International Journal of Mathematical Analysis
Vol. 17, 2023, no. 3, 109-117
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ijma.2023.912516

Long Time Behavior of a 2D Ginzburg-Landau Model with Fixed Total Magnetic Flux

Jishan Fan
Department of Applied Mathematics
Nanjing Forestry University, Nanjing, 210037, P. R. China
Tohru Ozawa ${ }^{1}$
Department of Applied Physics
Waseda University, Tokyo, 169-8555, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright (c) 2023 Hikari Ltd.

Abstract

We prove the long time behavior of a 2D Ginzburg-Landau system in superconductivity with Coulomb gauge and fixed total magnetic flux. This solved a problem left open in Q.Tang [9].

Mathematics Subject Classifications: 35A05, 35A40, 35K55, 82D55
Keywords: Ginzburg-Landau model, superconductivity, asymptotic behavior

1 Introduction

We consider the long time behavior of a 2D Ginzburg-Landau model in superconductivity:

$$
\begin{align*}
& \partial_{t} \psi+i \phi \psi+(i \nabla+A)^{2} \psi+\frac{\lambda}{2}\left(|\psi|^{2}-1\right) \psi=0 \tag{1.1}\\
& \partial_{t} A+\nabla \phi+\operatorname{curl}^{2} A+\operatorname{Re}\{(i \nabla \psi+\psi A) \bar{\psi}\}=0 \tag{1.2}
\end{align*}
$$

[^0]in $Q_{T}:=(0, T) \times \Omega$, with boundary and initial conditions
\[

$$
\begin{align*}
& \nabla \psi \cdot \nu=0, A \cdot \nu=0, \int_{\Omega} \operatorname{curl} A \mathrm{~d} x=L, \operatorname{curl} A=H(t) \text { on }(0, T) \times \partial(\Omega, 3) \\
& (\psi, A)(\cdot, 0)=\left(\psi_{0}, A_{0}\right)(\cdot) \text { in } \Omega . \tag{1.4}
\end{align*}
$$
\]

Here, the unknowns ψ, A, and ϕ are \mathbb{C}-valued, \mathbb{R}^{2}-valued, and \mathbb{R}-valued functions, respectively, and they stand for the order parameter, the magnetic potential, and the electric potential, respectively. $\lambda>0$ is a Ginzburg-Landau constant, L is a given constant and $H(t)$ is the unknown applied magnetic field, and $i:=\sqrt{-1} . \bar{\psi}$ denotes the complex conjugate of $\psi, \operatorname{Re} \psi:=(\psi+\bar{\psi}) / 2$ is the real part of ψ, and $|\psi|^{2}:=\psi \bar{\psi}$ is the density of superconductivity carriers. T is any given positive constant. Ω is a simply connected and bounded domain with smooth boundary $\partial \Omega$ and ν is the outward unit normal to $\partial \Omega$.

It is well-known that the Ginzburg-Landau equations are gauge invariant, namely, if (ψ, A, ϕ) is a solution of (1.1)-(1.2), then $\left(\psi e^{i \chi}, A+\nabla \chi, \phi-\partial_{t} \chi\right)$ is also a solution for any real-valued smooth function χ. Accordingly, in order to obtain the well-posedness of the problem, we need to impose some gauge condition. From physical point of view, one may usually think of four types of the gauge condition:
(1) Coulomb gauge: $\operatorname{div} A=0$ in Ω and $\int_{\Omega} \phi d x=0$.
(2) Lorentz gauge: $\phi=-\operatorname{div} A$ in Ω.
(3) Lorenz gauge: $\partial_{t} \phi=-\operatorname{div} A$ in Ω.
(4) Temporal gauge (Weyl gauge): $\phi=0$ in Ω.

For the initial data $\left(\psi_{0}, A_{0}\right) \in W_{0}:=\left\{\left(\psi_{0}, A_{0}\right) \mid \psi_{0} \in L^{\infty} \cap H^{1}, A_{0} \in H^{1}\right\}$, Chen et al. [1, 2], Du [3], and Fan and Ozawa [4] proved the existence and uniqueness of global strong solutions to (1.1)-(1.4) in the case of the Coulomb, Lorenz, and Lorentz as well as temporal gauges.

