Closed Range Composition Operators on the Besov Space B_p, the Besov Type Space $B_{p,p-1}$

Rikio Yoneda

Faculty of Teacher Education
Institute of Human and Social Sciences
Kanazawa University
Kakuma-machi, Kanazawa
Ishikawa, 920-1192, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

We study the composition operators C_ϕ with closed range on the Besov space B_p, the Besov type space $B_{p,p-1}$

Keywords: composition operator, weighted Dirichlet space, Besov space, Besov type space, Bloch space, Bergman space, Hardy space, closed range, bounded below

1. Introduction

For $z,w \in D$, let $\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}$ and, $dA(z)$ the area measure on D. For φ analytic self-map of the open unit disk D, the composition operator C_φ is defined by $C_\varphi(f) = f \circ \varphi$.

For $p > 0$, $\alpha > -1$, the weighted Dirichlet space D^α_p is defined to be the space of analytic functions f on D such that $\| f \|_{D^\alpha_p} = |f(0)| + \left(\int_D (1 - |z|^2)^\alpha |f'(z)|^p dA(z) \right)^{\frac{1}{p}} < \infty$. In case $\alpha = 1$ and $p = 2$, then $D^1_2 = H^2$ is the classical Hardy space. Furthermore, in case $\alpha = p$ and $1 \leq p < \infty$, then $D^p_p = L^p_\alpha$ is the usual Bergman space. Also, in case $\alpha = p - 2$ and $1 < p < \infty$, $D^{p-2}_p = B_p$ is called the Besov space. In particular, $D^0_2 = D$ is called the Dirichlet space. Also, in case $\alpha = p - 1$ and $0 < p < \infty$, $D^{p-1}_p = B_{p,p-1}$ is
called the Besov type space. In particular, $\mathcal{D}_2^1 = B_{2,1} = H^2$ is the classical Hardy space. It is trivial that $B_p \subset B_{p,p-1}$ ($p > 1$).

For $\alpha > 0$, the weighted Bloch space B_α is defined to be the space of analytic functions f on D such that $\|f\|_{B_\alpha} = |f(0)| + \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty$. Note that $B_1 = B$ is the usual Bloch space. In the case of $1 < p < q$, it is known that $B_p \subset B_q \subset B$.

The amount $\sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)|$ is a pseudonorm, which coincides with the B_α-norm on the closed subspace of functions that vanish at the origin. So it coincides with the quotient norm on B_α/C where C denotes the closed subspace of constant functions. By Schwarz-Pick lemma, the operator C_φ is bounded on the Bloch space B. Furthermore, it follows from Littlewood's subordination theorem that C_φ is bounded on the Bergman space L^p_a for all $1 \leq p < \infty$.

To state our investigations, we give some definitions. Let X be a Banach space and let T a linear operator from X into X. An operator T is called bounded below on X if there exists a constant $C > 0$ such that $\|Tf\| \geq C \|f\|$ for all $f \in X$. (Clearly, when a composition operator C_φ is defined on a space of analytic functions on D, C_φ is bounded below on the space if and only if C_φ is closed range.) Furthermore, a subset H of D is called a sampling set for the space B_α if there exists a constant $C > 0$ such that $\sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| \leq C \sup_{z \in H} (1 - |z|^2)^\alpha |f'(z)|$ for all $f \in B_\alpha$. For $\epsilon > 0$, let $G_\epsilon = \varphi \left(\left\{ z \in D, \frac{1 - |z|^2 |\varphi'(z)|}{1 - |\varphi(z)|^2} \geq \epsilon \right\} \right)$. In [6], P.Ghatage, D.Zheng and N.Zorboska determined the boundedness from below of composition operators on the Bloch space using a sampling set G_ϵ for the Bloch space. Moreover, N.Zoroska ([21], [22]) characterized the boundedness from below of composition operators on the Bergman spaces. Also, H.Chen and P.Gauthier characterized the boundedness from below of composition operators on B_α in [4]. Furthermore, W.Smith ([11]) studied the boundedness and compactness of composition operators between Bergman spaces and Hardy spaces. M Tjani ([12]) studied the compactness of composition operators on the Besov spaces. M Tjani ([13]) also studied closed range composition operators on Besov spaces and Besov type spaces. In this paper, we study when composition operators are bounded below on the B_p and $B_{p,p-1}$, respectively.

