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Abstract

We prove the long time behavior of a 2D Ginzburg-Landau system
in superconductivity with Coulomb gauge and fixed total magnetic flux.
This solved a problem left open in Q.Tang [9].
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1 Introduction

We consider the long time behavior of a 2D Ginzburg-Landau model in super-
conductivity:

∂tψ + iφψ + (i∇+ A)2ψ +
λ

2
(|ψ|2 − 1)ψ = 0, (1.1)

∂tA+∇φ+ curl 2A+ Re{(i∇ψ + ψA)ψ} = 0, (1.2)
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in QT := (0, T )× Ω, with boundary and initial conditions

∇ψ · ν = 0, A · ν = 0,

∫
Ω

curlAdx = L, curlA = H(t) on (0, T )× ∂Ω,(1.3)

(ψ,A)(·, 0) = (ψ0, A0)(·) in Ω. (1.4)

Here, the unknowns ψ,A, and φ are C-valued, R2-valued, and R-valued
functions, respectively, and they stand for the order parameter, the magnetic
potential, and the electric potential, respectively. λ > 0 is a Ginzburg-Landau
constant, L is a given constant and H(t) is the unknown applied magnetic field,
and i :=

√
−1. ψ denotes the complex conjugate of ψ,Reψ := (ψ+ψ)/2 is the

real part of ψ, and |ψ|2 := ψψ is the density of superconductivity carriers. T
is any given positive constant. Ω is a simply connected and bounded domain
with smooth boundary ∂Ω and ν is the outward unit normal to ∂Ω.

It is well-known that the Ginzburg-Landau equations are gauge invariant,
namely, if (ψ,A, φ) is a solution of (1.1)-(1.2), then (ψeiχ, A+∇χ, φ− ∂tχ) is
also a solution for any real-valued smooth function χ. Accordingly, in order
to obtain the well-posedness of the problem, we need to impose some gauge
condition. From physical point of view, one may usually think of four types of
the gauge condition:

(1) Coulomb gauge: divA = 0 in Ω and
∫

Ω
φdx = 0.

(2) Lorentz gauge: φ = −divA in Ω.

(3) Lorenz gauge: ∂tφ = −divA in Ω.

(4) Temporal gauge (Weyl gauge): φ = 0 in Ω.

For the initial data (ψ0, A0) ∈ W0 := {(ψ0, A0)
∣∣ψ0 ∈ L∞ ∩ H1, A0 ∈ H1},

Chen et al. [1, 2], Du [3], and Fan and Ozawa [4] proved the existence and
uniqueness of global strong solutions to (1.1)-(1.4) in the case of the Coulomb,
Lorenz, and Lorentz as well as temporal gauges.

We denote curlA := ∂1A2 − ∂2A1 for vector A :=

(
A1

A2

)
and curl b :=(

∂2b
−∂1b

)
for scalar b.

For the initial data ψ0, A0 ∈ L2, under the Coulomb or Lorentz gauge,
Tang and Wang (2-D) [5], Fan and Jiang (3-D) [6] proved the global existence
of weak solutions. Fan and Ozawa [7] (2-D) and Fan, Gao and Guo [8] (3-D)
prove the global existence and uniqueness of weak solutions for ψ0, A0 ∈ Ld

with d = 2, 3.
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We will assume that the initial data (ψ0, A0) satisfy

‖ψ0‖L∞ ≤ C0, ψ0, A0 ∈ H1(Ω), A0 · ν = 0,

∫
Ω

curlA0dx = L. (1.5)

Denote

G :=

∫
Ω

(
|(i∇+ A)ψ|2 + |curlA|2 +

λ

4
(|ψ|2 − 1)2

)
dx, (1.6)

then it is well-known that

1

2

d

dt
G+

∫
Ω

|∂tψ + iφψ|2dx+

∫
Ω

(|∂tA|2 + |∇φ|2)dx = 0. (1.7)

In [9], Tang assumed (1.5) holds true and showed the global existence
and uniqueness of strong solutions and proved the following uniform-in-time
estimate:

‖ψ‖L∞(0,∞;L∞) ≤ max(1, C0), ‖(ψ,A, φ)‖L∞(0,∞;H1) ≤ C,∫ ∞

0

∫
Ω

(|∂tψ|2 + |∂tA|2 + |∇φ|2)dxdt ≤ C,
(1.8)

and gave some weak results on long-time behavior of the solutions and posed
some problems:

Problem 1. Is H(t) uniform-in-time bounded?
Problem 2. Is lim

t→∞
‖φ(·, t)‖H1 = 0?

