the local solution exists on \([0, r_A]\). We claim that there exist \(\sigma, \gamma > 0 \) and sufficiently large \(B, C > 0 \) such that
\[
|X(r)| \leq B(1 + r^\sigma), \quad |Y(r)| \leq C(1 + r^\gamma)
\]

for \(r \geq r_A \). This clearly implies our assertion. Indeed, consider the boundary \(S \) of the region defined by (2.2) and \(r \geq r_A \). Our goal is to prove that the flux vector
\[
F(X, Y, r) := \left(|Y|^{-\frac{p-2}{p-1}} Y, -\frac{N-1}{r} Y - \alpha r |Y|^{-\frac{p-2}{p-1}} Y - \beta qr |X|^{q-1} |Y|^{-\frac{p-2}{p-1}} Y - X, 1 \right)
\]

(2.3)
in (2.1) points inward this region. Denote
\begin{align*}
S_1 &:= \{(X, Y, r) : X(r) = B(1 + r^{\sigma}), |Y(r)| \leq C(1 + r^\gamma); r \geq r_A\}; \\
S_2 &:= \{(X, Y, r) : X(r) = -B(1 + r^{\sigma}), |Y(r)| \leq C(1 + r^\gamma); r \geq r_A\}; \\
S_3 &:= \{(X, Y, r) : |X(r)| \leq B(1 + r^{\sigma}), Y(r) = C(1 + r^\gamma); r \geq r_A\}; \\
S_4 &:= \{(X, Y, r) : |X(r)| \leq B(1 + r^{\sigma}), Y(r) = -C(1 + r^\gamma); r \geq r_A\}; \\
T &:= \{(X, Y, r) : |X(r)| \leq B(1 + r^{\sigma}), |Y(r)| \leq C(1 + r^\gamma), r = r_A\}.
\end{align*}
Clearly, \(S = (\cup S_i) \cup T \). Let \(N_i \) denote exterior (with respect to the region) normal vectors to \(S_i \), \(i = 1, 2, 3, 4 \), and \(N \) an exterior normal vector to \(T \). An elementary calculation shows that we can take
\begin{align*}
N_1 &= (1, 0, -\sigma Br^{\sigma - 1}), & N_2 &= (-1, 0, -\sigma Br^{\sigma - 1}); \\
N_3 &= (0, 1, -\gamma Cr^{\gamma - 1}), & N_4 &= (0, -1, -\gamma Cr^{\gamma - 1}); \\
N &= (0, 0, -1).
\end{align*}
First, choose \(B, C \) large, such that \((X(r_A), Y(r_A), r_A) \in T \). Next, we impose
\begin{equation}
N_i \cdot F < 0 \quad \text{on } S_i; \quad N \cdot F < 0 \quad \text{on } T. \tag{2.6}
\end{equation}
The last inequality in (2.6) trivially holds. For \(i = 1, 2 \), (2.6) is implied by
\begin{equation}
C^{1/(p-1)}(1 + r^\gamma)^{1/(p-1)} - \sigma Br^{\sigma - 1} < 0 \quad \text{for } r \geq r_A. \tag{2.7}
\end{equation}
Let
\begin{equation}
G_1(r) = r^{1-\sigma}(1 + r^\gamma)^{1/(p-1)}. \tag{2.8}
\end{equation}
Then, inequality (2.7) is equivalent to
\begin{equation*}
G_1(r) < \frac{\sigma B}{C^{1/(p-1)}} \quad \text{for } r \geq r_A.
\end{equation*}
It’s easy to see that \(G_1 \) is strictly decreasing if
\begin{equation}
\sigma > 1 + \gamma/(p - 1). \tag{2.9}
\end{equation}
Hence, if we choose \(B \) and \(C \) such that
\begin{equation}
G_1(r_A) < \frac{\sigma B}{C^{1/(p-1)}}, \tag{2.10}
\end{equation}
then, condition (2.7) follows easily by (2.9) and (2.10). Concerning \(i = 3, 4, \) (2.6) holds if
\begin{align*}
&-C\frac{N - 1}{r}(1 + r^\gamma) + |\alpha|C^{1/(p-1)} r(1 + r^\gamma)^{1/(p-1)} + \\
&+|\beta|qC^{1/(p-1)} B^{\gamma - 1} r(1 + r^\gamma)^{1/(p-1)}(1 + r^\sigma)^{\sigma - 1} + B(1 + r^\sigma) - \gamma Cr^{\gamma - 1} < 0
\end{align*}
for $r \geq r_A$, which in turn holds if
\begin{align*}
-\gamma - (N-1)r^{-\gamma}(1 + r^{\gamma}) + |\alpha|C^{(2-p)/(p-1)}r^{2-\gamma}(1 + r^{\gamma})^{1/(p-1)} + \\
+|\beta|qC^{(2-p)/(p-1)}B^{q-1}r^{2-\gamma}(1 + r^{\gamma})^{1/(p-1)}(1 + r^{\sigma})^{q-1} + \frac{B}{C}r^{1-\gamma}(1 + r^{\sigma}) < 0
\end{align*}
(2.11)

