Closed Range Integral Operators Between L^p_0 and L^q_0, Between L^p_0 and the Hardy Space H^2, Between L^p_0 and Besov Space

Rikio Yoneda

Faculty of Teacher Education
Institute of Human and Social Sciences
Kanazawa University
Kakuma-machi, Kanazawa
Ishikawa, 920-1192, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

We study the relation between the integral operators S_g with closed range on the weighted Bloch spaces and S_g with closed range on the weighted Dirichlet spaces D^p_0. In particular, we study the integral operators S_g with closed range between L^p_0 and L^q_0, between L^p_0 and Hardy space H^2, and between L^p_0 and Besov space.

Mathematics Subject Classification: Primary 32A35; Secondary 47B38

Keywords: integral operator, weighted Dirichlet space, Bloch space, Bergman space, Hardy space, Besov space, closed range, bounded below

1. Introduction

For g analytic function on the open unit disk D, the integral operator S_g is defined by

$$S_g f(z) = \int_0^z f'(w)g(w)dw.$$
For \(z, w \in D \), let \(\varphi_z(w) = \frac{z - w}{1 - \overline{z}w} \) and, \(dA(z) \) the area measure on \(D \).

For \(p > 0, \alpha > -1 \), the weighted Dirichlet space \(D_\alpha^p \) is defined to be the space of analytic functions \(f \) on \(D \) such that

\[
|f(0)| + \left(\int_D (1 - |z|^2)^\alpha |f'(z)|^p dA(z) \right)^{\frac{1}{p}} < \infty.
\]

In case \(\alpha = 1 \) and \(p = 2 \), then \(D_1^2 = H^2 \) is the classical Hardy space. Furthermore, in case \(\alpha = p \) and \(1 \leq p < \infty \), then \(D_p^p = L^p_\alpha \) is the usual Bergman space. In particular, \(D_0^2 = D \) is called the Dirichlet space. (See [19].)

For \(\alpha > 0 \), the weighted Bloch space \(B_\alpha \) is defined to be the space of analytic functions \(f \) on \(D \) such that

\[
|f(0)| + \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty.
\]

Note that \(B_1 = B \) is the usual Bloch space.

The amount \(\sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| \) is a pseudonorm, which coincides with the \(B_\alpha \)-norm on the closed subspace of functions that vanish at the origin. So it coincides with the quotient norm on \(B_\alpha / C \) where \(C \) denotes the closed subspace of constant functions. The space \(BMOA \) is defined to be the space of analytic functions \(f \) on \(D \) such that

\[
|f(0)| + \sup_{a \in D} \left(\int_D (1 - |\varphi_a(z)|^2)|f'(z)|^2 dA(z) \right)^{\frac{1}{2}} < \infty.
\]

Let \(X \) be a Banach space and let \(T \) a linear operator from \(X \) into \(X \). An operator \(T \) is called bounded below on \(X \) if there exists a constant \(C > 0 \) such that \(\| Tf \| \geq C \| f \| \) for all \(f \in X \).

In [1], Austin Anderson determined the boundedness from below of integral operators on \(H^2 \), the Bloch space \(B \) and \(L^p_\alpha \). Moreover, in [4], Kostas Panteris determined the boundedness from below of integral operators on \(H^p \), the BMOA and Besov space. We characterized the boundedness of integral operators on the Bloch spaces \(B \), the weighted Bloch space \(B_\alpha \), the weighted BMOA and the weighted Bergman space \((\delta)[6][7][9])\). Furthermore, Santeri Miichinen, Jordi Pau, Antti Perälä and Maofa Wang ([3]) studied the boundedness and compactness of Volterra type integration operators \(T_g \) between Bergman spaces and Hardy spaces, where \(T_g f(z) = \int_0^z f(w)g'(w)dw \).

