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Abstract

We prove the long time behavior of a 2D Ginzburg-Landau system
in superconductivity with Coulomb gauge and fixed total magnetic flux.
This solved a problem left open in Q.Tang [9].
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1 Introduction

We consider the long time behavior of a 2D Ginzburg-Landau model in super-
conductivity:

0+ 169 + GV + AV + S0P ~ 1)y =0, (1)
HA+ Vo +curl A + Re{(iVy + Y A)p} = 0, (1.2)
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in Qr := (0,7) x Q, with boundary and initial conditions

Vip-v=0, A-v=0, /curlAdmzL, curl A= H(t) on (0,7) x 0(1,3)
0

(¥, A)(+,0) = (Yo, A)(-) in . (1.4)

Here, the unknowns 9, A, and ¢ are C-valued, R2-valued, and R-valued
functions, respectively, and they stand for the order parameter, the magnetic
potential, and the electric potential, respectively. A > 0 is a Ginzburg-Landau
constant, L is a given constant and H (¢) is the unknown applied magnetic field,
and i := v/—1. 1) denotes the complex conjugate of ¥, Rey» := (¢ +1))/2 is the
real part of ¥, and |¢|? := Y1) is the density of superconductivity carriers. T
is any given positive constant. () is a simply connected and bounded domain
with smooth boundary 92 and v is the outward unit normal to 0.

It is well-known that the Ginzburg-Landau equations are gauge invariant,
namely, if (¢, A, ¢) is a solution of (1.1)-(1.2), then (e™X, A+ Vx, ¢ — ) is
also a solution for any real-valued smooth function y. Accordingly, in order
to obtain the well-posedness of the problem, we need to impose some gauge
condition. From physical point of view, one may usually think of four types of
the gauge condition:

(1) Coulomb gauge: divA =0 in Q and [, ¢pdz = 0.
(2) Lorentz gauge: ¢ = —div A in Q.

(3) Lorenz gauge: 0;¢ = —div A in €.

(4) Temporal gauge (Weyl gauge): ¢ = 0 in (.

For the initial data (1, Ag) € Wo := {(¢0, Ao)|to € L N H', Ay € H'},
Chen et al. [1, 2], Du [3], and Fan and Ozawa [4] proved the existence and
uniqueness of global strong solutions to (1.1)-(1.4) in the case of the Coulomb,
Lorenz, and Lorentz as well as temporal gauges.

We denote curl A := 0; A5 — 0y A; for vector A := (

Ob
(—(‘M)) for scalar b.

For the initial data vy, Ag € L?, under the Coulomb or Lorentz gauge,
Tang and Wang (2-D) [5], Fan and Jiang (3-D) [6] proved the global existence
of weak solutions. Fan and Ozawa [7] (2-D) and Fan, Gao and Guo [8] (3-D)
prove the global existence and uniqueness of weak solutions for 1y, Ay € L¢
with d = 2, 3.

Ay

A2> and curlb :=
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We will assume that the initial data (19, Ay) satisfy

100z < Co, 10, Ag € H(Q), Ag - v = O,/chrled:c =L. (1.5)
Denote
G := /Q (\(ZV + A)Y|? + |curl AP + 2(|¢\2 - 1)2) dz, (1.6)
then it is well-known that
§&G+/ 0p) + i) dx+/(|8tA|2+ IV¢|?)dz = 0. (1.7)

In [9], Tang assumed (1.5) holds true and showed the global existence
and uniqueness of strong solutions and proved the following uniform-in-time
estimate:

HwJLLOO(O,oo;L“’) S maX(L 00)7 H(% A7 ¢)HL°"(O,00;H1) S Ca

1.
| [qowk + 10,47 + Vopiasd < c. a8
0o Jao

and gave some weak results on long-time behavior of the solutions and posed
some problems:

Problem 1. Is H(t) uniform-in-time bounded?

