Long Time Behavior of a 2D Ginzburg-Landau Model with Fixed Total Magnetic Flux

Jishan Fan

Department of Applied Mathematics
Nanjing Forestry University, Nanjing, 210037, P. R. China

Tohru Ozawa

Department of Applied Physics
Waseda University, Tokyo, 169-8555, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

We prove the long time behavior of a 2D Ginzburg-Landau system in superconductivity with Coulomb gauge and fixed total magnetic flux. This solved a problem left open in Q.Tang [9].

Mathematics Subject Classifications: 35A05, 35A40, 35K55, 82D55

Keywords: Ginzburg-Landau model, superconductivity, asymptotic behavior

1 Introduction

We consider the long time behavior of a 2D Ginzburg-Landau model in superconductivity:

\[\partial_t \psi + i \phi \psi + (i \nabla + A) \psi + \frac{\lambda}{2} (|\psi|^2 - 1) \psi = 0, \quad (1.1) \]
\[\partial_t A + \nabla \phi + \text{curl}^2 A + \text{Re}\{(i \nabla \psi + \psi A) \overline{\psi}\} = 0, \quad (1.2) \]
in $QT := (0, T) \times \Omega$, with boundary and initial conditions

\[
\nabla \psi \cdot \nu = 0, \quad A \cdot \nu = 0, \quad \int_\Omega \text{curl} \, A \, dx = L, \quad \text{curl} \, A = H(t) \quad \text{on} \quad (0, T) \times \partial\Omega, \tag{3.3}
\]

\[
(\psi, A)(\cdot, 0) = (\psi_0, A_0)(\cdot) \quad \text{in} \quad \Omega. \tag{1.4}
\]

Here, the unknowns $\psi, A,$ and ϕ are \mathbb{C}-valued, \mathbb{R}^2-valued, and \mathbb{R}-valued functions, respectively, and they stand for the order parameter, the magnetic potential, and the electric potential, respectively. $\lambda > 0$ is a Ginzburg-Landau constant, L is a given constant and $H(t)$ is the unknown applied magnetic field, and $i := \sqrt{-1}$. $\overline{\psi}$ denotes the complex conjugate of ψ, $\text{Re} \psi := (\psi + \overline{\psi})/2$ is the real part of ψ, and $|\psi|^2 := \psi \overline{\psi}$ is the density of superconductivity carriers. T is any given positive constant. Ω is a simply connected and bounded domain with smooth boundary $\partial\Omega$ and ν is the outward unit normal to $\partial\Omega$.

It is well-known that the Ginzburg-Landau equations are gauge invariant, namely, if (ψ, A, ϕ) is a solution of (1.1)-(1.2), then $(\psi e^{i\chi}, A + \nabla \chi, \phi - \partial_t \chi)$ is also a solution for any real-valued smooth function χ. Accordingly, in order to obtain the well-posedness of the problem, we need to impose some gauge condition. From physical point of view, one may usually think of four types of the gauge condition:

1. **Coulomb gauge**: $\text{div} \, A = 0$ in Ω and $\int_\Omega \phi \, dx = 0$.

2. **Lorentz gauge**: $\phi = -\text{div} \, A$ in Ω.

3. **Lorenz gauge**: $\partial_t \phi = -\text{div} \, A$ in Ω.

4. **Temporal gauge (Weyl gauge)**: $\phi = 0$ in Ω.

For the initial data $(\psi_0, A_0) \in W_0 := \{(\psi_0, A_0) \mid \psi_0 \in L^\infty \cap H^1, A_0 \in H^1\}$, Chen et al. [1, 2], Du [3], and Fan and Ozawa [4] proved the existence and uniqueness of global strong solutions to (1.1)-(1.4) in the case of the Coulomb, Lorenz, and Lorentz as well as temporal gauges.

We denote $\text{curl} \, A := \partial_1 A_2 - \partial_2 A_1$ for vector $A := \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ and $\text{curl} \, b := \left(\begin{array}{c} \partial_2 b \\ -\partial_1 b \end{array} \right)$ for scalar b.