In this paper, we study when integral operators are bounded below on the weighted Dirichlet space \(D_\alpha^p \), the weighted Bloch spaces \(B_\alpha \) and the Bergman spaces \(L^p_\alpha \), respectively. Moreover, we study relationship between the boundedness from below of integral operators on \(D_\alpha^p \) and it on \(B_\alpha \). As a result, we...
can characterized the boundedness from below of integral operators between \(L^p_\alpha \) and \(H^2 \), between \(L^p_\alpha \) and \(B_p \), respectively.

2. Background Material

In this section, we introduce several results to prove the main theorem. Since the integral operator \(S_g \) maps every constant function to the 0 function, in the case of considering the property of being bounded below for \(S_g \), it is useful to consider spaces of analytic functions modulo the constants.

In [1] Austin Anderson proved the following result.

Theorem A. ([1]) Let \(Y \) be a Banach space of analytic functions on the disk. For nonconstant \(g \), \(S_g \) is bounded below on \(Y/\mathbb{C} = \{ f \in Y : f(0) = 0 \} \) if and only if it has closed range on \(Y/\mathbb{C} = \{ f \in Y : f(0) = 0 \} \).

In [1] Austin Anderson also proved the following result.

Theorem B. ([1]) The following are equivalent for \(g \in H^\infty \).
1. \(g = BF \) for a finite product \(B \) of interpolating Blaschke products and \(F \) such that \(F, 1/F \in H^\infty \).
2. \(S_g \) is bounded below on \(B/\mathbb{C} = \{ f \in B : f(0) = 0 \} \).
3. There exist \(r < 1 \) and \(\eta > 0 \) such that for all \(a \in D \), \(\sup_{z \in D(a,r)} |g(z)| > \eta \).
4. \(S_g \) is bounded below on \(H^2/\mathbb{C} = \{ f \in H^2 : f(0) = 0 \} \).
5. \(M_g \) is bounded below on \(L^p_\alpha \).
6. \(S_g \) is bounded below on \(L^p_\alpha/\mathbb{C} = \{ f \in L^p_\alpha : f(0) = 0 \} \).

In this paper, we characterize the relation between the integral operators \(S_g \) with closed range on the weighted Bloch spaces and \(S_g \) with closed range on the weighted Dirichlet spaces \(D^\alpha_p \). And we get several results with respect to the boundedness from below of integral operators between Bergman spaces \(L^p_\alpha \) and Bergman spaces \(L^q_\alpha \), the boundedness from below of integral operators between Bergman spaces \(L^p_\alpha \) and Hardy space, and the boundedness from below of integral operators between Bergman spaces \(L^p_\alpha \) and Besov space \(B_p \).

3. The main results

To prove the main theorem, we need the following lemma.

Lemma 1. Let \(\alpha, \beta > 0 \) and \(\alpha \neq \beta \). Suppose \(S_g : B_\alpha \rightarrow B_\beta \) is bounded. Then the following hold.
1. If \(\alpha > \beta \), then \(S_g : B_\alpha/\mathbb{C} \rightarrow B_\beta/\mathbb{C} \) is not bounded below.
2. If \(\alpha < 1 \leq \beta \), or \(1 \leq \alpha < \beta \), and \(g \in H^\infty \), then \(S_g : B_\alpha/\mathbb{C} \rightarrow B_\beta/\mathbb{C} \) is not bounded below.
Proof. Let $\alpha > \beta$. If $1 < s < \infty$, $f_a(z) := (1 - |az|^{1-\alpha} - 1$, then we have

$$\sup_{a \in D}(1 - |a|^2)^{2(\beta - \alpha)}|g(a)|^2$$

$$= \sup_{a \in D}(1 - |a|^2)^{2(\beta - \alpha - 1)}(1 - |a|^2)|g(a)|^2$$

$$\leq C \sup_{a \in D}(1 - |a|^2)^{2(\beta - \alpha - 1)} \int_{D(a,r)} |g(z)|^2 dA(z)$$

$$\leq C \sup_{a \in D} \int_{D(a,r)} \frac{(1 - |z|^2)^{2(\beta - 1)}}{1 - |az|^{2\alpha}} |g(z)|^2(1 - |\varphi_a(z)|^2)^s dA(z)$$