Let
\begin{align*}
G_2(r) &= r^{2-\gamma}(1 + r^{\gamma})^{1/(p-1)}, \\
G_3(r) &= r^{1-\gamma}(1 + r^{\sigma}),
\end{align*}
(2.12)
(2.13)
and
\begin{align*}
G_4(r) &= r^{2-\gamma}(1 + r^{\gamma})^{1/(p-1)}(1 + r^{\sigma})^{q-1}.
\end{align*}
(2.14)

The idea is to give sufficient conditions to have for $r \geq r_A$
\begin{align*}
|\alpha|C^{(2-p)/(p-1)}G_2(r) < \frac{\gamma}{3},
\end{align*}
\begin{align*}
\frac{B}{C}G_3(r) < \frac{\gamma}{3},
\end{align*}
and
\begin{align*}
|\beta|qC^{(2-p)/(p-1)}B^{q-1}G_4(r) < \frac{\gamma}{3}
\end{align*}

In the same way as the first case concerning $i = 1, 2$, we look for conditions which mean that functions $G_2(r)$, $G_3(r)$ and $G_4(r)$ are strictly decreasing for $r > 0$. By a simple calculation, this holds if
\begin{align*}
\gamma > \max\{\sigma + 1, \frac{2(p-1)}{p-2} + \frac{\sigma(q-1)(p-1)}{p-2}\}.
\end{align*}
(2.15)

Hence, inequality (2.11) is implied by choosing B and C such that
\begin{align*}
C^{(p-2)/(p-1)} > \frac{3|\alpha|}{\gamma}G_2(r_A)
\end{align*}
(2.16)
\begin{align*}
\frac{C}{B} > \frac{3}{\gamma}G_3(r_A)
\end{align*}
(2.17)
and
\begin{align*}
\frac{C^{(p-2)/(p-1)}}{B^{q-1}} > \frac{3q|\beta|}{\gamma}G_4(r_A)
\end{align*}
(2.18)

In order to accomplish with (2.9) and (2.15), observe that the conditions on γ and σ are compatible, since taking $\gamma > 2(p-1)/(p-2)$, one can choose $\sigma \in (1 + \gamma/(p-1), \gamma - 1)$. Then, the condition (2.15) is achieved since $q < p - 1$ by choosing
\begin{align*}
\gamma > \frac{(p-1)(q+1)}{p-q-1}.
\end{align*}
Concerning the parameters B, C, to have conditions (2.10), (2.16), (2.17) and (2.18), we fix the relation

$$C^{1/(p-1)}/B = K = K(r_A)$$

Then the quantities

$$\frac{C}{B} = K^{p-1}B^{p-2} \quad \frac{C(p-2)/(p-1)}{B^{q-1}} = K^{p-2}B^{p-q-1}$$

satisfy (2.17) and (2.18) by taking B (and hence C) large enough. Note that here we have made use of the hypothesis $p - q - 1 > 0$ once again.

3 Behaviour at infinity

This section deals with some qualitative properties of solutions of problem (P).

Theorem 3.1 Assume $\alpha \geq 0$, $\beta = 0$ and $N > 1$. Let u be a solution of (P). Then,

$$\lim_{r \to +\infty} u(r) = \lim_{r \to +\infty} u'(r) = 0.$$

Proof: We define the energy function

$$E(r) = \frac{p-1}{p} |u'|^p(r) + \frac{1}{2} u^2(r). \quad (3.1)$$

According to equation (E_1), the energy satisfies

$$E'(r) = -r u'^2 \left\{ \alpha + \frac{N-1}{r^2} |u'|^{p-2}(r) \right\}. \quad (3.2)$$

Hence, it is enough to show that $\lim_{r \to +\infty} E(r) = 0$.

Since $E'(r) \leq 0$ and $E(r) \geq 0$ for all $r > 0$, there exists a constant $l \geq 0$ such that $\lim_{r \to +\infty} E(r) = l$. Suppose $l > 0$. Then, there exists $r_1 > 0$ such that

$$E(r) \geq l/2 \quad \text{for} \quad r \geq r_1. \quad (3.3)$$

Now we introduce a function depending on the energy, for which we can control its derivative (the same idea was used by [3] and [9]). More precisely we set

$$D(r) = E(r) + \frac{N-1}{2r} |u'|^{p-2} u'(r) u(r) + \frac{\alpha(N-1)}{4} u^2(r) + \alpha \int_0^r s u'^2(s) ds.$$
Then,
\[D'(r) = -\frac{(N-1)}{2r} \left[|u'|^p + \frac{N}{r} |u'|^{p-2} u' u + u^2 \right]. \]

Recalling that \(u \) and \(u' \) are bounded,
\[\lim_{r \to +\infty} \frac{|u'|^{p-2} u' u(r)}{r} = 0. \]