For the initial data $\psi_0, A_0 \in L^2$, under the Coulomb or Lorentz gauge, Tang and Wang (2-D) [5], Fan and Jiang (3-D) [6] proved the global existence of weak solutions. Fan and Ozawa [7] (2-D) and Fan, Gao and Guo [8] (3-D) prove the global existence and uniqueness of weak solutions for $\psi_0, A_0 \in L^d$ with $d = 2, 3$.
We will assume that the initial data \((\psi_0, A_0)\) satisfy
\[
\|\psi_0\|_{L^\infty} \leq C_0, \psi_0, A_0 \in H^1(\Omega), A_0 \cdot \nu = 0, \int_{\Omega} \text{curl} A_0 \, dx = L. \tag{1.5}
\]

Denote
\[
G := \int_{\Omega} \left(|(i \nabla + A)\psi|^2 + |\text{curl} A|^2 + \lambda \frac{1}{4} (|\psi|^2 - 1)^2 \right) \, dx, \tag{1.6}
\]
then it is well-known that
\[
\frac{1}{2} \frac{d}{dt} G + \int_{\Omega} |\partial_t \psi + i \phi \psi|^2 \, dx + \int_{\Omega} (|\partial_t A|^2 + |\nabla \phi|^2) \, dx = 0. \tag{1.7}
\]

In [9], Tang assumed (1.5) holds true and showed the global existence and uniqueness of strong solutions and proved the following uniform-in-time estimate:
\[
\|\psi\|_{L^\infty(0, \infty; L^\infty)} \leq \max(1, C_0), \|(\psi, A, \phi)\|_{L^\infty(0, \infty; H^1)} \leq C,
\int_0^\infty \int_{\Omega} (|\partial_t \psi|^2 + |\partial_t A|^2 + |\nabla \phi|^2) \, dx \, dt \leq C, \tag{1.8}
\]
and gave some weak results on long-time behavior of the solutions and posed some problems:

Problem 1. Is \(H(t)\) uniform-in-time bounded?

Problem 2. Is \(\lim_{t \to \infty} \|\phi(\cdot, t)\|_{H^1} = 0?\)

The aim of this paper is to solve the above two problems. We will prove

Theorem 1.1. Let (1.5) hold true and we choose the Coulomb gauge. Then there exists \(0 < t_0 < \infty\) such that
\[
\|(\psi, A)\|_{L^\infty(t_0, \infty; H^2)} \leq C, \|\partial_t (\psi, A)\|_{L^\infty(t_0, \infty; L^2)} \leq C,
\|\partial_t \psi, A)\|_{L^2(t_0, \infty; H^1)} \leq C, \|\phi\|_{L^\infty(t_0, \infty; H^2)} \leq C,
\|\partial_t \phi\|_{L^2(t_0, \infty; H^1)} \leq C, \lim_{t \to \infty} \|\partial_t (\psi, A)(\cdot, t)\|_{L^2} = 0,
\lim_{t \to \infty} \|\phi(\cdot, t)\|_{H^1} = 0, |H(t)| \leq C \tag{1.9}
\]
with positive constant \(C\) independent of time.

It is important to study the long time behavior of the evolutionary problems because it has a unique solution and may indicate which steady state solutions are preferred in the evolution process.

The physical background of this model is that we are committed to have a mixed state inside the superconductor sample by imposing a fixed total magnetic flux. More precisely, the total magnetic flux is a physically observable quantity which is closely linked with the number of vortices. By adjusting the total magnetic flux, we should have a reasonable estimate of the number of vortices in the sample. In this case, \(H(t)\) has to be adjusted in accordance and is therefore not a given quantity, which is a main difficulty.
Definition 1.1. The quantity \((\psi, A, \phi)\) is called a strong solution if \((\psi, A, \phi) \in L^\infty(0, T; H^1) \cap L^2(0, T; H^2)\) and \(\partial_t \psi, \partial_t A \in L^2(0, T; L^2)\) and the equations (1.1) and (1.2) hold true almost everywhere.

In the following proofs, we will use the following inequality [10]:
\[
\|A\|_{H^2(\Omega)} \lesssim \|A\|_{H^1(\Omega)} + \|\text{div} A\|_{H^1(\Omega)} + \|\text{curl} A\|_{H^1(\Omega)} + \|A \cdot \nu\|_{H^2(\partial \Omega)}.
\] (1.10)

We will also use the following lemma [11]:

Lemma 1.2. Suppose \(y(t)\) and \(h(t)\) are nonnegative functions, \(y'(t)\) is locally integrable on \((0, \infty)\) and \(y(t), h(t)\) satisfy
\[
\frac{dy}{dt} \leq C_1 y^2 + C_2 y + h(t), \quad \forall t \geq t_1, \tag{1.11}
\]
\[
\int_{t_1}^\infty y(\tau)d\tau \leq C_3, \quad \int_{t_1}^\infty h(\tau)d\tau \leq C_4, \quad \forall t \geq t_1, \tag{1.12}
\]
with \(C_1, C_2, C_3\) and \(C_4\) being positive constants independent of \(t\). Then for any \(r > 0\),
\[
y(t + r) \leq \left(\frac{C_3}{r} + C_2 r + C_4\right) e^{C_1 C_3}, \quad \forall t \geq t_1. \tag{1.13}
\]

Moreover,
\[
\lim_{t \to \infty} y(t) = 0. \tag{1.14}
\]

After having proved Th.1.1, using the standard compactness principle of Aubin-Lions, it is easy to show that \((\psi(\cdot, t), A(\cdot, t), H(t))\) \(\omega\)–converges to the stationary solutions \((\psi_\infty, A_\infty, H_\infty)\) of the problem:

\[
(i\nabla + A)^2 \psi + \frac{\lambda}{2}(|\psi|^2 - 1)\psi = 0, \tag{1.15}
\]
\[
\text{curl}^2 A + \text{Re}\{(i\nabla \psi + \psi A)\bar{\psi}\} = 0, \tag{1.16}
\]
\[
\text{div} A = 0 \quad \text{in} \quad \Omega, \tag{1.17}
\]
\[
\nu \cdot \nabla \psi = 0, \quad \nu \cdot A = 0, \quad \text{curl} A = H_\infty, \quad \int_\Omega \text{curl} A dx = L. \tag{1.18}
\]

We omit the details here.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, we only need to show the a priori estimates.
First, it follows from (1.8) that there exists $t_0 \in (0, \infty)$ such that

$$(\partial_t \psi, \partial_t A)(\cdot, t_0) \in L^2(\Omega).$$ \hspace{1cm} (2.1)

Here it should be noted that the solutions are smooth when $t > t_0$.

Applying div to (1.2) and using $\text{div} A = 0$, one has

$$-\Delta \phi = \text{div} \text{Re}[(i \nabla \psi + \psi A)\overline{\psi}].$$ \hspace{1cm} (2.2)

On the other hand, let $b := \text{curl} A - H(t)$, then

$$\int_{\partial \Omega} (\text{curl}^2 A \cdot \nu) \xi dS = \int_{\partial \Omega} (\text{curl} b \cdot \nu) \xi dS = \int_{\Omega} \nabla \xi \text{curl} b dx = -\int_{\Omega} \text{curl} (b \nabla \xi) dx$$

$$= -\int_{\partial \Omega} b \nabla \xi \cdot \tau dS = 0$$ \hspace{1cm} (2.3)

due to $b = 0$ on $\partial \Omega$ for any smooth function ξ.

This shows that

$$\text{curl}^2 A \cdot \nu = 0 \text{ on } (0, T) \times \partial \Omega.$$ \hspace{1cm} (2.4)

Now, it follows from (1.2), (1.3) and (2.4) that

$$\frac{\partial \phi}{\partial \nu} = 0 \text{ on } (0, T) \times \partial \Omega.$$ \hspace{1cm} (2.5)

Using $\int_{\Omega} \phi dx = 0$, and the Poincaré inequality

$$\|\phi\|_{L^2} \lesssim \|\nabla \phi\|_{L^2},$$ \hspace{1cm} (2.6)

it follows from (1.8) that

$$\int_0^\infty \int_{\Omega} |\phi|^2 dx dt \leq C.$$ \hspace{1cm} (2.7)

Equation (1.1) can be written as

$$\partial_t \psi - \Delta \psi + i\phi \psi + 2iA \cdot \nabla \psi + |A|^2 \psi + \frac{\lambda}{2}(|\psi|^2 - 1) \psi = 0.$$ \hspace{1cm} (2.8)
Applying ∂_t to (2.8), testing by $\partial_t \overline{\psi}$, taking the real parts, and using (1.8), we find that