2. Preliminary notes

In this section, we introduce several results to prove the main theorem. In [1] J.R.Akeroyd and P.G.Ghatage proved the following result.

Theorem 1. ([1]) Let φ be a univalent, analytic self-map of D. Then C_φ is closed range on L^p_a if and only if φ is an automorphism of D.

2000 Mathematics Subject Classification : Primary 47B38; Secondary 30D50.
In [17] we proved the following result.

Theorem 2. ([17]) Let \(\alpha > 1 \). Suppose \(\varphi \) is a univalent self-map of \(D \). Then the following are equivalent.

1. \(C_\varphi : B_\alpha \rightarrow B_\alpha \) is bounded below.
2. \(C_\varphi : L_2^a(= \mathcal{D}_2^a) \rightarrow L_2^a(= \mathcal{D}_2^a) \) is bounded below.
3. \(C_\varphi : H^2(= \mathcal{D}_1^a) \rightarrow H^2(= \mathcal{D}_1^a) \) is bounded below.
4. \(C_\varphi : \mathcal{D}_2^a \rightarrow \mathcal{D}_2^a \) is bounded below.
5. \(\varphi \) is an automorphism of \(D \).

In [13] M Tjani proved the following results.

Theorem 3. ([13]) Let \(p > 2 \). Then if \(C_\varphi \) is closed range on \(B_{p,p-1} \), then \(C_\varphi \) is closed range on \(H^2 \).

Theorem 4. ([13]) Let \(\varphi \) be a boundedly valent, analytic self-map of \(D \) and \(p > 2 \). Then \(C_\varphi \) is closed range on \(B_p \) if and only if \(C_\varphi \) is closed range on \(B \).

In [18] we proved the following result.

Theorem 5. ([18]) Let \(0 < \alpha < 1 \) and \(1 < p < \infty \). Suppose \(\varphi \) is a univalent self-map of \(D \). Furthermore, suppose that \(C_\varphi : B_\alpha \rightarrow B_\alpha \) is bounded (i.e. \(\sup_{z \in D} (1 - |z|^2)^\alpha (1 - |\varphi(z)|^2)^{-\alpha} |\varphi'(z)| < \infty \)), and that \(C_\varphi : \mathcal{D} \rightarrow \mathcal{D} \) is bounded. Then, the following are equivalent.

1. \(C_\varphi : L_2^a \rightarrow L_2^a \) is bounded below.
2. \(C_\varphi : \mathcal{D}_p^\gamma \rightarrow \mathcal{D}_p^\gamma \) is bounded below for some \(\gamma > 1 \).
3. \(C_\varphi : \mathcal{D}_p^\gamma \rightarrow \mathcal{D}_p^\gamma \) is bounded below for all \(\gamma > 1 \).
4. \(C_\varphi : B_\alpha \rightarrow B_\alpha \) is bounded below for some \(0 < \alpha < 1 \).
5. \(C_\varphi : B_\alpha \rightarrow B_\alpha \) is bounded below for all \(0 < \alpha < 1 \).
6. \(C_\varphi : B_\gamma \rightarrow B_\gamma \) is bounded below for some \(\gamma > 1 \).
7. \(C_\varphi : B_\gamma \rightarrow B_\gamma \) is bounded below for all \(\gamma > 1 \).
8. \(C_\varphi : \mathcal{D} \rightarrow \mathcal{D} \) is bounded below.
9. \(C_\varphi : B \rightarrow B \) is bounded below.
10. \(\varphi \) is an automorphism of \(D \).

In [18] we also proved the following result.

Theorem 6. ([18]) Let \(0 < p, q < +\infty \), and \(\alpha, \gamma > 0 \). Suppose that \(C_\varphi : \mathcal{D}_p^{\alpha} \rightarrow \mathcal{D}_q^{\gamma} \) is bounded. If \(C_\varphi : \mathcal{D}_p^{\alpha} \rightarrow \mathcal{D}_q^{\gamma} \) is bounded below, then there exists a constant \(K > 0 \) such that

\[
\sup_{z \in D} |(C_\varphi f)'(z)|(1 - |z|^2)^\gamma \geq KS_{p,q,\alpha}(f)
\]
for all \(f \in B_\alpha \), where
\[
S_{p,q,\alpha}(f) := \begin{cases}
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{\alpha + 2(\frac{1}{p} - \frac{1}{q})} & (1 < q \leq p) \\
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{\alpha + 2(\frac{1}{p} - 1)} \left(\log \frac{2}{1 - |z|^2} \right)^{-1} & (q = 1 < p) \\
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{\alpha + 2(\frac{1}{p} - 1)} & (0 < q < 1 \leq p).
\end{cases}
\]

The following is trivial using Theorem 2 and Theorem 3.