Moreover, by (3.3) we have
\[|u'(r)|^p + u^2(r) = \frac{p-1}{p} |u'(r)|^p + \frac{u^2(r)}{2} = E(r) > l/2 \quad \text{for} \quad r \geq r_1. \]

Consequently, there exist two constants \(c > 0 \) and \(r_2 \geq r_1 \) such that
\[D'(r) \leq -c/r \quad \text{for} \quad r \geq r_2. \]

Integrating this last inequality between \(r_2 \) and \(r \), we get
\[D(r) \leq D(r_2) - c \ln(r/r_2) \quad \text{for} \quad r \geq r_2. \]

In particular we obtain \(\lim_{r \to +\infty} D(r) = -\infty. \) Since
\[E(r) + \frac{N-1}{2r} |u'|^{p-2} u' u(r) \leq D(r), \]
we get \(\lim_{r \to +\infty} E(r) = -\infty. \) This is impossible, hence the conclusion.

Theorem 3.2 Let \(u \) be a solution of (P). If \(L = \lim_{r \to +\infty} u(r) \) exists and is finite, then necessarily \(L = 0. \) Moreover, if \(\alpha \neq 0 \) then \(\lim_{r \to +\infty} u'(r) = 0. \)

Proof: The proof will be done in three steps.

STEP 1. \(L = 0. \) Assume by contradiction \(L \neq 0. \) Equation \((E_1)\) can be written in the following form:
\[r^{1-N} \left[r^{N-1} |u'|^{p-2} u' + \alpha r^N u + \beta r^N |u|^{q-1} u \right]' = (\alpha N - 1) u + \beta N |u|^{q-1} u. \]

Then
\[\lim_{r \to +\infty} r^{1-N} \left[r^{N-1} |u'|^{p-2} u' + \alpha r^N u + \beta r^N |u|^{q-1} u \right]' = (\alpha N - 1) L + \beta N |L|^{q-1} L. \]

Let \(K = (\alpha N - 1) L + \beta N |L|^{q-1} L. \) We assert that \(|u'|^{p-2} u' \sim -\frac{L}{N} r \) as \(r \to +\infty. \) In fact, if \(K \neq 0, \) the following holds for large \(r: \)
\[r^{N-1} |u'|^{p-2} u' + \alpha r^N u + \beta r^N |u|^{q-1} u \sim \frac{K}{N} r^N. \]
Thus, in both cases we have
\[|u'|^{p-2} u' + \alpha u + \beta |u|^{q-1} u \sim (\alpha - 1/N)L + \beta |L|^{q-1} L, \]
hence
\[|u'|^{p-2} u' \sim -\frac{L}{N} r \quad \text{as} \quad r \to +\infty. \] \hspace{1cm} (3.5)

On the other hand, if \(K = 0 \) (which means \((\alpha N - 1) + \beta N |L|^{q-1} = 0 \)) then for any \(\varepsilon > 0 \), there exists a large \(r_\varepsilon \) such that for any \(r > r_\varepsilon \) the following estimate holds
\[-\varepsilon \frac{r^N}{N} \leq r^{N-1} |u'|^{p-2} u' + \alpha r^N u + \beta r^N |u|^{q-1} u \leq \varepsilon \frac{r^N}{N}. \]

Then
\[\frac{|u'|^{p-2} u'}{r} \sim -L (\alpha + \beta |L|^{q-1}) = -\frac{L}{N}. \]

Thus, in both cases we have \(u' \to -\infty \) as \(r \to +\infty \), and this contradicts the convergence of \(u \). Consequently \(L = 0 \).

Step 2. \(\lim_{r \to +\infty} |u'|^{p-2} u'(r)/r = 0. \) From Step 1 and equation (3.4) it follows
\[\lim_{r \to +\infty} r^{1-N} f'(r) = 0, \] \hspace{1cm} (3.6)

where
\[f(r) = r^{N-1} |u'|^{p-2} u'(r) + \alpha r^N u + \beta r^N |u|^{q-1} u(r). \] \hspace{1cm} (3.7)

L'Hopital's rule then implies \(\lim_{r \to +\infty} f(r)/r^N = 0. \) This means
\[\lim_{r \to +\infty} \frac{|u'|^{p-2} u'(r)}{r} + \alpha \lim_{r \to +\infty} u(r) + \beta \lim_{r \to +\infty} |u|^{q-1} u(r) = 0, \]
from where the assertion readily follows.