We denote $\operatorname{curl} A:=\partial_{1} A_{2}-\partial_{2} A_{1}$ for vector $A:=\binom{A_{1}}{A_{2}}$ and $\operatorname{curl} b:=$ $\binom{\partial_{2} b}{-\partial_{1} b}$ for scalar b.

For the initial data $\psi_{0}, A_{0} \in L^{2}$, under the Coulomb or Lorentz gauge, Tang and Wang (2-D) [5], Fan and Jiang (3-D) [6] proved the global existence of weak solutions. Fan and Ozawa [7] (2-D) and Fan, Gao and Guo [8] (3-D) prove the global existence and uniqueness of weak solutions for $\psi_{0}, A_{0} \in L^{d}$ with $d=2,3$.

We will assume that the initial data $\left(\psi_{0}, A_{0}\right)$ satisfy

$$
\begin{equation*}
\left\|\psi_{0}\right\|_{L^{\infty}} \leq C_{0}, \psi_{0}, A_{0} \in H^{1}(\Omega), A_{0} \cdot \nu=0, \int_{\Omega} \operatorname{curl} A_{0} \mathrm{~d} x=L \tag{1.5}
\end{equation*}
$$

Denote

$$
\begin{equation*}
G:=\int_{\Omega}\left(|(i \nabla+A) \psi|^{2}+|\operatorname{curl} A|^{2}+\frac{\lambda}{4}\left(|\psi|^{2}-1\right)^{2}\right) \mathrm{d} x \tag{1.6}
\end{equation*}
$$

then it is well-known that

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} G+\int_{\Omega}\left|\partial_{t} \psi+i \phi \psi\right|^{2} \mathrm{~d} x+\int_{\Omega}\left(\left|\partial_{t} A\right|^{2}+|\nabla \phi|^{2}\right) \mathrm{d} x=0 . \tag{1.7}
\end{equation*}
$$

In [9], Tang assumed (1.5) holds true and showed the global existence and uniqueness of strong solutions and proved the following uniform-in-time estimate:

$$
\begin{align*}
& \|\psi\|_{L^{\infty}\left(0, \infty ; L^{\infty}\right)} \leq \max \left(1, C_{0}\right),\|(\psi, A, \phi)\|_{L^{\infty}\left(0, \infty ; H^{1}\right)} \leq C, \\
& \int_{0}^{\infty} \int_{\Omega}\left(\left|\partial_{t} \psi\right|^{2}+\left|\partial_{t} A\right|^{2}+|\nabla \phi|^{2}\right) \mathrm{d} x \mathrm{~d} t \leq C, \tag{1.8}
\end{align*}
$$

and gave some weak results on long-time behavior of the solutions and posed some problems:

Problem 1. Is $H(t)$ uniform-in-time bounded?
Problem 2. Is $\lim _{t \rightarrow \infty}\|\phi(\cdot, t)\|_{H^{1}}=0$?
The aim of this paper is to solve the above two problems. We will prove
Theorem 1.1. Let (1.5) hold true and we choose the Coulomb gauge. Then there exists $0<t_{0}<\infty$ such that

$$
\begin{align*}
& \|(\psi, A)\|_{L^{\infty}\left(t_{0}, \infty ; H^{2}\right)} \leq C,\left\|\partial_{t}(\psi, A)\right\|_{L^{\infty}\left(t_{0}, \infty ; L^{2}\right)} \leq C, \\
& \left\|\partial_{t}(\psi, A)\right\|_{L^{2}\left(t_{0}, \infty ; H^{1}\right)} \leq C,\|\phi\|_{L^{\infty}\left(t_{0}, \infty ; H^{2}\right)} \leq C \\
& \left\|\partial_{t} \phi\right\|_{L^{2}\left(t_{0}, \infty ; H^{1}\right)} \leq C, \lim _{t \rightarrow \infty}\left\|\partial_{t}(\psi, A)(\cdot, t)\right\|_{L^{2}}=0 \tag{1.9}\\
& \lim _{t \rightarrow \infty}\|\phi(\cdot, t)\|_{H^{1}}=0,|H(t)| \leq C
\end{align*}
$$

with positive constant C independent of time.
It is important to study the long time behavior of the evolutionary problems because it has a unique solution and may indicate which steady state solutions are preferred in the evolution process.