The aim of this paper is to solve the above two problems. We will prove

Theorem 1.1. Let (1.5) hold true and we choose the Coulomb gauge. Then
there exists 0 < t0 <∞ such that

‖(ψ,A)‖L∞(t0,∞;H2) ≤ C, ‖∂t(ψ,A)‖L∞(t0,∞;L2) ≤ C,
‖∂t(ψ,A)‖L2(t0,∞;H1) ≤ C, ‖φ‖L∞(t0,∞;H2) ≤ C,
‖∂tφ‖L2(t0,∞;H1) ≤ C, lim

t→∞
‖∂t(ψ,A)(·, t)‖L2 = 0,

lim
t→∞
‖φ(·, t)‖H1 = 0, |H(t)| ≤ C

(1.9)

with positive constant C independent of time.

It is important to study the long time behavior of the evolutionary problems
because it has a unique solution and may indicate which steady state solutions
are preferred in the evolution process.

The physical background of this model is that we are committed to have
a mixed state inside the superconductor sample by imposing a fixed total
magnetic flux. More precisely, the total magnetic flux is a physically observable
quantity which is closely linked with the number of vortices. By adjusting the
total magnetic flux, we should have a reasonable estimate of the number of
vortices in the sample. In this case, H(t) has to be adjusted in accordance and
is therefore not a given quantity, which is a main difficulty.
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Definition 1.1. The quantity (ψ,A, φ) is called a strong solution if (ψ,A, φ) ∈
L∞(0, T ;H1)∩L2(0, T ;H2) and ∂tψ, ∂tA ∈ L2(0, T ;L2) and the equations (1.1)
and (1.2) hold true almost everywhere.

In the following proofs, we will use the following inequality [10]:

‖A‖H2(Ω) . ‖A‖H1(Ω) + ‖divA‖H1(Ω) + ‖curlA‖H1(Ω) + ‖A · ν‖
H

3
2 (∂Ω)

. (1.10)

We will also use the following lemma [11]:

Lemma 1.2. Suppose y(t) and h(t) are nonnegative functions, y′(t) is locally
integrable on (0,∞) and y(t), h(t) satisfy

dy

dt
≤ C1y

2 + C2y + h(t), ∀t ≥ t1, (1.11)∫ ∞

t1

y(τ)dτ ≤ C3,

∫ ∞

t1

h(τ)dτ ≤ C4, ∀t ≥ t1, (1.12)

with C1, C2, C3 and C4 being positive constants independent of t. Then for any
r > 0,

y(t+ r) ≤
(
C3

r
+ C2r + C4

)
eC1C3 , ∀t ≥ t1. (1.13)

Moreover,

lim
t→∞

y(t) = 0. (1.14)

After having proved Th.1.1, using the standard compactness principle of
Aubin-Lions, it is easy to show that (ψ(·, t), A(·, t), H(t)) ω−converges to the
stationary solutions (ψ∞, A∞, H∞) of the problem:

(i∇+ A)2ψ +
λ

2
(|ψ|2 − 1)ψ = 0, (1.15)

curl 2A+ Re{(i∇ψ + ψA)ψ} = 0, (1.16)

divA = 0 in Ω, (1.17)

ν · ∇ψ = 0, ν · A = 0, curlA = H∞,

∫
Ω

curlAdx = L. (1.18)

We omit the details here.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, we only need to show the
a priori estimates.
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First, it follows from (1.8) that there exists t0 ∈ (0,∞) such that

(∂tψ, ∂tA)(·, t0) ∈ L2(Ω). (2.1)

Here it should be noted that the solutions are smooth when t > t0.