$$\leq C \sup_{a \in D} \int_D (1 - |z|^2)^{2(\beta - 1)} |f'(z)|^2 |g(z)|^2(1 - |\varphi_a(z)|^2)^s dA(z)$$

$$= C \sup_{a \in D} \int_D (1 - |z|^2)^{2(\beta - 1)} (Sg f_a)'(z)^2(1 - |\varphi_a(z)|^2)^s dA(z)$$

$$\approx \left\{ \sup_{z \in D} (1 - |z|^2)^{\beta} |(Sg f_a)'(z)| \right\}^2 < \infty.$$

which implies $g \equiv 0$ as $\alpha > \beta$. Thus $S_g : \mathcal{B}_\alpha/\mathcal{C} \to \mathcal{B}_\beta/\mathcal{C}$ is not bounded below as $\alpha > \beta$.

Next, suppose that $\alpha < 1 \leq \beta$, or $1 \leq \alpha < \beta$, and $g \in H^\infty$. Let $f_{w_n}(z) := 1 - \frac{|w_n|^2}{w_n z} \left\{ \frac{1}{(1 - \frac{|w_n|^2}{w_n z})^{\alpha+1}} - 1 \right\}$. Then $f'_{w_n}(z) = \frac{1 - |w_n|^2}{(1 - \frac{|w_n|^2}{w_n z})^{\alpha+1}}$. Let $w_n \to \partial D$. Then it is clear that $f_{w_n} \in \mathcal{B}_\alpha$ and

$$\sup_{z \in D} |f'_{w_n}(z)||1 - |z|^2|^\alpha = \sup_{z \in D} \frac{(1 - |w_n|^2)(1 - |z|^2)^\alpha}{|1 - \frac{|w_n|^2}{w_n z}|^{\alpha+1}} \geq 1.$$

On the other hand, there exists a constant $C > 0$ such that

$$\sup_{z \in D} |(Sg f_{w_n})'(z)|(1 - |z|^2)^\beta$$

$$\leq \| g \|_\infty \sup_{z \in D} |f'_{w_n}(z)|(1 - |z|^2)^\beta$$

$$= \| g \|_\infty \sup_{z \in D} \frac{(1 - |w_n|^2)(1 - |z|^2)^{\alpha+(\beta-\alpha)}}{|1 - \frac{|w_n|^2}{w_n z}|^{\alpha+(\beta-\alpha)+1}}$$

$$\leq C \| g \|_\infty \sup_{z \in D} \frac{1 - |w_n|^2}{|1 - \frac{|w_n|^2}{w_n z}|^{-(\beta-\alpha)+1}} \to 0 (n \to \infty).$$

Thus $S_g : \mathcal{B}_\alpha/\mathcal{C} \to \mathcal{B}_\beta/\mathcal{C}$ is not bounded below as $\alpha < 1 \leq \beta$, or $1 \leq \alpha < \beta$, $g \in H^\infty$. □

Let $\alpha > -1$. For $\forall a \in D$, the following estimate is standard ([10]).
Closed range composition operators

\[\int_D (1 - |z|^2)^{\alpha} \frac{dA(z)}{|1 - \overline{a}z|^{\lambda}} \sim \begin{cases} (1 - |a|^2)^{\lambda + 2 - \lambda} & (\lambda > \alpha + 2) \\ \log \frac{2}{1 - |a|^2} & (\lambda = \alpha + 2) \\ 1 & (\lambda < \alpha + 2). \end{cases} \]

Using the estimate (\@), we have the following result.