The physical background of this model is that we are committed to have a mixed state inside the superconductor sample by imposing a fixed total magnetic flux. More precisely, the total magnetic flux is a physically observable quantity which is closely linked with the number of vortices. By adjusting the total magnetic flux, we should have a reasonable estimate of the number of vortices in the sample. In this case, $H(t)$ has to be adjusted in accordance and is therefore not a given quantity, which is a main difficulty.

Definition 1.1. The quantity (ψ, A, ϕ) is called a strong solution if $(\psi, A, \phi) \in$ $L^{\infty}\left(0, T ; H^{1}\right) \cap L^{2}\left(0, T ; H^{2}\right)$ and $\partial_{t} \psi, \partial_{t} A \in L^{2}\left(0, T ; L^{2}\right)$ and the equations (1.1) and (1.2) hold true almost everywhere.

In the following proofs, we will use the following inequality [10]:

$$
\begin{equation*}
\|A\|_{H^{2}(\Omega)} \lesssim\|A\|_{H^{1}(\Omega)}+\|\operatorname{div} A\|_{H^{1}(\Omega)}+\|\operatorname{curl} A\|_{H^{1}(\Omega)}+\|A \cdot \nu\|_{H^{\frac{3}{2}}(\partial \Omega)} \tag{1.10}
\end{equation*}
$$

We will also use the following lemma [11]:
Lemma 1.2. Suppose $y(t)$ and $h(t)$ are nonnegative functions, $y^{\prime}(t)$ is locally integrable on $(0, \infty)$ and $y(t), h(t)$ satisfy

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} t} \leq C_{1} y^{2}+C_{2} y+h(t), \quad \forall t \geq t_{1} \tag{1.11}\\
& \int_{t_{1}}^{\infty} y(\tau) \mathrm{d} \tau \leq C_{3}, \int_{t_{1}}^{\infty} h(\tau) \mathrm{d} \tau \leq C_{4}, \quad \forall t \geq t_{1} \tag{1.12}
\end{align*}
$$

with C_{1}, C_{2}, C_{3} and C_{4} being positive constants independent of t. Then for any $r>0$,

$$
\begin{equation*}
y(t+r) \leq\left(\frac{C_{3}}{r}+C_{2} r+C_{4}\right) e^{C_{1} C_{3}}, \quad \forall t \geq t_{1} \tag{1.13}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y(t)=0 \tag{1.14}
\end{equation*}
$$

After having proved Th.1.1, using the standard compactness principle of Aubin-Lions, it is easy to show that $(\psi(\cdot, t), A(\cdot, t), H(t)) \omega$-converges to the stationary solutions $\left(\psi_{\infty}, A_{\infty}, H_{\infty}\right)$ of the problem:

$$
\begin{align*}
& (i \nabla+A)^{2} \psi+\frac{\lambda}{2}\left(|\psi|^{2}-1\right) \psi=0 \tag{1.15}\\
& \operatorname{curl}^{2} A+\operatorname{Re}\{(i \nabla \psi+\psi A) \bar{\psi}\}=0 \tag{1.16}\\
& \operatorname{div} A=0 \text { in } \Omega \tag{1.17}\\
& \nu \cdot \nabla \psi=0, \nu \cdot A=0, \operatorname{curl} A=H_{\infty}, \int_{\Omega} \operatorname{curl} A \mathrm{~d} x=L \tag{1.18}
\end{align*}
$$

We omit the details here.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, we only need to show the a priori estimates.

