Review of Weierstrass Convergence

Hans Detlef Hüttenbach

Freiheitstr. 81
42853 Remscheid, Germany

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2022 Hikari Ltd.

Abstract

The Weierstrass convergence theorem is central to the theory of complex functions. It states that uniformly converging limits of analytic functions on complex regions in 2 dimensions are analytic again (see e.g. [1]). In this paper the theorem is extended to $n > 1$ real and complex dimensions, and the complement of these spaces in the space of continuous functions is studied.

Keywords: Clifford Algebras, Cauchy Theory in n dimensions

1 Introduction and Preliminaries

It is commonly held that a theory of analytic functions could possibly be done on complex vector spaces, only, at least that the functions will need to be complex-valued. While both conditions are sufficient to yield the results, they are not necessary:

Definition 1.1. [Analyticity] An algebra \mathcal{A} (over \mathbb{R}) is called extension of \mathbb{R}^n, if \mathcal{A} and \mathbb{R}^n are isomorphic as normed vector spaces, and if the product ab for $a,b \in \mathcal{A}$ is a continuous bilinear mapping on \mathcal{A}. Such an algebra can be equipped with the norm pulled over from \mathbb{R}^n, so that the isomorphism $\iota : \mathbb{R}^n \to \mathcal{A}$ becomes a unitary embedding of \mathbb{R}^n into \mathcal{A}. Let $U \subset \mathcal{A}$ be an open subset. A continuous mapping $f : U \to \mathcal{A}$ is called differentiable at some $x_0 \in U$ if and only if there is a $c \in \mathcal{A}$, such that $\|f(x) - cx_0\| = o(\|x - x_0\|)$ and $\|f(x) - x_0c\| = o(\|x - x_0\|)$, where $o(h)$ for $h > 0$ denotes a rest term, such that $o(h)/h \to 0$ as $h \to 0$. That element $c \in \mathcal{A}$ is then called derivative of f at x_0 and denoted by $\frac{df(x_0)}{dx} := c$.
For a constant factor $a \in \mathcal{A}$, we then define $\frac{d(af)(x_0)}{dx} := a \frac{df(x_0)}{dx}$.

Further, f is called locally analytic on U, if for each closed and bounded ball $B \subset U$ f is the uniformly converging limit of a power series $f(x) = a \sum_{k>0} a_k x^k$ on B, where $a, x, a_k \in \mathcal{A}$, $(k \in \mathbb{N})$, and the a_k and x commute with each other.

If these power series extensions extend globally on U, f will be called (globally) analytic on U.

Because a function $f : U \to \mathcal{A}$ can be extended to the complex set $U + iU$ as $f(x + iy) := f(x) - if(y)$, we may stick to \mathbb{R}^n and extend to the complex domain at the end.

Remark 1.2. For $n = 2$, using the field \mathbb{C} as algebra extension of \mathbb{R}^2, the above reduces to the space of analytic (or holomorphic) functions that Weierstraß considered in his convergence theorem.

Definition 1.3. [Primitive] Let $f : U \to \mathcal{A}$ be a continuous function of an open subset $U \subset \mathcal{A}$ into \mathcal{A}. A function $If : U \to \mathcal{A}$ is called a primitive of f if $\frac{d(If)(x)}{dx} = f(x)$ for all $x \in U$, and accordingly the mth primitive of f is defined as function $I^m f : U \to \mathcal{A}$, such that $\left(\frac{d^m}{dx^m}\right) I^m f(x) = f(x)$.

We finally need the algebra extension of \mathbb{R}^n to contain a 1-element, i.e. a neutral element of multiplication $1 \in \mathcal{A}$, that is: $1 \cdot a = a \cdot 1 = a$ is to hold for all $a \in \mathcal{A}$.

Let $U \subset \mathbb{R}^n$ be open with $n \geq 2$ and $\mathcal{C}(U)$ be the vector space of all (real or complex valued) continuous functions on U. It is common to define its topology as the projective limit of the restrictions to compact $K \subset U$: $\pi_K : \mathcal{C}(U) \ni f \mapsto f|_K \in \mathcal{C}(K)$, where the $\mathcal{C}(K)$ are Banach spaces under their supremum norm $\|\cdot\| : f \mapsto sup_{x \in K} |f(x)|$. (The projective limit is then defined as the coarsest locally convex topology on $\mathcal{C}(U)$, such that all π_K are continuous.) This topology makes $\mathcal{C}(U)$ a complete, metrizable and separable vector space (known as F-space, see: [3]). Further, on F-spaces the open mapping theorem holds, which states that continuous and surjective linear mappings of F-spaces are open (see: [3] again).