Theorem 2. Let $0 < p, q < +\infty$, and $\alpha, \gamma > 0$. Suppose that $S_g : D_p^{\alpha} \to D_q^{\gamma}$ is bounded. If $S_g : D_p^{\alpha} / C \to D_q^{\gamma} / C$ is bounded below, then there exists a constant $K > 0$ such that

\[\sup_{z \in D} |(S_g f)'(z)| (1 - |z|^2)^\gamma \geq K S_{p,q,\alpha}(f) \]

for all $f \in B_{\alpha}$, where

\[S_{p,q,\alpha}(f) := \begin{cases} \sup_{z \in D} |f'(z)|(1 - |z|^2)^{\alpha + 2(\frac{1}{p} - \frac{1}{q})} & (1 < q \leq p) \\ \sup_{z \in D} |f'(z)|(1 - |z|^2)^{\alpha + 2(\frac{1}{p} - 1)} \left(\log \frac{2}{1 - |z|^2} \right)^{-1} & (q = 1 < p) \\ \sup_{z \in D} |f'(z)|(1 - |z|^2)^{\alpha + 2(\frac{1}{p} - 1)} & (0 < q < 1 \leq p) \end{cases} \]

Proof. For $a \in D$ and $\forall f \in B_{\alpha}$, we see that

\[F(z) = \int_0^z f'(\zeta) \varphi_a'(\zeta) d\zeta \in D_p^{\alpha}. \] (2.1)

In fact, using the evaluation (\@), it holds that

\[\left\{ \int_D (1 - |z|^2)^{\alpha} |F'(z)|^p dA(z) \right\}^{\frac{1}{p}} = \left\{ \int_D |f'(z)|^p |\varphi_a'(z)|^p (1 - |z|^2)^\alpha dA(z) \right\}^{\frac{1}{p}} \leq \sup_{z \in D} (1 - |z|^2)^{\alpha} |f'(z)| \left\{ \int_D |\varphi_a'(z)|^p dA(z) \right\}^{\frac{1}{p}}, \]

and

\[\left\{ \int_D |\varphi_a'(z)|^p dA(z) \right\}^{\frac{1}{p}} = \left\{ \int_D \frac{(1 - |a|^2)^p}{|1 - \overline{a}z|^{2p}} dA(z) \right\}^{\frac{1}{p}} \sim \begin{cases} (1 - |a|^2)^{\frac{p}{2} - 1} & (p > 1) \\ (1 - |a|^2) \log \frac{2}{1 - |a|^2} & (p = 1) \\ (1 - |a|^2)^{\frac{p}{2}} & (0 < p < 1). \end{cases} \]

Hence $F(z) = \int_0^z f'(\zeta) \varphi_a'(\zeta) d\zeta \in D_p^{\alpha}$.

Let $p \geq q > 1$ and $f \in B_{\alpha}$, then (2.1) implies that $F \in D_p^{\alpha}$. Since S_g
: $\mathcal{D}_p^{\alpha_\gamma} / \mathcal{C} \to \mathcal{D}_q^{\alpha_\gamma} / \mathcal{C}$ is bounded below, for any $a \in D$, using subharmonicity of $|f \circ \varphi_a|^p$, there exists a constant $K > 0$ such that

$$
\left\{ |f'(a)|^p (1 - |a|^2)^{p(\alpha - 1)} \right\}^{\frac{1}{p}} \\
\leq K \left\{ \int_D (1 - |z|^2)^{p(\alpha - 1)} |f'(z)|^p (1 - |\varphi_a(z)|^2)^p |dA(z)| \right\}^{\frac{1}{p}} \\
= K \left\{ \int_D |f'(z)|^p |\varphi_a'(z)|^p (1 - |z|^2)^{p|a|} |dA(z)| \right\}^{\frac{1}{p}} \\
= K \left\{ \int_D (1 - |z|^2)^{|a|} |F'(z)|^p |dA(z)| \right\}^{\frac{1}{p}} \\
\leq K \left\{ \int_D (1 - |z|^2)^{|a|} |(S_g f)'(z)|^q |dA(z)| \right\}^{\frac{1}{q}} \\
= K \left\{ \sup_{z \in D} |(S_g f)'(z)| |(1 - |z|^2)|^\gamma \right\} \left\{ \int_D |\varphi_a'(z)|^q |dA(z)| \right\}^{\frac{1}{q}}.
$$