$$
\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\partial_t \psi|^2 dx + \int_{\Omega} |\nabla \partial_t \psi|^2 dx + \int_{\Omega} |A|^2 |\partial_t \psi|^2 dx \\
\lesssim \int_{\Omega} |\partial_t \phi| |\partial_t \psi| dx + \int_{\Omega} |\partial_t A \cdot \nabla \psi + A \cdot \nabla \partial_t \psi| |\partial_t \psi| dx \\
+ \int_{\Omega} |A| |\partial_t A| |\partial_t \psi| dx + \int_{\Omega} |\partial_t \psi|^2 dx \\
\lesssim ||\partial_t \phi||_{L^2} ||\partial_t \psi||_{L^2} + ||\partial_t A||_{L^4} ||\partial_t \psi||_{L^4} ||\nabla \psi||_{L^2} + ||\nabla \partial_t \psi||_{L^2} ||A||_{L^4} ||\partial_t \psi||_{L^4} \\
+ ||\partial_t A||_{L^4} ||\partial_t \psi||_{L^2} + ||\partial_t \psi||_{L^2} \\
\lesssim ||\partial_t \phi||_{L^2} ||\partial_t \psi||_{L^2} + ||\partial_t A||_{L^4} ||\partial_t \psi||_{L^4} + ||\nabla \partial_t \psi||_{L^2} ||\partial_t \psi||_{L^4} \\
+ ||\partial_t A||_{L^4} ||\partial_t \psi||_{L^2} + ||\partial_t \psi||_{L^2}^2.
$$

(2.9)

We will use the Gagliardo-Nirenberg inequalities

$$
||\partial_t A||_{L^4}^2 \lesssim ||\partial_t A||_{L^2} ||\partial_t A||_{H^1},
$$

(2.10)

$$
||\partial_t \psi||_{L^4}^2 \lesssim ||\partial_t \psi||_{L^2} ||\partial_t \psi||_{H^1},
$$

(2.11)

and the Maxwell inequality

$$
||A||_{H^1} \lesssim ||\text{curl} \ A||_{L^2}.
$$

(2.12)

Applying ∂_t to (2.2), one has

$$
||\partial_t \phi||_{L^2} \lesssim ||\nabla \partial_t \phi||_{L^4} \\
\lesssim ||\nabla \partial_t \psi||_{L^2} + ||\partial_t \psi||_{L^4} ||A||_{L^4} + ||\partial_t A||_{L^2} + ||\partial_t \psi||_{L^4} \\
\lesssim ||\nabla \partial_t \psi||_{L^2} + ||\partial_t \psi||_{L^2} + ||\partial_t A||_{L^2}.
$$

(2.13)

Inserting (2.10)-(2.13) into (2.9), we obtain

$$
\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\partial_t \psi|^2 dx + \int_{\Omega} |\nabla \partial_t \psi|^2 dx \\
\lesssim \epsilon ||\nabla \partial_t \psi||_{L^2}^2 + \epsilon ||\text{curl} \partial_t A||_{L^2}^2 + \left(1 + \frac{1}{\epsilon}\right) ||\partial_t (\phi, A)||_{L^2}^2
$$

(2.14)

for any $0 < \epsilon < 1$.

Applying ∂_t to (1.2), testing by $\partial_t A$, and using (1.8), (2.10)-(2.12) and
\(\text{div} \, A = 0 \), we compute

\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\partial_t A|^2 dx + \int_{\Omega} |\text{curl} \, \partial_t A|^2 dx + \int_{\Omega} |\psi|^2 |\partial_t A|^2 dx \\
\lesssim \int_{\Omega} |\nabla \partial_t \psi| |\partial_t A| dx + \int_{\Omega} |\partial_t \psi| |A| |\partial_t A| dx + \int_{\Omega} |i \nabla \psi + \psi A| |\partial_t \psi| |\partial_t A| dx \\
\lesssim \|\nabla \partial_t \psi\|_{L^2} \|\partial_t A\|_{L^2} + \|\partial_t \psi\|_{L^4} \|A\|_{L^4} \|\partial_t A\|_{L^4} + \|i \nabla \psi + \psi A\|_{L^2} \|\partial_t \psi\|_{L^4} \|\partial_t A\|_{L^4} \\
\lesssim \epsilon \|\nabla \partial_t \psi\|^2_{L^2} + \epsilon \|\text{curl} \, \partial_t A\|^2_{L^2} + \left(1 + \frac{1}{\epsilon}\right) \|\partial_t (\psi, A)\|^2_{L^2} \\
\text{(2.15)}
\]

for any \(0 < \epsilon < 1\).