By the Weierstraß convergence theorem, the vector space $\mathcal{A}(U)$ of analytic functions on some open $U \subset \mathbb{C}$ becomes a closed subspace of $\mathcal{C}(U)$. Consequently, $\mathcal{A}(U)$ must have an algebraic, if not topological complement in $\mathcal{C}(U)$.

And the problem is: what is this complement? At the same time, one would expect similar results for arbitrary dimensions $n \geq 2$.

2 Decomposition Theorem

Theorem 2.1. $\mathcal{C}(U)$ is the direct sum the space of constant functions Const and two (isomorphic) subspaces $\mathcal{C}(U) = \mathcal{X}_+(U) \oplus \mathcal{X}_-(U) \oplus \text{Const}$, for which

\[\left(\frac{d^m}{dx^m}\right) I^m f(x) = f(x)\]
the following holds: \(\mathcal{X}_+(U) \) and \(\mathcal{X}_-(U) \) have algebra extensions \(\mathcal{A}_+(U) \) and \(\mathcal{A}_-(U) \) that embed \(\mathcal{X}_+ \) and \(\mathcal{X}_- \) as locally analytic functions.

In the following, I’ll shortly use \(\mathcal{X}(U) := \mathcal{X}_+(U) \oplus \mathcal{X}_-(U) \).

Proof. First, let us prove that it suffices to show the theorem for a closed ball \(B_r(x_0) \subset U \) around \(x_0 \in U \) of some radius \(r > 0 \):

Since \(U \subset \mathbb{R}^n \) is open, \(U \) is the countable union of a family \(B_k := B_{r_k}(x_k) \) (\(k \in \mathbb{N} \)), of such balls. And for this coverage \((B_k)_{k \in \mathbb{N}} \) there is a subordinate partition of unity \((g_t)_{t \in \mathbb{N}} \) of functions \(g_t \in \mathcal{C}(U) \) with \(g_t \geq 0 \), each \(g_t \) vanishing outside some \(B_k \), and \(\sum_{t \in \mathbb{N}} g_t(x) = 1 \) for all \(x \in U \). Now, in order to prove that \(\mathcal{C}(U) \) is the topological direct sum of two subspaces, we have to prove that its restrictions to compact \(K \subset U \) are for every compact \(K \subset U \). Then, given any compact \(K \subset U \), there are finitely many of the \(g_t \), \(g_1, \ldots, g_m \), say, such that \(g_1(x) + \cdots + g_m(x) = 1 \) for all \(x \in K \), and each of these \(g_t \) has its support contained in one of the \(B_k \), which then (continuously) map \(f \in U \) to \(g_t f \in C_c(B_k) \), which is the space of continuous functions with support in \(B_k \). So, because we have just a finite set of \(m \in \mathbb{N} \) of \(g_t \), if we prove that \(\mathcal{C}(B_k) = \mathcal{X}_+(B_k) \oplus \mathcal{X}_-(B_k) \oplus \text{Const} \) for each \(B_k \), then we proved that globally for \(\mathcal{C}(U) \). Also note that \(\mathcal{X}_+(B_k) \) does not need to have support in \(B_k \): every \(f \in \mathcal{X}_+(B_k) \) can be added \(m - 1 \) other parts of the other \(\mathcal{X}_+(B_k) \). So, we are left to prove the theorem for \(\mathcal{C}(B_r) \), where \(B_r \) is a ball of some radius \(r > 0 \) around some \(x_0 \in \mathbb{R}^n \), and we may assume that ball center to be the origin 0 itself.