Since S_g is bounded on L^q_a and that $\varphi_a' \in L^q_a$, for any $a \in D$, using the evaluation (@),

$$
\left\{ \int_D |\varphi_a'(z)|^q |dA(z)| \right\}^{\frac{1}{q}} \approx (1 - |a|^2)^{(2-q)\gamma} < \infty.
$$

Hence there exists a constant $K' > 0$ such that

$$
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{\alpha + 2(\frac{1}{p} - \frac{1}{q})} \leq K' \sup_{z \in D} |(S_g f)'(z)| (1 - |z|^2)^\gamma \quad (\forall f \in \mathcal{B}_\alpha).
$$

Let $p > q = 1$ and $f \in \mathcal{B}_\alpha$, then (2.1) implies that $F \in \mathcal{D}_p^{\alpha_\gamma}$. So we can also prove that there exists a constant $K' > 0$ such that

$$
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{\alpha + 2(\frac{1}{p} - \frac{1}{q})} \leq K' \sup_{z \in D} |(S_g f)'(z)| (1 - |z|^2)^\gamma \quad (\forall f \in \mathcal{B}_\alpha).
$$

Let $p \geq 1 > q > 0$ and $f \in \mathcal{B}_\alpha$, then (2.1) implies that $F \in \mathcal{D}_p^{\alpha_\gamma}$. Thus we can also prove that there exists a constant $K' > 0$ such that

$$
\sup_{z \in D} |f'(z)| (1 - |z|^2)^{2(\frac{1}{p} - \frac{1}{q})} \leq K' \sup_{z \in D} |(S_g f)'(z)| (1 - |z|^2)^\gamma \quad (\forall f \in \mathcal{B}_\alpha).
$$

This completes the proof of theorem. \hfill \Box

Remark 3. Let $1 < p < \infty$. If $S_g : L^q_B / \mathcal{C} \to L^p_B / \mathcal{C}$ is bounded below, then $S_g : B / \mathcal{C} \to B / \mathcal{C}$ is bounded below. In fact, when $1 < p < \infty$, applying
\(\alpha = \gamma = 1 \) and \(q = p > 1 \) in Theorem 2 and using the property (\(\oplus \)), we can prove that \(S_g : \mathcal{B}/\mathcal{C} \rightarrow \mathcal{B}/\mathcal{C} \) is bounded below. Of course, this implication can be obtained directly from Theorem B without using Theorem 2.

Remark 4. If \(S_g : H^2/\mathcal{C} \rightarrow H^2/\mathcal{C} \) is bounded below, then \(S_g : \mathcal{B}^\frac{1}{2}/\mathcal{C} \rightarrow \mathcal{B}^\frac{1}{2}/\mathcal{C} \) is bounded below. In fact, applying \(\alpha = \gamma = \frac{1}{2} \) in Theorem 2 and using the property (\(\oplus \)), we can prove that \(S_g : \mathcal{B}^\frac{1}{2}/\mathcal{C} \rightarrow \mathcal{B}^\frac{1}{2}/\mathcal{C} \) is bounded below. On the other hand, we also have the following.

Theorem 5. If \(S_g : H^2/\mathcal{C} \rightarrow H^2/\mathcal{C} \) is bounded below, then \(S_g : BMOA/\mathcal{C} \rightarrow BMOA/\mathcal{C} \) is bounded below.

Proof. In fact, for any \(a \in D \) and \(f \in BMOA \), we have that

\[
F(z) = \int_0^z f'(w) (\varphi_a'(w))^{\frac{1}{2}} \, dw \in H^2.
\]

In fact, we have

\[
\int_D (1 - |z|^2)|F'(z)|^2 \, dA(z)
\]
\[
= \int_D (1 - |z|^2)|f'(z)|^2 |\varphi_a'(z)| \, dA(z)
\]
\[
= \int_D (1 - |\varphi_a(z)|^2)|f'(z)|^2 \, dA(z)
\]
\[
\leq \sup_{a \in D} \int_D (1 - |\varphi_a(z)|^2)|f'(z)|^2 \, dA(z) < \infty.
\]

Hence we have that \(F \in H^2 \).