Step 3. \(\lim_{r \to +\infty} u'(r) = 0. \) First, we assert that \(u' \) is bounded. Indeed, assume this is false. As \(\lim_{r \to +\infty} u(r) = 0 \), then there exists a sequence \(\eta_i \to +\infty \) such that \(\{\eta_i\} \) are local maxima of \(|u'|^{p-2} u' \) and \(\lim_{i \to +\infty} |u'|^{p-2} u'(\eta_i) = \infty \). Hence \((|u'|^{p-2} u')(\eta_i) = 0 \). Dividing equation \((E_1) \) by \(ru'(r) \), taking \(r = \eta_i \) and recalling Step 1 and Step 2, we get \(\alpha = 0 \) in the limit \(i \to \infty \), contradicting our hypotheses. Then necessarily \(u' \) is bounded. Next, we claim that \(|u'|^{p-2} u'(r) \to 0 \) as \(r \to \infty \). Note that as \(u(r) \) converges as \(r \to \infty \), it suffices to prove that \(|u'|^{p-2} u'(r) \) converges. We argue by contradiction. Suppose that
\[-\infty < m = \lim_{r \to +\infty} \inf r |u'|^{p-2} u'(r) < \lim_{r \to +\infty} \sup r |u'|^{p-2} u'(r) = M < \infty. \] \hspace{1cm} (3.8)
Then there exist two sequences $\eta_i \to +\infty$ and $\zeta_i \to +\infty$ such that η_i and ζ_i are local minima and local maxima of $|u'|^{p-2}u'$, respectively, satisfying $\eta_i < \zeta_i < \eta_{i+1}$, $i = 1, 2, \ldots$ and $\lim_{i \to \infty} |u'|^{p-2}u'(\eta_i) = m$, $\lim_{i \to \infty} |u'|^{p-2}u'(\zeta_i) = M$.

Hence $(|u'|^{p-2}u')'(\eta_i) = (|u'|^{p-2}u')'(\eta_i) = 0$. Dividing equation (E_1) by r, taking $r = \eta_i$ and $r = \zeta_i$ and letting $i \to \infty$, we obtain $\alpha \lim_{r \to +\infty} u'(\eta_i) = \alpha \lim_{r \to +\infty} u'(\zeta_i) = 0$. This contradicts (3.8), thus completing the proof.

Theorem 3.3 The strictly positives solutions are strictly decreasing.

Proof: We argue by contradiction. Let $r_0 > 0$ be the first zero of u'. Then, it follows from (E_1) that $(|u'|^{p-2}u')'(r_0) = -u(r_0) < 0$. On the other hand, we know that $u' < 0$ for $r \sim 0$. By continuity and the definition of r_0, there exists a left neighborhood $]r_0 - \varepsilon, r_0[$ (for some $\varepsilon > 0$) where u' is strictly increasing and strictly negative, that is $(|u'|^{p-2}u')'(r) > 0$ for any $r \in]r_0 - \varepsilon, r_0[$; hence by letting $r \to r_0$ we get $(|u'|^{p-2}u')'(r_0) \geq 0$, a contradiction.

Remark 3.4 As a consequence of the above theorem, any strictly positive solution u of problem (P) satisfies $\lim_{r \to +\infty} u(r) = 0$ and $\lim_{r \to +\infty} u'(r) = 0$ if $\alpha \neq 0$.

Now for any $c > 0$, define the function

$$E_c(r) = cu(r) + ru'(r), \quad r > 0.$$ \hfill (3.9)

Hence, using (E_1), we have for any $r > 0$ such that $u'(r) \neq 0$,

$$(p - 1)|u'|^{p-2}(r)E'_c(r) = (p - 1)(c - \frac{N - p}{p - 1})|u'|^{p-2}u'(r) - \alpha r^2 u'(r) - \beta qr^2 |u|^{q-1}u'(r) - ru. \hfill (3.10)$$

Consequently, if $E_c(r_0) = 0$ for some $r_0 > 0$, equation (E_1) gives

$$(p - 1)|u'|^{p-2}(r_0)E'_c(r_0) = r_0 u(r_0) \left[\alpha c - 1 + c\beta q |u|^{q-1}(r_0) + c^{p-1}(p - 1)\left(\frac{N - p}{p - 1} - c\right)\frac{|u'|^{p-2}(r_0)}{r_0^{p-1}} \right], \hfill (3.11)$$

from which the sign of $E_c(r)$ for large r can be obtained.

Theorem 3.5 Let u be a strictly positive solution of (P) and $c > 0$. Then, for large r, $E_c(r)$ has a constant sign in the following cases.

(i) $\alpha \leq 0$ or $\alpha > 0$ and $c \neq \frac{1}{\alpha}$;
(ii) \(c = \frac{1}{\alpha} > 0 \) and \(\beta < 0 \) or \(c = \frac{1}{\alpha} \neq \frac{N - p}{p - 1} \) and \(\beta = 0 \).

Proof: Assume that there exists a large \(r_0 \) such that \(E_c(r_0) = 0 \).

Since \(\lim_{r \to +\infty} u(r) = 0 \) and according to (3.11), we have for \(\alpha c > 1 \) (respectively \(\alpha c < 1 \)), \(E'_c(r_0) > 0 \) (respectively \(E'_c(r_0) < 0 \)) and thereby \(E_c(r) \) has a constant sign for large \(r \); what gives exactly (i).