First, it follows from (1.8) that there exists $t_{0} \in(0, \infty)$ such that

$$
\begin{equation*}
\left(\partial_{t} \psi, \partial_{t} A\right)\left(\cdot, t_{0}\right) \in L^{2}(\Omega) \tag{2.1}
\end{equation*}
$$

Here it should be noted that the solutions are smooth when $t>t_{0}$. Applying div to (1.2) and using $\operatorname{div} A=0$, one has

$$
\begin{equation*}
-\Delta \phi=\operatorname{div} \operatorname{Re}[(i \nabla \psi+\psi A) \bar{\psi}] \tag{2.2}
\end{equation*}
$$

On the other hand, let $b:=\operatorname{curl} A-H(t)$, then

$$
\begin{align*}
& \int_{\partial \Omega}\left(\operatorname{curl}^{2} A \cdot \nu\right) \xi \mathrm{d} S=\int_{\partial \Omega}(\operatorname{curl} b \cdot \nu) \xi \mathrm{d} S \\
= & \int_{\Omega} \operatorname{div}(\xi \operatorname{curl} b) \mathrm{d} x=\int_{\Omega} \nabla \xi \operatorname{curl} b \mathrm{~d} x=-\int_{\Omega} \operatorname{curl}(b \nabla \xi) \mathrm{d} x \\
= & -\int_{\partial \Omega} b \nabla \xi \cdot \tau \mathrm{~d} S=0 \tag{2.3}
\end{align*}
$$

due to $b=0$ on $\partial \Omega$ for any smooth function ξ.
This shows that

$$
\begin{equation*}
\operatorname{curl}^{2} A \cdot \nu=0 \text { on }(0, T) \times \partial \Omega . \tag{2.4}
\end{equation*}
$$

Now, it follows from (1.2), (1.3) and (2.4) that

$$
\begin{equation*}
\frac{\partial \phi}{\partial \nu}=0 \quad \text { on } \quad(0, T) \times \partial \Omega \tag{2.5}
\end{equation*}
$$

Using $\int_{\Omega} \phi \mathrm{d} x=0$, and the Poincaré inequality

$$
\begin{equation*}
\|\phi\|_{L^{2}} \lesssim\|\nabla \phi\|_{L^{2}} \tag{2.6}
\end{equation*}
$$

it follows from (1.8) that

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\Omega}|\phi|^{2} \mathrm{~d} x \mathrm{~d} t \leq C \tag{2.7}
\end{equation*}
$$

Equation (1.1) can be written as

$$
\begin{equation*}
\partial_{t} \psi-\Delta \psi+i \phi \psi+2 i A \cdot \nabla \psi+|A|^{2} \psi+\frac{\lambda}{2}\left(|\psi|^{2}-1\right) \psi=0 \tag{2.8}
\end{equation*}
$$

Applying ∂_{t} to (2.8), testing by $\partial_{t} \bar{\psi}$, taking the real parts, and using (1.8), we find that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\partial_{t} \psi\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla \partial_{t} \psi\right|^{2} \mathrm{~d} x+\int_{\Omega}|A|^{2}\left|\partial_{t} \psi\right|^{2} \mathrm{~d} x \\
\lesssim & \int_{\Omega}\left|\partial_{t} \phi\right|\left|\partial_{t} \psi\right| \mathrm{d} x+\int_{\Omega}\left|\partial_{t} A \cdot \nabla \psi+A \cdot \nabla \partial_{t} \psi\right|\left|\partial_{t} \psi\right| \mathrm{d} x \\
& +\left.\int_{\Omega}|A|\left\|\partial_{t} A\right\| \partial_{t} \psi\left|\mathrm{~d} x+\int_{\Omega}\right| \partial_{t} \psi\right|^{2} \mathrm{~d} x \\
\lesssim & \left\|\partial_{t} \phi\right\|_{L^{2}}\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} A\right\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{4}}\|\nabla \psi\|_{L^{2}}+\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}\|A\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{4}} \\
& +\|A\|_{L^{4}}\left\|\partial_{t} A\right\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{2}}^{2} \\
\lesssim & \left\|\partial_{t} \phi\right\|_{L^{2}}\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} A\right\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{4}}+\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}\left\|\partial_{t} \psi\right\|_{L^{4}} \\
& +\left\|\partial_{t} A\right\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{2}}^{2} . \tag{2.9}
\end{align*}
$$