Proposition 7. Let \(p \geq 2 \). Suppose \(\varphi \) is a univalent self-map of \(D \).
Then the following conditions are equivalent:

1. \(C_\varphi : B_{p,p-1} \to B_{p,p-1} \) is bounded below.
2. \(\varphi \) is an automorphism of \(D \).

In this context, we study the following natural problem.

Problem A. Let \(p \geq 2 \). Suppose \(\varphi \) is a univalent self-map of \(D \).
Then the following conditions are equivalent:

1. \(C_\varphi : B_p \to B_p \) is bounded below.
2. \(\varphi \) is an automorphism of \(D \).

In this paper, we get several results with respect to the boundedness from below of composition operators \(B_p, B_{p,p-1} \)

3. The main results and the univalent case

If \(\varphi(0) = a \) and \(\psi = \varphi \circ \varphi \), then \(C_{\varphi} \) is bounded below on \(B_\alpha \) (or \(D_\alpha \)) to \(B_\alpha \) (or \(D_\alpha \)) if and only if \(C_{\psi} \) is bounded below on \(B_\alpha \) (or \(D_\alpha \)) to \(B_\alpha \) (or \(D_\alpha \))(See [6] and [21]). So we assume from now on that \(\varphi(0) = 0 \) and that \(C_{\varphi} \) is acting on the subspace of functions that vanish at the origin.

In [18] we proved the following result.

Lemma 8. ([18]) Let \(0 < \alpha < \beta < 1 \). If \(C_{\varphi} : B_\alpha \to B_\alpha \) is bounded, then \(C_{\varphi} : B_\beta \to B_\beta \) is bounded.

In [18] we also proved the following result.

Lemma 9. ([18]) Let \(0 < \alpha < \beta < 1 \) Suppose \(\varphi \) is a univalent self-map of \(D \) and that \(C_{\varphi} : B_\alpha \to B_\alpha \) is bounded
(i.e. \(\sup_{z \in D} (1 - |z|^2)^{\alpha} (1 - |\varphi(z)|^2)^{-\alpha} |\varphi'(z)| < \infty \)). Then the following are equivalent.
(1) \(C_\phi : B_\alpha \to B_\alpha \) is bounded below.
(2) \(C_\phi : B_\beta \to B_\beta \) is bounded below.
(3) \(\phi \) is an automorphism of \(D \).

Lemma 10. ([13]) Let \(p \geq 2 \) and \(\phi \) a holomorphic self-map of \(D \).
(1) If \(\alpha \geq p - 2 \) and \(\phi \) is boundedly valent, then \(C_\phi \) is a bounded operator on \(B_{p,\alpha} \).
(2) If \(\alpha \geq p - 1 \), then \(C_\phi \) is a bounded operator on \(B_{p,\alpha} \).

Corollary 11. Let \(p \geq 2 \), and \(\phi \) a holomorphic self-map of \(D \). If \(C_\phi : B_{p,p-1} \to B_{p,p-1} \) is bounded below, then \(C_\phi : B_{1-\frac{1}{p}} \to B_{1-\frac{1}{p}} \) is bounded below.

Proof. Let \(p \geq 2 \). Then Lemma 10 implies that \(C_\phi \) is a bounded operator on \(B_{p,p-1} \). Applying \(\alpha = 1 - \frac{1}{p} \) and \(\gamma = 1 - \frac{1}{q} \) in Theorem 6, we can prove that \(C_\phi : B_{1-\frac{1}{q}} \to B_{1-\frac{1}{q}} \) is bounded below. \(\square \)

Corollary 12. Let \(p > 2 \), and \(\phi \) a holomorphic self-map of \(D \). If \(C_\phi : B_p \to B_p \) is bounded below, then \(C_\phi : B_{1-\frac{2}{p}} \to B_{1-\frac{2}{p}} \) is bounded below.