To prove (ii) we note that if \(c = \frac{1}{\alpha} \) equation (3.11) can be written in the following form

\[
(p - 1) |u'|^{p-2} (r_0) E'_c(r_0) = r_0 u^q (r_0) \left[\frac{\beta q}{\alpha} + \left(\frac{1}{\alpha} \right)^{p-1} (p - 1) \left(\frac{N - p}{p - 1} - \frac{1}{\alpha} \right) \frac{u^{p-1-q}(r_0)}{r_0^p} \right].
\]

Therefore, if \(\beta < 0 \), using the fact that \(\lim_{r \to +\infty} u(r) = 0 \) and \(p - 1 - q > 0 \), the leading term in the last equality is \(\frac{\beta q}{\alpha} r_0 u^q (r_0) \).

On the other hand if \(\beta = 0 \) and \(\frac{1}{\alpha} \neq \frac{N - p}{p - 1} \), \(E'_c(r_0) \) has the same sign as

\[
(\frac{1}{\alpha})^{p-1} (p - 1) \left(\frac{N - p}{p - 1} - \frac{1}{\alpha} \right) r_0^{1-p} u^{p-1}(r_0).
\]

Consequently, \(E'_c(r) \) has a constant sign for large \(r \). This complete the proof.

Theorem 3.6 Assume \(\alpha N > 1 \). Let \(u \) be a strictly positive solution of problem (P). Then, \(\lim_{r \to +\infty} r^{1/\alpha} u(r) \) exists and is strictly positive.

The proof of the theorem will be done in several lemmas

Lemma 3.7 Assume \(\alpha N \neq 1 \) or \(\alpha N = 1 \) and \(\beta < 0 \). Let \(u \) be a strictly positive solution of problem (P). Then, the function \(f(r) \) is positive for large \(r \).

Proof: According to to (3.4) and (3.7) we have

\[
f'(r) = r^{N-1} u \left[\alpha N - 1 + \beta N |u|^{q-1} \right]. \tag{3.12}
\]

If \(\alpha N \neq 1 \). Since \(\lim_{r \to +\infty} |u|^{q-1}(r) = \lim_{r \to +\infty} u^{q-1}(r) = 0 \) (because \(u > 0 \) and \(q > 1 \)), then we have for large \(r \), \(f'(r) > 0 \) for \(\alpha N > 1 \) or \(f'(r) < 0 \) for \(\alpha N < 1 \). If \(\alpha N = 1 \), then

\[
f'(r) = \beta N r^{N-1} u^q(r) < 0.
\]

Hence the function \(f(r) \) is monotone for large \(r \) and thereby she has a constant sign for large \(r \).
Suppose that there exists r_1 large such that $f(r) \leq 0$ for $r \geq r_1$. Then, using the fact that $u'(r) < 0$, we get

$$|u'|^{p-1} \geq ru \left[\alpha + \beta u^{q-1} \right]$$

for $r \geq r_1$. This means since $\lim_{r \to +\infty} u(r) = 0$, that

$$|u'|^{p-1} \geq \frac{\alpha}{2} ru$$

for $r \geq r_1$. Integrating this last inequality on (r_1, r), we get

$$\frac{r^{p-2}}{p} u^{p-1}(r) - \frac{r^{p-2}}{p} u^{p-1}(r_1) = \frac{p-2}{p} \left(\frac{\alpha}{2} \right) r^{p-1}$$

By letting r to $+\infty$, we get a contradiction. Consequently, $f(r)$ is positive for large r.

Lemma 3.8 Assume $\alpha N > 1$. Let u be a strictly positive solution of problem (P). Then

$$\lim_{r \to +\infty} r^N u(r) = +\infty.$$

Proof: Since $\alpha N > 1$, then $f'(r) > 0$ and $f(r) > 0$ for large r. Hence, there exists some constant $C > 0$ such that $f(r) > C$ for large r. Moreover, using the fact that $u'(r) < 0$ and $\beta \leq 0$, we obtain

$$f(r) < \alpha r^N u(r).$$

Then

$$r^N u(r) > C_1 = C/\alpha$$

for large r. On the other hand, we have by (3.12)

$$rf'(r) = r^N u \left[\alpha N - 1 + \beta N |u|^{q-1} \right].$$

As $\alpha N > 1$ and $\lim_{r \to +\infty} u(r) = 0$, we get

$$rf'(r) > \frac{\alpha N - 1}{2} r^N u(r)$$

for large r, which gives

$$rf'(r) > \frac{\alpha N - 1}{2} C_1$$

for large r. Integrating this last inequality on (r_1, r) for large r_1, we get

$$\lim_{r \to +\infty} f(r) = +\infty.\text{ This means that } \lim_{r \to +\infty} r^N u(r) = +\infty.$$
Lemma 3.9 Assume $\alpha > 0$. Let u be a strictly positive solution of problem (P). Then, for any $0 < k < \frac{1}{\alpha}$, \[\lim_{r \to +\infty} r^k u(r) \in [0, +\infty[. \]