Each \(x \) in the interior of \(B(r) \) has a distance \(d > 0 \) from the boundary of \(B(r) \). So, the integral along all \(k^{th} \) components \(I_k(h) f : (x_1, \ldots, x_k + h, \ldots, x_n) \mapsto \int_0^h f(x_1, \ldots, x_k + \lambda, \ldots, x_n) d\lambda \) is well defined for \(h \) in the open interval \((-d/2, +d/2)\), and so are its compositions \(I_k(h) I_l(h) f \), which integrate first \(f \in \mathcal{X}(B(r)) \) along the \(l^{th} \) component from \(x_l \) to \(x_l + h \), followed by an integration along the \(k^{th} \) component from \(x_k \) to \(x_k + h \). Therefore the derivative \(f_{kl}(x) := \lim_{h \to 0} \frac{I_k(h) I_l(h) f(x)}{2h} \) exists for all \(x \) in the interior of \(B(r) \) and is for real-valued \(f \) a uniformly continuous, \(\mathbb{R}^n \)-valued function on \(B(r) \) with values in the plane spanned by the \(k^{th} \) and \(l^{th} \) coordinates, each, and splits into the sum of an \(\mathbb{R}^n \)-valued and an \(i\mathbb{R}^n \)-valued function in case of complex-valued \(f \). For \(k = l \), \(f \) is twice integrated from \(x_k \) to \(x_k + h \) along the \(k^{th} \) coordinate, \(I_k(h) I_k(h) f(x) = O(h^2) \), so \(f_{kk} \equiv 0 \) follows for all \(k = 1, \ldots, n \).

What we get is a linear mapping \(\Lambda : \mathcal{C}(B_r) \ni f \mapsto (f_{kl})_{1 \leq k, l \leq n} \) from \(\mathcal{C}(B_r) \) into a vector space \(\mathcal{M}(B_r) \) of \(n \times n \)-matrices of elements \(f_{kl} \in \mathcal{C}_r=0(B_r) \), \(1 \leq k, l \leq n \) of \(\mathbb{R}^n \)-valued, continuous functions on \(B_r \) with zero diagonal elements \(f_{11} = \cdots = f_{nn} \equiv 0 \). With \(\| \cdot \| : (f_{kl})_{kl} \mapsto \max_{1 \leq k, l \leq n} \sup_{x \in B_r} |f_{kl}(x)| \) this vector space becomes a Banachspace and \(\Lambda \) a continuous linear mapping from \(\mathcal{C}(B_r) \) into \(\mathcal{M}(B_r) \). The kernel of \(\Lambda \) now is
the 1-dimensional space Const of constant (vector) functions: First, a constant $f \in C(U)$ (which means that f is constant on each connected subset of U) is continuously differentiable, so the partial derivatives commute with the path integrals, these derivatives are all zero, and so all path integrals from some $x \in B_r$ within B_r to some $x + y$ in B_r vanish, so Λ does contain the constant functions in its kernel. And because $f_{kl} = 0$ for all k, l implies that the sum of the differentials, once along positive k and then along positive l, plus the one along negative k and then positive l, vanishes, the preimage $\Lambda^{-1}\{0\}$ consists of all f, for which all partial derivatives are defined and vanish. And these are the constant functions. So, the kernel is the space of constant functions. The constant functions are a 1-dimensional closed subspace Const of $C(U)$, likewise is $C(B_r) / \text{Const}$ a closed subspace of $C(B_r)$. So the embedding, $I : \text{Const} \oplus (C(B_r) / \text{Const}) \to C(B_r)$ defines a continuous linear map from the topological direct sum $\text{Const} \oplus (C(B_r) / \text{Const})$ into $C(U)$, and since it is onto, it is open (by open-mapping theorem). Hence, $\Lambda : C(B_r) / \text{Const} \to \mathcal{M}(B_r)$ is an isomorphism of Banach spaces.

$\mathcal{M}(B_r)$ itself plainly offers to be split into the direct sum of two (closed and open) subspaces $\mathcal{M}(B_r) = \mathcal{M}_+(B_r) \oplus \mathcal{M}_-(B_r)$ through $(f_{kl}) \mapsto (\frac{1}{2}f_{kl}) + (f_{kl})^t + (\frac{1}{2}f_{lk}) - (f_{lk})^t$, where $(f_{kl})^t := (f_{lk})$ is the transpose of (f_{lk}): a symmetric subspace $\mathcal{M}_+(B_r)$ and its antisymmetric counterpart $\mathcal{M}_-(B_r)$. Then again, $\mathcal{M}(B_r)$ is by the open mapping theorem the topological direct sum of $\mathcal{M}_+(B_r)$ and $\mathcal{M}_-(B_r)$. And by continuity of Λ, $\mathcal{X}(B_r)$ then is the topological direct sum of $\mathcal{X}_+(B_r) := \Lambda^{-1}\mathcal{M}_+(B_r)$ and its antisymmetric complement $\mathcal{X}_-(B_r) := \Lambda^{-1}\mathcal{M}_-(B_r)$. That shows the first part of the theorem: $C(U) / \text{Const}$ splits into the direct sum of two subspaces, a symmetric one, $\mathcal{X}_+(U)$, and an anti-symmetric subspace $\mathcal{X}_-(U)$.