On the other hand, let \(Pf(z) = \int_0^z f(w)h'(w) \, dw \). Then there exists a constant \(k > 0 \) such that \(\int_D |f(z)|^2|h'(z)|^2(1 - |z|^2) \, dA(z) \leq k \int_D |f'(z)|^2(1 - |z|^2) \, dA(z) \) if and only if \(|h'(z)|(1 - |z|^2) \, dA(z) \) is a Carleson measure (see [8]). Furthermore, the above inequality shows that the operator norm \(\| P \|_{H^2} \) is comparable to \(\| h \|_{BMOA} \).

If \(S_g : H^2/\mathcal{C} \rightarrow H^2/\mathcal{C} \) is bounded below, then for any \(a \in D \) and \(f \in BMOA \), for some constants \(C, C' > 0 \), since \(\int_D \left| \left((\varphi_a'(z))^{\frac{1}{2}} \right) \right|^2 (1 - |z|^2) \, dA(z) < \infty \), we have

\[
\int_D (1 - |\varphi_a(z)|^2)|f'(z)|^2 \, dA(z)
\]
\[
= \int_D (1 - |z|^2)|F'(z)|^2 \, dA(z)
\]
\[
\leq C \int_D (1 - |z|^2)|(S_gF)'(z)|^2 \, dA(z)
\]
= C \int_D (1 - |z|^2) \left| g(z) \right|^2 |f'(z)|^2 |\varphi'_a(z)| \, dA(z) \\
= C \int_D \left| (\varphi'_a(z))^{\frac{1}{2}} (1 - |z|^2) (Sg f)'(z) \right|^2 dA(z) \\
\leq C C' \| Sg f \|_{BMO}^2 \int_D \left| (\varphi'_a(z))^{\frac{1}{2}} \right|^2 (1 - |z|^2) dA(z) < \infty.

Hence \(S_g : BMOA/\mathcal{C} \to BMOA/\mathcal{C} \) is bounded below. \(\square \)

Remark 6. The above implication can be obtained directly from both Kostas Panteris’ result in [4] and Theorem B without using Theorem 5.

If \(\gamma = 1 \), then \(L^p_a \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) and that there exists a symbol \(g \) such that \(S_g : L^p_a/\mathcal{C} \to L^p_a/\mathcal{C}(= \mathcal{D}^{\mathcal{D}_p/\mathcal{C}}) \) is bounded below. If \(\gamma \neq 1 \), then there is no symbol \(g \) such that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is bounded below.

Corollary 7. Let \(1 < p < \infty \). If \(\gamma > 1 \) and \(g \in H^\infty \), then \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is bounded, while there is no symbol \(g \) such that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is bounded below. If \(\gamma < 1 \), supposing that \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is bounded, then there is no symbol \(g \) such that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is bounded below.

Proof. Let \(p > 1 \). If \(\gamma > 1 \), since \(g \in H^\infty \), the boundedness of \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is trivial. Let \(p > 1 \). Theorem 2 and (2) of Lemma 1 imply that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is not bounded below. If \(\gamma < 1 \), supposing the boundedness of \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \), then Theorem 2 and (1) of Lemma 1 imply that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_p/\mathcal{C}} \) is not bounded below. \(\square \)

If \(p > q > 1 \) and \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \), then we have the following.

Corollary 8. Let \(1 < q < p \) and \(g \in H^\infty \). If \(\gamma \geq 1 \), then \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded, while there is no symbol \(g \) such that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded below.

Proof. If \(\gamma \geq 1 \), since \(g \in H^\infty \), the boundedness of \(S_g : L^p_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) follows from Hölder’s inequality. If \(\gamma \geq 1 \), then Theorem 2 and (2) of Lemma 1 imply that \(S_g : L^p_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is not bounded below.