Problem 2. Is tlim (-, t)|| g = 07

—00

The aim of this paper is to solve the above two problems. We will prove

Theorem 1.1. Let (1.5) hold true and we choose the Coulomb gauge. Then
there exists 0 < tg < oo such that

||(¢7A>||L°°(to,oo;H2) S C; ||8t(w7A>||L°°(to,oo;L2) S 07
10, Al z2(00501) < Cs 1 llnoeo,00582) < C
10:6 | 260,00 < €. lim [0, A) (- )| = 0, (1.9)

lim (|6 (- )]l = 0. |H (D] < C
—00

with positive constant C' independent of time.

It is important to study the long time behavior of the evolutionary problems
because it has a unique solution and may indicate which steady state solutions
are preferred in the evolution process.

The physical background of this model is that we are committed to have
a mixed state inside the superconductor sample by imposing a fixed total
magnetic flux. More precisely, the total magnetic flux is a physically observable
quantity which is closely linked with the number of vortices. By adjusting the
total magnetic flux, we should have a reasonable estimate of the number of
vortices in the sample. In this case, H(t) has to be adjusted in accordance and
is therefore not a given quantity, which is a main difficulty.
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Definition 1.1. The quantity (1, A, @) is called a strong solution if (1, A, @) €
L0, T; HY)YNL2(0,T; H?) and dpp, 0;A € L*(0,T; L?) and the equations (1.1)
and (1.2) hold true almost everywhere.

In the following proofs, we will use the following inequality [10]:

1Al @) S 1Al @) + iV Al ) + [learl Al o) + (1A - vl 5 (1.10)

(09)
We will also use the following lemma [11]:

Lemma 1.2. Suppose y(t) and h(t) are nonnegative functions, y'(t) is locally
integrable on (0,00) and y(t), h(t) satisfy

d

T SO+ Cay+h(t), V>, (1.11)

/ y(r)dr < Cg,/ h(r)dr < Cy, Vit > ty, (1.12)
t1 t1

with C, Cy, C5 and Cy being positive constants independent of t. Then for any
r >0,

C
y(t+r) < (—3 + Cyr + 6’4) e“1% >, (1.13)
r
Moreover,
lim y(t) = 0. (1.14)
t—o00

After having proved Th.1.1, using the standard compactness principle of
Aubin-Lions, it is easy to show that (¢(-,t), A(-,t), H(t)) w—converges to the
stationary solutions (oo, Aso, Hs) of the problem:

A
(9 + AP0+ Sl — 10 =0, (1.15)
curl 2A + Re{(iVy + 9w A)y} = 0, (1.16)
divA=0 in Q, (1.17)
v- V=0, v-A=0, curl A = H, /curlAda::L. (1.18)
o)

We omit the details here.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, we only need to show the
a priori estimates.
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First, it follows from (1.8) that there exists ¢y € (0, 00) such that

(0, 0, A) (-, to) € L*(9Q).

Here it should be noted that the solutions are smooth when ¢ > t,.

Applying div to (1.2) and using div A = 0, one has

— A = divRe[(iVi) + 1 A)D].

On the other hand, let b := curl A — H(t), then

/ (curl?A - v)¢dS = / (curldb - v)€dS
o0

o0

:/Qdiv (£curlb)dx:/gvgcurlbdx: —/chrl (bVE)dx

:—/ bVE - 7dS =0
G)

due to b = 0 on 0 for any smooth function &.
This shows that

curl?’A-v =0 on (0,T) x 5.
Now, it follows from (1.2), (1.3) and (2.4) that

do
£ =0 on (0,7) x 0f2.

Using / ¢dzr = 0, and the Poincaré inequality
Q

[ollz2 S [IVllL2,

it follows from (1.8) that

/ /|¢\2dxdt§a
0 Q

Equation (1.1) can be written as

O — A i+ 204V + [P+ (0] — 1) = 0.