Here we have used

\[
\int_{\Omega} \partial_t A \text{curl}^2 \partial_t A dx \\
= \int_{\Omega} \partial_t A \text{curl} (\text{curl} \, \partial_t A - H'(t)) dx \\
= \int_{\Omega} \text{curl} \, \partial_t A (\text{curl} \, \partial_t A - H'(t)) dx \\
= \int_{\Omega} |\text{curl} \, \partial_t A|^2 dx
\]

and

\[
\int_{\Omega} \text{curl} \, \partial_t A \cdot H'(t) dx = H'(t) \int_{\Omega} \text{curl} \, \partial_t A dx = 0.
\]

Summing up (2.14) and (2.15) and taking \(\epsilon\) small enough, we arrive at

\[
\frac{d}{dt} \int_{\Omega} |\partial_t (\psi, A)|^2 dx + \int_{\Omega} (|\nabla \partial_t \psi|^2 + |\text{curl} \, \partial_t A|^2) dx \lesssim \|\partial_t (\psi, A)\|^2_{L^2}. \quad \text{(2.16)}
\]

Using Lemma 1.2 and integrating (2.16) over \((t_0, \infty)\), we conclude that

\[
\|\partial_t (\psi, A)(\cdot, t)\|_{L^2} \leq C, \quad \int_{t_0}^{\infty} \|\partial_t (\psi, A)\|^2_{H^1} dt \leq C, \quad \text{(2.17)}
\]

\[
\lim_{t \to \infty} \|\partial_t (\psi, A)(\cdot, t)\|_{L^2} = 0. \quad \text{(2.18)}
\]

Using the \(H^2\)-theory of Poisson equation, it follows from (2.8), (1.8) and (2.17) that

\[
\|\psi(\cdot, t)\|_{H^2} \lesssim \|\partial_t \psi\|_{L^2} + \|\phi\|_{L^2} + \|A\|_{L^4} \|\nabla \psi\|_{L^4} + \|A\|^2_{L^4} + \|\psi\|_{L^2} \\
\lesssim 1 + \|\nabla \psi\|_{L^4}^{\frac{1}{2}} \|\psi\|_{H^2}^{\frac{1}{4}}.
\]
which gives
\[\| \psi(\cdot, t) \|_{H^2} \leq C \text{ for } t \geq t_0. \] (2.19)

It follows from (1.2), (1.8), (2.17), and (2.19) that
\[\| \text{curl}^2 A(\cdot, t) \|_{L^2} \lesssim \| \partial_t A \|_{L^2} + \| \nabla \phi \|_{L^2} + \| i \nabla \psi + \psi A \|_{L^2} \leq C. \] (2.20)

On the other hand,
\[\| \text{curl} A - H \|_{H^1} \lesssim \| \nabla (\text{curl} A - H) \|_{L^2} \lesssim \| \text{curl} (\text{curl} A - H) \|_{L^2} = \| \text{curl}^2 A \|_{L^2} \leq C \]
and thus
\[\| H \|_{L^\infty} \lesssim \| \text{curl} A \|_{L^2} + \| \text{curl} A - H \|_{L^2} \leq C. \] (2.21)

Here we should note that H is constant in space and that (2.21) is uniform in time for $t > t_0$.

Using (1.10), (2.20), and (2.21), we have
\[\| A(\cdot, t) \|_{H^2} \leq C \text{ for } t \geq t_0. \] (2.22)

Using (2.2), (2.19), and (2.22), we know that
\[\| \phi(\cdot, t) \|_{H^2} \leq C \text{ for } t \geq t_0. \] (2.23)

Similarly to (2.13), one has
\[\| \nabla \partial_t \phi \|_{L^2} \lesssim \| \nabla \partial_t \psi \|_{L^2} + \| \partial_t \psi \|_{L^2} + \| \partial_t A \|_{L^2} + \| i \nabla \psi + \psi A \|_{L^4} \| \partial_t \psi \|_{L^4} \lesssim \| \partial_t \psi \|_{H^1} + \| \partial_t A \|_{L^2}, \]
which implies
\[\| \partial_t \phi \|_{L^2(t_0, \infty; H^1)} \leq C. \] (2.24)

Using (1.8) and (2.24), we conclude that
\[\lim_{t \to \infty} \| \phi(\cdot, t) \|_{H^1} = 0. \] (2.25)

In fact, we have
\[\frac{d}{dt} \| \phi \|_{H^1}^2 = 2 \int_{\Omega} (\phi \partial_t \phi + \nabla \phi \nabla \partial_t \phi) dx \leq \| \phi \|_{H^1}^2 + \| \partial_t \phi \|_{H^1}^2 \]
and then using Lemma 1.2 to conclude it.

This completes the proof. \qed
References

Received: August 23, 2023; Published: September 8, 2023