Now, every $(f_{kl})_{kl} \in \mathcal{X}_+\mathcal{X}(B_r)$ defines a twice integrable 2-form: because of its symmetry, the path integrals are only dependent on the endpoints, so it integrates to a vector field (F_1, \ldots, F_n) on B_r, and that is integrable again into a scalar field G, because the partial derivatives commute (in here):

The space $C(B_r, \mathbb{R}^n)$ of all uniformly continuous function f from $B(r) \subset \mathbb{R}^n$ into \mathbb{R}^n is a Banachspace with its supremum norm. So, its complex direct sum $C(B_r, n) := C(B_r, \mathbb{R}^n) \oplus iC(B_r, \mathbb{R}^n)$ also is a Banachspace, on which we may do the same as with $C(B_r)$ before: path integrating from each x in the interior of $B(r)$ along along the l^{th} coordinate to $x_l + h$ for small $h \in \mathbb{R}$, followed by the path integration along the k^{th} coordinate from x_k to $x_k + h$, and calculating its slope for $2h \to 0$. This maps $f \in C(B_r, n)$ to a matrix-valued function $(f_{kl})_{1 \leq k, l \leq n}$, which extends onto B_r as a uniformly continuous function. Again, $f_{11} = \cdots = f_{nn} = 0$, and defining $\mathcal{M}(B_r, n)$ to be that Banach space of matrix valued functions, there are just 2 differences with the space $\mathcal{M}(B_r)$: First, the f_{ml} are complex valued, instead of vector-valued, and secondly, the kernel of the mapping $\iota : C(B_r, n) \to \mathcal{M}(B_r, n)$ now is the n-
dimensional space of constant vectors instead of just the 1-dimensional space of constants. And again \(M(B_r, n) \) splits into the direct topological sum of a subspace of symmetric matrices \(M_+(B_r, n) \) and anti-symmetric matrices \(M_-(B_r, n) \). Therefore again, \(C(B_r, n) \) decomposes modulo vector space of constants into a subspace \(X_+(B_r, n) \) of integrable vector fields and a disjoint subspace \(X_+(B_r, n) \). Then, given \(f \in X_+(B_r) \), its primitive \(I f = (I f_1, \ldots, I f_n) \) exists and is in \(C(B_r, n) \), and because (modulo \(\text{Const} \)) \(\frac{\partial I f}{\partial x_k} = \frac{\partial I f}{\partial x_l} = f + \text{Const} \) for all \(1 \leq k \neq l \leq n \), \(I f \in X_+(B_r, n) \). So, by induction, the primitives \(I^m f \) exist for all orders \(m \in \mathbb{N} \), and they are members of \(X_+(B_r, n) \) for odd \(m \) or functions in \(X_+(B_r) \), when \(m \) is even.

So far, we ignored to deal with the integrability of \(X_-(B_r) \): It is not true that it cannot and therefore must not be integrable: Poincaré’s lemma itself mandates its integrability: Because every \(f \in X(B_r) \) defines a zero 2-form \(\alpha := \sum_{l<k\leq n} f dx_k \wedge dx_l \equiv 0 \), and zero differential forms are always twice integrable: once, because \(\alpha \equiv 0 \Rightarrow d\alpha \equiv 0 \), and its integral \(\beta \) say, is integrable again, since \(d\beta = \alpha \equiv 0 \). In particular, Poincaré’s lemma implies the existence of integrals of any order for all \(f \in X(B_r) \) (and therefore the local integrability of all orders for all \(f \in X(U) \)).

It is straightforward to use the conjugation \(\chi : M_+(B_r) \rightarrow M_-(B_r) \) to get at the primitives of all \(f \in X_-(B_r) \). (\(\chi \) maps \(f_{kl} \) for \(k > l \) to \(f_{kl} \) and \(f_{kl} \) for \(k < l \) to \(-f_{kl} \), so is an isomorphism on \(M(B_r) \), for which \(\chi^2 \) is the identity.)