If \(0 < q < p = 1 \), if \(\gamma \neq 1 \), then there is no symbol \(g \) such that \(S_g : L^1_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded below.

Corollary 9. Let \(0 < q < 1 \). If \(\gamma > 1 \) and \(g \in H^\infty \), then \(S_g : L^1_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded, while there is no symbol \(g \) such that \(S_g : L^1_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded below. If \(\gamma < 1 \), supposing that \(S_g : L^1_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded, then there is no symbol \(g \) such that \(S_g : L^1_a/\mathcal{C} \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) is bounded below.

Proof. Let \(0 < q < 1 \). If \(\gamma > 1 \), since \(g \in H^\infty \), the boundedness of \(S_g : L^1_a \to \mathcal{D}^{\mathcal{D}_q/\mathcal{C}} \) follows from Hölder’s inequality. If \(\gamma > 1 \), supposing that the
boundedness of \(S_g : L^1_a \to \mathcal{D}_q^{r'}/L^q_a \), then Theorem 2 and (2) of Lemma 1 imply that \(S_g : L^1_a/C \to \mathcal{D}_q^{r'}/C \) is not bounded below. If \(\gamma < 1 \), supposing that \(S_g : L^1_a \to \mathcal{D}_q^{r'}/C \) is bounded, Theorem 2 and (1) of Lemma 1 imply that \(S_g : L^1_a/C \to \mathcal{D}_q^{r'}/C \) is not bounded below. \(\square \)

With respect to the integral operator \(S_g : \mathcal{D}_p^{\alpha} \to L^q_a \), then we have the following.

Corollary 10. Suppose \(\alpha < 1 \) and \(g \in H^\infty \). If \(p \geq q > 1 \) or \(p > 1 = q \) or \(p \geq 1 > q > 0 \), supposing that \(S_g : \mathcal{D}_p^{\alpha} \to L^q_a \) is bounded, then there is no symbol \(g \) such that \(S_g : \mathcal{D}_p^{\alpha}/C \to L^q_a/C \) is bounded below.

Proof. Since \(\alpha < 1 \) and \(g \in H^\infty \), the boundedness of \(S_g : \mathcal{D}_p^{\alpha} \to L^q_a \) follows from Hölder’s inequality. If \(p \geq q > 1 \) or \(p > 1 = q \) or \(p \geq 1 > q > 0 \), supposing that \(S_g : \mathcal{D}_p^{\alpha} \to L^q_a \) is bounded, then Theorem 2 and (2) of Lemma 1 imply that \(S_g : \mathcal{D}_p^{\alpha}/C \to L^q_a/C \) is not bounded below. \(\square \)

The following result has never been proven so far.

Corollary 11. Suppose \(\frac{4}{3} < q \leq 2 \) and \(g \in H^\infty \). Then \(S_g : H^2 \to L^q_a \) is bounded, while there is no symbol \(g \) such that \(S_g : H^2/C \to L^q_a/C \) is bounded below.

Proof. Since \(g \in H^\infty \), the boundedness of \(S_g : H^2 \to L^q_a \) \((q \leq 4)\) follows from Hölder’s inequality and the fact \(H^2 \subset L^q_a(q \leq 4) \) (see [2]). Applying \(\alpha = \frac{1}{2} \), \(\gamma = 1 \) and \(p = 2, \frac{4}{3} < q \leq 2 \) in Theorem 2, it follows from (2) of Lemma 1 that \(S_g : H^2/C \to L^q_a/C \) is not bounded below.

The following result has never been proven so far.

Corollary 12. Suppose \(2 \leq p < 4 \). If \(S_g : L^p_a \to H^2 \) is bounded, then there is no symbol \(g \) such that \(S_g : L^p_a/C \to H^2/C \) is bounded below.