We will use the Gagliardo-Nirenberg inequalities

$$
\begin{align*}
& \left\|\partial_{t} A\right\|_{L^{4}}^{2} \lesssim\left\|\partial_{t} A\right\|_{L^{2}}\left\|\partial_{t} A\right\|_{H^{1}}, \tag{2.10}\\
& \left\|\partial_{t} \psi\right\|_{L^{4}}^{2} \lesssim\left\|\partial_{t} \psi\right\|_{L^{2}}\left\|\partial_{t} \psi\right\|_{H^{1}}, \tag{2.11}
\end{align*}
$$

and the Maxwell inequality

$$
\begin{equation*}
\|A\|_{H^{1}} \lesssim\|\operatorname{curl} A\|_{L^{2}} \tag{2.12}
\end{equation*}
$$

Applying ∂_{t} to (2.2), one has

$$
\begin{align*}
\left\|\partial_{t} \phi\right\|_{L^{2}} & \lesssim\left\|\nabla \partial_{t} \phi\right\|_{L^{\frac{4}{3}}} \\
& \lesssim\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{4}}\|A\|_{L^{4}}+\left\|\partial_{t} A\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{4}} \\
& \lesssim\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} A\right\|_{L^{2}} . \tag{2.13}
\end{align*}
$$

Inserting (2.10)-(2.13) into (2.9), we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\partial_{t} \psi\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla \partial_{t} \psi\right|^{2} \mathrm{~d} x \\
\lesssim & \epsilon\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}^{2}+\epsilon\left\|\operatorname{curl} \partial_{t} A\right\|_{L^{2}}^{2}+\left(1+\frac{1}{\epsilon}\right)\left\|\partial_{t}(\psi, A)\right\|_{L^{2}}^{2} \tag{2.14}
\end{align*}
$$

for any $0<\epsilon<1$.
Applying ∂_{t} to (1.2), testing by $\partial_{t} A$, and using (1.8), (2.10)-(2.12) and
$\operatorname{div} A=0$, we compute

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\partial_{t} A\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\operatorname{curl} \partial_{t} A\right|^{2} \mathrm{~d} x+\int_{\Omega}|\psi|^{2}\left|\partial_{t} A\right|^{2} \mathrm{~d} x \\
& \lesssim \int_{\Omega}\left|\nabla \partial _ { t } \psi \left\|\partial_{t} A\left|\mathrm{~d} x+\int_{\Omega}\right| \partial_{t} \psi\left|\|A\| \partial_{t} A\right| \mathrm{d} x+\int_{\Omega}\left|i \nabla \psi+\psi A\left\|\partial_{t} \psi\right\| \partial_{t} A\right| \mathrm{d} x\right.\right. \\
& \lesssim\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}\left\|\partial_{t} A\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{4}}\|A\|_{L^{2}}\left\|\partial_{t} A\right\|_{L^{4}}+\|i \nabla \psi+\psi A\|_{L^{2}}\left\|\partial_{t} \psi\right\|_{L^{4}}\left\|\partial_{t} A\right\|_{L^{4}} \\
& \leq\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}\left\|\partial_{t} A\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{4}}\left\|\partial_{t} A\right\|_{L^{4}} \\
& \lesssim \epsilon\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}^{2}+\epsilon\left\|\operatorname{curl} \partial_{t} A\right\|_{L^{2}}^{2}+\left(1+\frac{1}{\epsilon}\right)\left\|\partial_{t}(\psi, A)\right\|_{L^{2}}^{2} \tag{2.15}
\end{align*}
$$