Proof: Let $0 < k < \frac{1}{\alpha}$. We know by Theorem 3.5 that $E_k(r)$ has a constant sign for large r. Suppose that $E_k(r)$ is positive for large r. Then, by (3.9) and the fact that $u' < 0$, we get
\[r |u'(r)| \leq ku(r) \]
for large r. On the other hand, using the fact that $\alpha > 0, \beta \leq 0$ and $u' < 0$, we have by E_1
\[(|u'|^{p-2}u')'(r) \leq \frac{N - 1}{r} |u'|^{p-1}(r) + \alpha r |u'(r)| - u(r). \]
Hence
\[(|u'|^{p-2}u')'(r) \leq (N - 1)k^{p-1} \frac{u^{p-1}(r)}{r^p} + \alpha ku(r) - u(r), \]
thus
\[(|u'|^{p-2}u')'(r) \leq u(r) \left[\alpha k - 1 + (N - 1)k^{p-1} \frac{u^{p-2}(r)}{r^p} \right]. \]
Using the fact that $u > 0$, $\alpha k - 1 < 0$ and $\lim_{r \to +\infty} u(r) = 0$, we obtain $(|u'|^{p-2}u')'(r) < 0$ for large r. As $u' < 0$, this implies that $\lim_{r \to +\infty} u'(r) \in [-\infty, 0]$, which is impossible. Hence, $E_k(r)$ is negative for large r. On the other hand, it easy to see that for any $c > 0$
\[(r^c u(r))' = r^{c-1} E_c(r). \]
Then, the function $r^k u(r)$ is decreasing and thereby she has a finite limit. Now we turn to the proof of Theorem 3.6.

Proof: (of Theorem 3.6). Let u be a strictly positive solution of problem (P). We consider the following function
\[I(r) = r^{1/\alpha} \left[u + \frac{1}{\alpha r^2} |u'|^{p-2} u' \right]. \]
By a simple computation we get
\[I'(r) = -\frac{1}{\alpha} r^{1/\alpha} \left[(N - 1/\alpha) \frac{|u'|^{p-2} u'(r)}{r^2} + q\beta u^{q-1} u'(r) \right]. \]
We claim that $I(r) \sim r^{1/\alpha} u(r)$ near infinity. Indeed, since $u > 0$ and $u' < 0$, the function I can be written as
\[I(r) = r^{1/\alpha} u \left[1 - \frac{1}{\alpha} \frac{|u'|^{p-1}}{ru} \right]. \]
Since $\alpha N > 1$, Theorem 3.5 means that $E_N(r)$ has the same sign for large r. Hence, according to (3.13) and Lemma 3.8, we get $E_N(r)$ is positive for large r. This means that

$$|u'(r)| \leq N \frac{u(r)}{r}.$$ \hfill (3.17)

Hence

$$\frac{|u'|^{p-1}(r)}{ru} \leq N^{p-1} \frac{u^{p-2}(r)}{r^p}.$$

As $\lim_{r \to +\infty} u(r) = 0$, we get $\lim_{r \to +\infty} \frac{|u'|^{p-1}(r)}{ru} = 0$. Consequently, $I(r) \sim r^{1/\alpha}u(r)$ near infinity and thereby, it’s enough to show that $\lim_{r \to +\infty} I(r) \in [0, +\infty[$. Now, we distinguish two cases:

Case 1: $\beta = 0$.

As $u' < 0$, it easy to see that

$$I'(r) = \frac{1}{\alpha} (N - 1/\alpha) r^{1/\alpha - 2} |u'|^{p-1}(r).$$ \hfill (3.18)

Hence, $I'(r) > 0$ for any $r > 0$. Moreover, as $I(0) = 0$, then $I(r) > 0$ for any $r > 0$. This implies that $\lim_{r \to +\infty} I(r) \in [0, +\infty]$. Suppose that $\lim_{r \to +\infty} I(r) = +\infty$.

We claim that $r^2 I'(r)$ is bounded for large r. Indeed, using (3.18) and (3.17), we get

$$r^2 I'(r) \leq \frac{1}{\alpha} (N - 1/\alpha) N^{p-1} \frac{r^{1/\alpha} u^{p-1}(r)}{r^{p-1}}.$$

Put $\sigma = \frac{1}{p-1} \left(\frac{1}{\alpha} + 1 - p \right)$. Then

$$r^2 I'(r) \leq \frac{1}{\alpha} (N - 1/\alpha) N^{p-1} (r^\sigma u(r))^{p-1}.$$

if $\sigma \leq 0$, we have $\lim_{r \to +\infty} r^\sigma u(r) = 0$ (because $\lim_{r \to +\infty} u(r) = 0$) and it obvious that $r^2 I'(r)$ is bounded for large r. If $\sigma > 0$, using the fact that $\sigma < 1/\alpha$ and lemma 3.9, we deduce that $r^\sigma u(r)$ has a finite limit and thereby $r^2 I'(r)$ is bounded for large r. This implies that there exists some constant $C > 0$ such that for large r

$$I'(r) \leq Cr^{-2}.$$

Integrating this last inequality on (r_1, r) for large r_1, we get

$$I(r) - I(r_1) \leq -Cr^{-1} + Cr_1^{-1}.$$

By letting $r \to +\infty$, we obtain a contradiction. Hence, $\lim_{r \to +\infty} I(r) \in [0, +\infty]$, which means that $\lim_{r \to +\infty} r^{1/\alpha} u(r) \in [0, +\infty]$.
cas 2: \(\beta < 0 \).