Proof. Let \(p > 2 \). Then Lemma 10 implies that \(C_\phi \) is a bounded operator on \(B_p \). Applying \(\alpha = 1 - \frac{2}{p} \) and \(\gamma = 1 - \frac{2}{q} \) in Theorem 6, we can prove that \(C_\phi : B_{1-\frac{2}{q}} \to B_{1-\frac{2}{q}} \) is bounded below. \(\square \)

Using Corollary 12, we have the following result which satisfies Problem A under certain conditions.

Theorem 13. Let \(p > 2 \). Suppose \(\phi \) is a univalent self-map of \(D \) and that \(C_\phi : B_{1-\frac{2}{p}} \to B_{1-\frac{2}{p}} \) is bounded
(i.e. \(\sup_{z \in D} (1 - |z|^2)^{1-\frac{2}{p}} (1 - |\phi(z)|^2)^{-(1-\frac{2}{p})} |\phi'(z)| < \infty \). Then the following are equivalent.
(1) \(C_\phi : B_p \to B_p \) is bounded below.
(2) \(C_\phi : B \to B \) is bounded below.
(3) \(C_\phi : B_{1-\frac{2}{p}} \to B_{1-\frac{2}{p}} \) is bounded below.
(4) \(C_\phi : B_{\gamma} \to B_{\gamma} \) is bounded below \((1 - \frac{2}{p} < \gamma < 1) \).
(5) \(\phi \) is an automorphism of \(D \).

Proof. Let \(p > 2 \). Suppose that \(C_\phi : B_{1-\frac{2}{p}} \to B_{1-\frac{2}{p}} \) is bounded. Then Lemma 8 implies that \(C_\phi : B_{\gamma} \to B_{\gamma} \) is bounded \((1 - \frac{2}{p} < \gamma < 1) \). Since \(p > 2 \), Lemma 10 implies that \(C_\phi \) is a bounded operator on \(B_p \). Since the Besov spaces \(B_p \) are the only Möbius invariant spaces among all Besov type
spaces($\| f \circ \varphi_a \|_{B_p} = \| f \|_{B_p}$ for $a \in D$), using Theorem 4, Lemma 9 and Corollary 12, we can prove theorem. □

Remark 14. We will see that Theorem 13 slightly improves and extends Theorem 5.

Using Theorem 9 and Theorem 11, we have the following result which satisfies both Problem A and Problem B under certain conditions.

Theorem 15. Let $p > 2$. Suppose φ is a univalent self-map of D and that $C_\varphi : B_{1-p} \to B_{1-p}$ is bounded

(i.e. $\sup_{z \in D} (1 - |z|^2)^{1-p/2} (1 - |\varphi(z)|^2)^{-(1-p/2)} |\varphi'(z)| < \infty$). Then the following are equivalent.

1. $C_\varphi : B_p \to B_p$ is bounded below.
2. $C_\varphi : B_{p,p-1} \to B_{p,p-1}$ is bounded below.
3. $C_\varphi : H^2 \to H^2$ is bounded below.
4. $C_\varphi : BMOA \to BMOA$ is bounded below.
5. $C_\varphi : B \to B$ is bounded below.
6. φ is an automorphism of D.

Proof. Let $p > 2$. Suppose that $C_\varphi : B_{1-p} \to B_{1-p}$ is bounded. Then Lemma 5 implies that $C_\varphi : B_{1-p} \to B_{1-p}$ is bounded. Lemma 7 implies that C_φ is bounded on both B_p and $B_{p,p-1}$. That (2) implies (3) follows from Theorem 3. That (3) implies (4) follows from Theorem 2.4 in [17]. That (4) implies (5) follows from Corollary 2 in [6]. Thus using Theorem 4, Proposition 7 and Theorem 13, we can prove theorem. □

Acknowledgement. The author wishes to express their sincere gratitude to Kouki Yoneda and the referee for their many helpful suggestions and advices. This work was supported by JSPS KAKENHI Grant Number JP 21K03268.

References

[18] R. Yoneda, Boundedness from below of composition operators between L_p^a and L_q^a and the Hardy space H^2, between L_p^α and Besov space, *Journal of Mathematical Inequalities*, 17 (1) (2023), 315-323. https://doi.org/10.7153/jmi-2023-17-21

Received: March 29, 2023; Published: May 11, 2023