for any $0<\epsilon<1$.
Here we have used

$$
\begin{aligned}
& \int_{\Omega} \partial_{t} A \operatorname{curl}^{2} \partial_{t} A \mathrm{~d} x \\
= & \int_{\Omega} \partial_{t} A \operatorname{curl}\left(\operatorname{curl} \partial_{t} A-H^{\prime}(t)\right) \mathrm{d} x \\
= & \int_{\Omega} \operatorname{curl} \partial_{t} A\left(\operatorname{curl} \partial_{t} A-H^{\prime}(t)\right) \mathrm{d} x \\
= & \int_{\Omega}\left|\operatorname{curl} \partial_{t} A\right|^{2} \mathrm{~d} x
\end{aligned}
$$

and

$$
\int_{\Omega} \operatorname{curl} \partial_{t} A \cdot H^{\prime}(t) \mathrm{d} x=H^{\prime}(t) \int_{\Omega} \operatorname{curl} \partial_{t} A \mathrm{~d} x=0 .
$$

Summing up (2.14) and (2.15) and taking ϵ small enough, we arrive at

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega}\left|\partial_{t}(\psi, A)\right|^{2} \mathrm{~d} x+\int_{\Omega}\left(\left|\nabla \partial_{t} \psi\right|^{2}+\left|\operatorname{curl} \partial_{t} A\right|^{2}\right) \mathrm{d} x \lesssim\left\|\partial_{t}(\psi, A)\right\|_{L^{2}}^{2} \tag{2.16}
\end{equation*}
$$

Using Lemma 1.2 and integrating (2.16) over $\left(t_{0}, \infty\right)$, we conclude that

$$
\begin{align*}
& \left\|\partial_{t}(\psi, A)(\cdot, t)\right\|_{L^{2}} \leq C, \int_{t_{0}}^{\infty}\left\|\partial_{t}(\psi, A)\right\|_{H^{1}}^{2} \mathrm{~d} t \leq C \tag{2.17}\\
& \lim _{t \rightarrow \infty}\left\|\partial_{t}(\psi, A)(\cdot, t)\right\|_{L^{2}}=0 \tag{2.18}
\end{align*}
$$

Using the H^{2}-theory of Poisson equation, it follows from (2.8), (1.8) and (2.17) that

$$
\begin{aligned}
\|\psi(\cdot, t)\|_{H^{2}} & \lesssim\left\|\partial_{t} \psi\right\|_{L^{2}}+\|\phi\|_{L^{2}}+\|A\|_{L^{4}}\|\nabla \psi\|_{L^{4}}+\|A\|_{L^{4}}^{2}+\|\psi\|_{L^{2}} \\
& \lesssim 1+\|\nabla \psi\|_{L^{4}} \\
& \lesssim 1+\|\nabla \psi\|_{L^{2}}^{\frac{1}{2}}\|\psi\|_{H^{2}}^{\frac{1}{2}},
\end{aligned}
$$

which gives

$$
\begin{equation*}
\|\psi(\cdot, t)\|_{H^{2}} \leq C \text { for } t \geq t_{0} \tag{2.19}
\end{equation*}
$$

It follows from (1.2), (1.8), (2.17), and (2.19) that

$$
\begin{equation*}
\left\|\operatorname{curl}^{2} A(\cdot, t)\right\|_{L^{2}} \lesssim\left\|\partial_{t} A\right\|_{L^{2}}+\|\nabla \phi\|_{L^{2}}+\|i \nabla \psi+\psi A\|_{L^{2}} \leq C . \tag{2.20}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\|\operatorname{curl} A-H\|_{H^{1}} & \lesssim\|\nabla(\operatorname{curl} A-H)\|_{L^{2}} \\
& \lesssim\|\operatorname{curl}(\operatorname{curl} A-H)\|_{L^{2}}=\left\|\operatorname{curl}^{2} A\right\|_{L^{2}} \leq C
\end{aligned}
$$

and thus

$$
\begin{equation*}
\|H\|_{L^{\infty}} \lesssim\|\operatorname{curl} A\|_{L^{2}}+\|\operatorname{curl} A-H\|_{L^{2}} \leq C . \tag{2.21}
\end{equation*}
$$

Here we should note that H is constant in space and that (2.21) is uniform in time for $t>t_{0}$.