Recalling the expression of \(I'(r) \) in (3.15), we have

\[
I'(r) = -\frac{1}{\alpha} r^{1/\alpha} u^{q-1} u'(r) \left[q\beta + \frac{(N - 1/\alpha)}{r^2 u^{q-1}} \right].
\]

Using (3.17), we get

\[
\frac{|u'|^{p-2}(r)}{r^2 u^{q-1}} \leq N^{p-2} u^{p-1}.
\]

As \(\lim_{r \to +\infty} u(r) = 0 \) and \(p - q - 1 > 0 \), then \(\lim_{r \to +\infty} \frac{|u'|^{p-2}(r)}{r^2 u^{q-1}} = 0 \). Hence, near infinity we have

\[
I'(r) \sim -\frac{q\beta}{\alpha} r^{1/\alpha} u^{q-1} u'(r).
\]

Consequently, as \(\beta < 0 \) and \(u' < 0 \), \(I'(r) < 0 \) for large \(r \). On the other hand, by lemma 3.7 and the fact that \(\beta < 0 \), we deduce that for large \(r \)

\[
\alpha u + \frac{|u'|^{p-2} u'(r)}{r} > 0.
\]

Therefore, by (3.14), \(I(r) > 0 \) for large \(r \). This means that \(\lim_{r \to +\infty} I(r) \in [0, +\infty[\).

Suppose that \(\lim_{r \to +\infty} I(r) = 0 \). Then, \(\lim_{r \to +\infty} r^{1/\alpha} u(r) = 0 \). Hence, for large \(r \)

\[
u(r) \leq r^{-1/\alpha}
\]

and by (3.17)

\[
|u'(r)| \leq Nr^{-1/\alpha - 1}.
\]

Hence, the functions \(r \to r^{1/\alpha} u^{q-1}(r)|u'(r)| \) and \(r \to r^{1/\alpha - 2} |u'(r)|^{p-1} \) belong to \(L^1([r_0, \infty]) \) for any \(r_0 > 0 \); therefore \(I'(r) \in L^1([r_0, \infty]) \) and then \(I(r) = -\int_{r_0}^{+\infty} I(t) dt \). This yields

\[
u(r) \leq \frac{1}{\alpha r} |u'|^{p-1} + q \frac{|\beta|}{\alpha} r^{-1/\alpha} \int_{r}^{+\infty} s^{1/\alpha} u^{q-1}(s) |u'(s)| ds.
\]

In view of (3.19) and (3.20), we obtain for large \(r \)

\[
u(r) \leq C(r^{-p-(p-1)/\alpha} + r^{-q/\alpha}),
\]

for some \(C > 0 \). As \(p - 1 - q > 0 \), we get for large \(r \)

\[
u(r) \leq Cr^{-q/\alpha}.
\]

If we define the sequence \(\{m_k\}_{k \in \mathbb{N}} \) by

\[
m_0 = \frac{1}{\alpha}, \quad m_k = qm_{k-1}; \quad k \geq 1,
\]
we see that \(\lim_{r \to +\infty} m_k = +\infty \), and it follows by induction starting with \(m_0 = 1/\alpha \) that the function \(r^m u(r) \) is bounded for all positive integers \(m \). But this contradicts lemma 3.8. Consequently, \(\lim_{r \to +\infty} I(r) \in]0, +\infty[\) and thereby \(\lim_{r \to +\infty} r^{1/\alpha} u(r) \in]0, +\infty[\). This completes the proof.

4 Classification of Solutions

In this section we give a classification of solutions of problem (P). We start with the following result.

Theorem 4.1 Assume \(\alpha \leq 0 \). Then any solution \(u \) of problem (P) changes sign.

Proof: The proof will be done in two steps.

STEP 1. \(u \) is not strictly positive. Suppose for the contrary that \(u > 0 \). Using the fact that \(\alpha \leq 0 \), \(\beta \leq 0 \) and \(u'(r) < 0 \), we get for \(c = N \) in equation (3.10), \(E_N'(r) < 0 \) for any \(r > 0 \). As \(E_N(0) > 0 \), suppose that there exists \(r_0 > 0 \) the first zero such that \(E_N(r_0) = 0 \), then \(E_N(r) - E_N(r_0) = 0 \) for any \(r > r_0 \). Hence \(\lim_{r \to +\infty} E_N(r) \in [-\infty, 0[\). This means that \(\lim_{r \to +\infty} ru'(r) \in [-\infty, 0[\). But, this contradicts the fact that \(u \) is strictly positive. Hence, \(E_N(r) > 0 \) for any \(r > 0 \) and (3.17) follows. On the other hand, using once again the fact that \(\alpha \leq 0 \), \(\beta \leq 0 \) and \(u' < 0 \), we have by \(E_1 \)

\[
(|u'|^{p-2}u')'(r) \leq \frac{N-1}{r} |u'|^{p-1}(r) - u(r).
\]