Applying div to (1.2) and using divA = 0, one has

−∆φ = div Re[(i∇ψ + ψA)ψ]. (2.2)

On the other hand, let b := curlA−H(t), then∫
∂Ω

(curl 2A · ν)ξdS =

∫
∂Ω

(curl b · ν)ξdS

=

∫
Ω

div (ξcurl b)dx =

∫
Ω

∇ξcurl bdx = −
∫

Ω

curl (b∇ξ)dx

= −
∫
∂Ω

b∇ξ · τdS = 0 (2.3)

due to b = 0 on ∂Ω for any smooth function ξ.

This shows that

curl 2A · ν = 0 on (0, T )× ∂Ω. (2.4)

Now, it follows from (1.2), (1.3) and (2.4) that

∂φ

∂ν
= 0 on (0, T )× ∂Ω. (2.5)

Using

∫
Ω

φdx = 0, and the Poincaré inequality

‖φ‖L2 . ‖∇φ‖L2 , (2.6)

it follows from (1.8) that ∫ ∞

0

∫
Ω

|φ|2dxdt ≤ C. (2.7)

Equation (1.1) can be written as

∂tψ −∆ψ + iφψ + 2iA · ∇ψ + |A|2ψ +
λ

2
(|ψ|2 − 1)ψ = 0. (2.8)



114 Jishan Fan and Tohru Ozawa

Applying ∂t to (2.8), testing by ∂tψ, taking the real parts, and using (1.8),
we find that

1

2

d

dt

∫
Ω

|∂tψ|2dx+

∫
Ω

|∇∂tψ|2dx+

∫
Ω

|A|2|∂tψ|2dx

.
∫

Ω

|∂tφ||∂tψ|dx+

∫
Ω

|∂tA · ∇ψ + A · ∇∂tψ||∂tψ|dx

+

∫
Ω

|A||∂tA||∂tψ|dx+

∫
Ω

|∂tψ|2dx

. ‖∂tφ‖L2‖∂tψ‖L2 + ‖∂tA‖L4‖∂tψ‖L4‖∇ψ‖L2 + ‖∇∂tψ‖L2‖A‖L4‖∂tψ‖L4

+‖A‖L4‖∂tA‖L4‖∂tψ‖L2 + ‖∂tψ‖2
L2

. ‖∂tφ‖L2‖∂tψ‖L2 + ‖∂tA‖L4‖∂tψ‖L4 + ‖∇∂tψ‖L2‖∂tψ‖L4

+‖∂tA‖L4‖∂tψ‖L2 + ‖∂tψ‖2
L2 . (2.9)

We will use the Gagliardo-Nirenberg inequalities

‖∂tA‖2
L4 . ‖∂tA‖L2‖∂tA‖H1 , (2.10)

‖∂tψ‖2
L4 . ‖∂tψ‖L2‖∂tψ‖H1 , (2.11)

and the Maxwell inequality

‖A‖H1 . ‖curlA‖L2 . (2.12)

Applying ∂t to (2.2), one has

‖∂tφ‖L2 . ‖∇∂tφ‖L 4
3

. ‖∇∂tψ‖L2 + ‖∂tψ‖L4‖A‖L4 + ‖∂tA‖L2 + ‖∂tψ‖L4

. ‖∇∂tψ‖L2 + ‖∂tψ‖L2 + ‖∂tA‖L2 . (2.13)

Inserting (2.10)-(2.13) into (2.9), we obtain

1

2

d

dt

∫
Ω

|∂tψ|2dx+

∫
Ω

|∇∂tψ|2dx

. ε‖∇∂tψ‖2
L2 + ε‖curl ∂tA‖2

L2 +

(
1 +

1

ε

)
‖∂t(ψ,A)‖2

L2 (2.14)

for any 0 < ε < 1.