Using (1.10), (2.20), and (2.21), we have

$$
\begin{equation*}
\|A(\cdot, t)\|_{H^{2}} \leq C \text { for } t \geq t_{0} \tag{2.22}
\end{equation*}
$$

Using (2.2), (2.19), and (2.22), we know that

$$
\begin{equation*}
\|\phi(\cdot, t)\|_{H^{2}} \leq C \text { for } t \geq t_{0} \tag{2.23}
\end{equation*}
$$

Similarly to (2.13), one has

$$
\begin{aligned}
\left\|\nabla \partial_{t} \phi\right\|_{L^{2}} & \lesssim\left\|\nabla \partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} \psi\right\|_{L^{2}}+\left\|\partial_{t} A\right\|_{L^{2}}+\|i \nabla \psi+\psi A\|_{L^{4}}\left\|\partial_{t} \psi\right\|_{L^{4}} \\
& \lesssim\left\|\partial_{t} \psi\right\|_{H^{1}}+\left\|\partial_{t} A\right\|_{L^{2}},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|\partial_{t} \phi\right\|_{L^{2}\left(t_{0}, \infty ; H^{1}\right)} \leq C . \tag{2.24}
\end{equation*}
$$

Using (1.8) and (2.24), we conclude that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|\phi(\cdot, t)\|_{H^{1}}=0 \tag{2.25}
\end{equation*}
$$

In fact, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|\phi\|_{H^{1}}^{2}=2 \int_{\Omega}\left(\phi \partial_{t} \phi+\nabla \phi \nabla \partial_{t} \phi\right) \mathrm{d} x \leq\|\phi\|_{H^{1}}^{2}+\left\|\partial_{t} \phi\right\|_{H^{1}}^{2}
$$

and then using Lemma 1.2 to conclude it.
This completes the proof.

References

[1] Z.M. Chen, C. Elliott, Q. Tang, Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model, RAIRO Model. Math. Anal. Numer., 32 (1)(1998), 25-50.
https://doi.org/10.1051/m2an/1998320100251
[2] Z.M. Chen, K.H. Hoffman, J. Liang, On a nonstationary GinzburgLandau superconductivity model, Math. Methods Appl. Sci., 16 (12) (1993), 855-875. https://doi.org/10.1002/mma. 1670161203
[3] Q. Du, Global existence and uniqueness of solutions of the time dependent Ginzburg-Landau model for superconductivity, Applicable Anal., 53 (1-2) (1994), 1-17. https://doi.org/10.1080/00036819408840240
[4] J. Fan, T. Ozawa, Global strong solutions of the time-dependent Ginzburg-Landau model for superconductivity with a new gauge, Int. J. Math. Anal., 6 (3) (2012), 1679-1684.
[5] Q. Tang, S. Wang, Time dependent Ginzburg-Landau equations of superconductivity, Physica D, 88 (3-4) (1995), 139-166.
https://doi.org/10.1016/0167-2789(95)00195-a
[6] J. Fan, S. Jiang, Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model, Appl. Math. Letters, 16 (3) (2003), 435-440. https://doi.org/10.1016/s0893-9659(03)80069-1
[7] J. Fan, T. Ozawa, Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity, Zeit. Angew. Math. Phys., 63 (3) (2012), 453-459. https://doi.org/10.1007/s00033-011-0164-x
[8] J. Fan, H. Gao, B. Guo, Uniqueness of weak solutions to the 3D GinzburgLandau superconductivity model, Int. Math. Res. Notices, 2015 (5) (2015), 1239-1246. https://doi.org/10.1093/imrn/rnt253
[9] Q. Tang, On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux, Commun. PDE, 20 (1-2) (1995), 1-36. https://doi.org/10.1080/03605309508821085
[10] J.P. Bourguignon, H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363. https://doi.org/10.1016/0022-1236(74)90027-5
[11] W. Shen, S. Zheng, On the coupled Cahn-Hilliard equations, Comm. PDE, 18 (3-4) (1993), 701-727. https://doi.org/10.1080/03605309308820946

Received: August 23, 2023; Published: September 8, 2023

[^0]: ${ }^{1}$ Corresponding author