Hence, by (3.17)

\[
(|u'|^{p-2}u')'(r) \leq (N-1)N^{p-1} \frac{u^{p-1}(r)}{r^p} - u(r).
\]

Equivalently

\[
(|u'|^{p-2}u')'(r) \leq -u(r) \left[1 - (N-1)N^{p-1} \frac{u^{p-2}(r)}{r^p} \right].
\]

Using the fact that \(u > 0 \) and \(\lim_{r \to +\infty} u(r) = 0 \), we see that \((|u'|^{p-2}u')'(r) < 0 \) for large \(r \). This implies that \(\lim_{r \to +\infty} u'(r) \in [-\infty, 0[\). But, this contradicts the fact that \(u \) is strictly positive.

STEP 2. \(u \) changes sign. According to Step 1, let \(r_0 > 0 \) the first zero of \(u \). By (3.7) and (3.12), we have \(f(0) = 0 \) and \(f'(r) < 0 \) for any \(r \in (0, r_0) \), then \(f(r_0) = r_0^{N-1} |u'|^{p-2} u'(r_0) < 0 \) and thereby \(u'(r_0) < 0 \). Hence \(u \) changes sign.
Theorem 4.2 Suppose $\alpha N > 1$ and $\beta = 0$. Then, any solution of problem (P) is strictly positive.

Proof: Assume by contradiction that $u(r_0) = 0$ (where $r_0 > 0$ is the first zero of u). Then, $u'(r_0) \leq 0$. On the other hand, by (3.12), we have $f'(r) > 0$ for any $r \in (0, r_0)$. Hence, using the fact that $f(0) = 0$, we get $f(r_0) > 0$, in contradiction with the fact that $f(r_0) \leq 0$. The theorem is proved.

Theorem 4.3 Suppose $\alpha N > 1$ and $\beta < 0$. Then, for any $A < A_0 = \left(\frac{\alpha N - 1}{-\beta N}\right)^{1/(q-1)}$, the solution $u(\cdot, A)$ is strictly positive.

Proof: We argue by contradiction. Thus, assume that $u(r_0) = 0$ (where $r_0 > 0$ is the first zero of u). Then, $u'(r_0) \leq 0$. On the other hand, multiplying the equation (E_1) by r^{N-1} and integrating on $(0, r_0)$, we get

$$r_0^{N-1} |u'(r_0)|^{p-2} u'(r_0) = \int_0^{r_0} s^{N-1} u(s) \left[\alpha N - 1 + \beta N u^{q-1}(s)\right] ds. \quad (4.1)$$

Let

$$g(r) = (\alpha N - 1) + \beta N u^{q-1}(r)$$

for $r \in (0, r_0)$. Then

$$g'(r) = \beta N (q - 1) u^{q-2}(r) u'(r)$$

for $r \in (0, r_0)$. Hence, using the fact that $u > 0$, $u' < 0$ and $\beta < 0$, we see that $g'(r) > 0$ for $r \in (0, r_0)$. Which gives $g(r) > g(0) > 0$ for $r \in (0, r_0)$. Consequently,

$$\int_0^{r_0} s^{N-1} u(s) g(s) ds > 0,$$

The obtained sign contradiction with (4.1) proves our assertion.

Theorem 4.4 Assume $0 < \alpha N < 1$ or $\alpha N = 1$ and $\beta < 0$. Then any solution u of problem (P) changes sign.

Proof: First, we claim that u is not strictly positive. In fact, suppose for contrary that $u > 0$. Then $\lim_{r \to +\infty} u(r) = 0$. Now, we consider the function

$$J(r) = \left[u(r) + \frac{1}{\alpha r^{N-1}} |u'|^{p-2} u'(r)\right] r^N. \quad (4.2)$$

Then, J satisfies

$$J'(r) = \frac{1}{\alpha} r^{N-1} \left[\alpha N - 1 - q\beta r u^{q-2} u'\right] u(r). \quad (4.3)$$
Hence, \(J'(r) < 0 \), for any \(r > 0 \). Since \(J(0) = 0 \), then \(J(r) < 0 \) for any \(r > 0 \). As \(\beta \leq 0 \), this implies that \(f(r) \leq \alpha J(r) < 0 \) for any \(r > 0 \). But this contradicts lemma 3.7. Thereby there exists \(r_0 \) the first zero of \(u \). Then \(u'(r_0) \leq 0 \). If \(u'(r_0) = 0 \); according to (4.1) we have

\[
\int_0^{r_0} s^{N-1} u(s) \left[\alpha N - 1 + \beta N u^{q-1}(s) \right] ds = 0;
\]

which is impossible by virtue of our hypotheses. Then \(u'(r_0) < 0 \) and \(u \) changes sign.

References

Received: March 7, 2007