Proof. Suppose that \(2 \leq p < 4 \), and that \(S_g : L^p_a \to H^2 \) is bounded. Applying \(\alpha = 1 \), \(\gamma = \frac{1}{2} \), \(2 \leq p < 4 \) and \(q = 2 \) in Theorem 2, it follows from (1) of Lemma 1 and the fact \(1 + 2\left(\frac{1}{p} - \frac{1}{2}\right) > \frac{1}{2} = \gamma \), that \(S_g : L^p_a/C \to H^2/C \) is not bounded below. \(\square \)

The following result characterizes the boundedness from below of the integral operator \(S_g : L^p_a/C \to L^q_a/C \).

Corollary 13. Suppose \(1 < q < p \), or \(0 < q \leq 1 < p < 2 \) and \(g \in H^\infty \). Then \(S_g : L^p_a \to L^q_a \) is bounded, while there is no symbol \(g \) such that \(S_g : L^p_a/C \to L^q_a/C \) is bounded below.

Proof. If \(1 < q < p \), or \(0 < q \leq 1 < p < 2 \), since \(g \in H^\infty \), the boundedness of \(S_g : L^p_a \to L^q_a \) follows from Hölder’s inequality. Applying
\(\alpha = \gamma = 1 \) and \(1 < q < p \), or \(0 < q \leq 1 < p < 2 \) in Theorem 2, it follows from (2) of Lemma 1 that \(S_g : L^p_a/C \to L^q_a/C \) is not bounded below. \qed

The following result characterizes the boundedness from below of the integral operator \(S_g : B_p/C \to B_q/C \) which has never been proven so far.

Corollary 14. Suppose \(2 < q \leq p < \infty \) and that \(S_g : B_p \to B_q \) is bounded. If \(S_g : B_p/C \to B_q/C \) is bounded below, then \(S_g : B_{1-\frac{2}{q}}/C \to B_{1-\frac{2}{q}}/C \) is bounded below.

Proof. Applying \(\alpha = 1 - \frac{2}{p} \) and \(\gamma = 1 - \frac{2}{q} \) in Theorem 2, we can prove that \(S_g : B_{1-\frac{2}{q}}/C \to B_{1-\frac{2}{q}}/C \) is bounded below. \qed

The following results characterize the boundedness from below of integral operators \(S_g : B_p/C \to L^q_a/C \) and \(S_g : L^p_a/C \to B_q/C \) which have never been proven so far.

Corollary 15. Suppose \(2 < q \leq p < \infty \) and \(g \in H^\infty \). Then \(S_g : B_p \to L^q_a \) is bounded, while there is no symbol \(g \) such that \(S_g : B_p/C \to L^q_a/C \) is bounded below.

Proof. Since \(2 < q \leq p \) and \(g \in H^\infty \), the boundedness of \(S_g : B_p \to L^q_a \) follows from Hölder’s inequality. Since \(2 < q \leq p < \infty \), applying \(\alpha = 1-\frac{2}{p} \), \(\gamma = 1 \) in Theorem 2, it follows from (2) of Lemma 1 that \(S_g : B_p/C \to L^q_a/C \) is not bounded below. \qed

Corollary 16. Suppose \(2 < q \leq p < \infty \). If \(S_g : L^p_a \to B_q \) is bounded, then there is no symbol \(g \) such that \(S_g : L^p_a/C \to B_q/C \) is bounded below.

Proof. Since \(2 < q \leq p < \infty \), applying \(\alpha = 1 \), \(\gamma = 1-\frac{2}{q} \) in Theorem 2, it follows from (1) of Lemma 1 that \(S_g : L^p_a/C \to B_q/C \) is not bounded below. \qed

Acknowledgments. The author wishes to express their sincere gratitude to Kouki Yoneda and the referee for their many helpful suggestions and advices. This work was supported by JSPS KAKENHI Grant Number JP 21K03268.

References

https://doi.org/10.1007/s00020-010-1827-2

Received: June 3, 2023; Published: July 7, 2023