Applying ∂t to (1.2), testing by ∂tA, and using (1.8), (2.10)-(2.12) and
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divA = 0, we compute

1

2

d

dt

∫
Ω

|∂tA|2dx+

∫
Ω

|curl ∂tA|2dx+

∫
Ω

|ψ|2|∂tA|2dx

.
∫

Ω

|∇∂tψ||∂tA|dx+

∫
Ω

|∂tψ||A||∂tA|dx+

∫
Ω

|i∇ψ + ψA||∂tψ||∂tA|dx

. ‖∇∂tψ‖L2‖∂tA‖L2 + ‖∂tψ‖L4‖A‖L2‖∂tA‖L4 + ‖i∇ψ + ψA‖L2‖∂tψ‖L4‖∂tA‖L4

≤ ‖∇∂tψ‖L2‖∂tA‖L2 + ‖∂tψ‖L4‖∂tA‖L4

. ε‖∇∂tψ‖2
L2 + ε‖curl ∂tA‖2

L2 +

(
1 +

1

ε

)
‖∂t(ψ,A)‖2

L2 (2.15)

for any 0 < ε < 1.
Here we have used ∫

Ω

∂tAcurl 2∂tAdx

=

∫
Ω

∂tAcurl (curl ∂tA−H ′(t))dx

=

∫
Ω

curl ∂tA(curl ∂tA−H ′(t))dx

=

∫
Ω

|curl ∂tA|2dx

and ∫
Ω

curl ∂tA ·H ′(t)dx = H ′(t)

∫
Ω

curl ∂tAdx = 0.

Summing up (2.14) and (2.15) and taking ε small enough, we arrive at

d

dt

∫
Ω

|∂t(ψ,A)|2dx+

∫
Ω

(|∇∂tψ|2 + |curl ∂tA|2)dx . ‖∂t(ψ,A)‖2
L2 . (2.16)

Using Lemma 1.2 and integrating (2.16) over (t0,∞), we conclude that

‖∂t(ψ,A)(·, t)‖L2 ≤ C,

∫ ∞

t0

‖∂t(ψ,A)‖2
H1dt ≤ C, (2.17)

lim
t→∞
‖∂t(ψ,A)(·, t)‖L2 = 0. (2.18)

Using the H2-theory of Poisson equation, it follows from (2.8), (1.8) and
(2.17) that

‖ψ(·, t)‖H2 . ‖∂tψ‖L2 + ‖φ‖L2 + ‖A‖L4‖∇ψ‖L4 + ‖A‖2
L4 + ‖ψ‖L2

. 1 + ‖∇ψ‖L4

. 1 + ‖∇ψ‖
1
2

L2‖ψ‖
1
2

H2 ,
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which gives

‖ψ(·, t)‖H2 ≤ C for t ≥ t0. (2.19)

It follows from (1.2), (1.8), (2.17), and (2.19) that

‖curl 2A(·, t)‖L2 . ‖∂tA‖L2 + ‖∇φ‖L2 + ‖i∇ψ + ψA‖L2 ≤ C. (2.20)

On the other hand,

‖curlA−H‖H1 . ‖∇(curlA−H)‖L2

. ‖curl (curlA−H)‖L2 = ‖curl 2A‖L2 ≤ C

and thus

‖H‖L∞ . ‖curlA‖L2 + ‖curlA−H‖L2 ≤ C. (2.21)

Here we should note that H is constant in space and that (2.21) is uniform
in time for t > t0.

Using (1.10), (2.20), and (2.21), we have

‖A(·, t)‖H2 ≤ C for t ≥ t0. (2.22)

Using (2.2), (2.19), and (2.22), we know that

‖φ(·, t)‖H2 ≤ C for t ≥ t0. (2.23)

Similarly to (2.13), one has

‖∇∂tφ‖L2 . ‖∇∂tψ‖L2 + ‖∂tψ‖L2 + ‖∂tA‖L2 + ‖i∇ψ + ψA‖L4‖∂tψ‖L4

. ‖∂tψ‖H1 + ‖∂tA‖L2 ,

which implies

‖∂tφ‖L2(t0,∞;H1) ≤ C. (2.24)

Using (1.8) and (2.24), we conclude that

lim
t→∞
‖φ(·, t)‖H1 = 0. (2.25)

In fact, we have

d

dt
‖φ‖2

H1 = 2

∫
Ω

(φ∂tφ+∇φ∇∂tφ)dx ≤ ‖φ‖2
H1 + ‖∂tφ‖2

H1

and then using Lemma 1.2 to conclude it.
This completes the proof.

�
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