113
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Applying 0, to (2.8), testing by 0,1, taking the real parts, and using (1.8),
we find that
1d
2dt
S [ oollawlae + [ 10.4- 90+ A- Vo) owiis
) Q

Q Q Q

+ [1avalowis + [ o
Q Q

S0bll 2|0l L2 + 1|0 Al L4l O || 4 [ V|| 2 + VO L2 [| All 4[| Os) [ 24
Al 4 18: Al L4110 || 2 + (| 0w 172

SN0l 221106l p2 + 10: Al 2l O [ £a + VO 12| O | £
+10: Al L |00 [| L2 + (|00 1172 (2.9)

We will use the Gagliardo-Nirenberg inequalities

10:AIZ4 S 190 All 218 A (2.10)
10113 S 1000|2100, (2.11)

and the Maxwell inequality
Azt < ||curl Al| . (2.12)
Applying 0; to (2.2), one has

10|22 S VO 4
SIVOblLz + 10wl Lol All s + 1|0eAl L2 + 1043) ]| s
S Hvath[g "— Hat¢|’L2 + H@AHLQ (213)

Inserting (2.10)-(2.13) into (2.9), we obtain

1d 9 9
330 | lowPas+ [ Vo

1
S Vol + dentaali + (1+1) o Al @1

for any 0 < e < 1.
Applying 0; to (1.2), testing by 0;A, and using (1.8), (2.10)-(2.12) and
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div A = 0, we compute

1d

——/|8tA|2dx+/|Cur16tA|2d:p+/ 10|20, A|*dz

Q Q Q

S IVl 2110:Al 2 + 1100l sl All 2|0 All o + 10V + DA 2|00 || Lo | 0 Al s
< VO (| 2]|0vAll L2 + [1042)]] L[| O Al s

1
S VOl + clcwt Al + (14 ) 0w, A1 (215)

for any 0 < e < 1.
Here we have used

/ Oy Acurl 20, Adx
Q
— / Oy Acurl (curl ;A — H'(t))dx
Q
= / curl 9, A(curl 0, A — H'(t))dx
Q
:/ |curl 9, A|*dx
Q
and

/ curl ;A - H'(t)dz = H'(t) / curl 9;Adx = 0.
Q Q

Summing up (2.14) and (2.15) and taking e small enough, we arrive at

d
G [ AP+ [ (VWP + el 9Pz S 00 Dl (210
Q Q

Using Lemma 1.2 and integrating (2.16) over (¢y,00), we conclude that

10, A) (-, )2 < C | [0, A)|Izpdt < C, (2.17)
lim [8,(e, A) (-, )] 2 = 0. (2.18)

Using the H2-theory of Poisson equation, it follows from (2.8), (1.8) and
(2.17) that

()2 SO llze + [1¢llze + I AN Lall Ve llzs + AL + 1122
ST+ [VY|ra

1 1
S L+ IVl 2
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which gives
[Y(t)][g2 < C for t > to. (2.19)

It follows from (1.2), (1.8), (2.17), and (2.19) that
leurl2AC, )12 S |9 AlLe + [V6llis + V% + BAl2 <C. (2.20)
On the other hand,

lcurl A — H||gr < ||V(curl A — H)|| 2
< leurl (curl A — H)||z2 = ||curl ?Al| 2 < C

and thus
|H||p S [Jeurl Al[zz + ||curl A — H|z2 < C. (2.21)

Here we should note that H is constant in space and that (2.21) is uniform
in time for ¢ > .
Using (1.10), (2.20), and (2.21), we have

A )|z < C for t > t. (2.22)
Using (2.2), (2.19), and (2.22), we know that

lo(-, )| g2 < C for t > t. (2.23)
Similarly to (2.13), one has

VOl 2 S VOl 2 + 1010l 2 + 10:All 2 + |1V + D Al 1| 0) | s
S0l + 10:A] 2,

which implies
H8t¢|’[/2(to,oo;H1) < C. (224)

Using (1.8) and (2.24), we conclude that
timn 6, &)l = . (2.25)

In fact, we have

d
G191 =2 [ (006-+ Vovaos < ol + 06l

and then using Lemma 1.2 to conclude it.
This completes the proof.
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