On \(f \in X(B_r) := X_+(B_r) \oplus X_-(B_r) \) this conjugation is delivered through the transformation \(\chi : x = (x_1, \ldots, x_n) \mapsto (\alpha_1 x_1, \ldots, \alpha_n x_n) \), where the \(\alpha_k \) are anti-commuting square matrices such that \(\alpha_k^2 = \cdots = \alpha_n^2 = 1 \), 1 being the unit matrix: Because then, \(\chi : X_+(B_r) \ni (f_+ : x \mapsto f_+(x)) \mapsto (\chi f_+ : x \mapsto f(\alpha_1 x_1, \ldots, \alpha_n x_n) \in X) \) maps between symmetric and antisymmetric functions and extends as a conjugation on \(X(B_r) \). (The \(\alpha_k \) can be picked from the \(n^2 - 1 \) generators of the Lie algebra \(su(n) \).) This defines nothing but an extension of \(\mathbb{R}^n \) to the \(n \)-dimensional orthogonal Clifford algebra \(Cl(n) \): this algebra is defined as the algebra (over \(\mathbb{R} \) or \(\mathbb{C} \)) generated by \(n \) orthogonal unit vectors \(e_1, \ldots, e_n \) for which \(e_k^2 := e_k e_k = 1 \), \(1 \leq k \leq n \) and \(e_i e_j = -e_j e_i \), \(1 \leq k < l \leq n \) holds. Then \(\mathbb{R}^n \ni (x_1, \ldots, x_n) \mapsto x_1 e_1 + \cdots + x_n e_n := (x_1 e_1, \ldots, x_n e_n) \in Cl(n) \) is an embedding into \(Cl(n) \), the (symmetric) functions \(X_+(B_r) \) map to functions \(x_1 e_1 + \cdots + x_n e_n \mapsto f(x_1 e_1 + \cdots + x_n e_n) \), the antisymmetric ones become functions \(x_1 e_1 + \cdots + x_n e_n \mapsto f(x_1, \ldots, x_n) \), and \(x_1 e_e + \cdots + x_n e_n \mapsto (x_1, \ldots, x_n) \) defines the conjugation \(\chi \) on \(X(B_r) \), mapping \(X_\pm(B_r) \) onto each other. With this conjugation in place, the elements of \(X_-(B_r) \) can be mapped to \(X_-(B_r) \) and integrated to any order.

(Analogously, \(X_+(B_r, n) \) and \(X_-(B_r, n) \) are conjugated.)

For \(x, y \in \mathbb{R}^n \) the product \(xy := (x_1 e_1 + \cdots + x_n e_n)(y_1 e_1 + \cdots + y_n e_n) = \sum_{k,l} x_k y_l e_k e_l \) is a well-defined, non-commuting, but associative continuous bi-

Review of Weierstrass convergence 61
linear mapping, in which $e_k \wedge e_l := e_k e_l$ is equivalent with the exterior product of the k^{th} and l^{th} vector components. With the inner product $x \cdot y := \sum_k x_k y_l$ that product rewrites to $xy = x \cdot y + \sum_k x_k \wedge y_l$. In particular, within x^n for $m \in \mathbb{N}$, all exterior products cancel out. Because the e_k are inverse to themselves, for $x \neq 0$, it follows that there is a unique $1/x := y \neq 0$ such that $xy = yx = 1$.

Since $Cl(n)$ has a 1-element, the identity mapping $f : \mathbb{R}^n \ni x \mapsto x \in Cl(n)$ becomes differentiable: its derivative is 1, and the derivative of 1 is zero. In turn, the primitive of 1 is the identity, $f(x) = x$, the primitive of x is $(1/2)x^2$, $(1/3)x^3$ is the primitive of x^2, and so forth. That allows the definition of analyticity. Likewise, all powers of x^{-1} are differentiable (outside the origin), but not all are having a primitive: the exception is $1/x$. While integration along a circle around the origin for complex $x \in \mathbb{C}$ gives $2\pi i$, that’s not the case in higher dimensions of 3 or more real components. (The reason is of course that the circle in 3 or more dimensions does not dis-connect the circle’s center from its outside, and the result of path integration of x^{-1} along a circle vanishes for $n > 2$.) Because for $f \in \mathcal{X}_+(U)$ the m^{th} primitives $I^m f$ locally exist for every $m \in \mathbb{N}$, the surface integral around a (sufficiently small) ball $B_r(x_0) \subset U$ of radius r around $x_0 \in U$ exists for every $x_0 \in U$, involves $n - 1$ successive path integrations, one around a full circle, which gives zero.

Remark 2.2 (Volume, surface integrals and the divergence theorem). For $n \in \mathbb{N}$ dimensions, the volume differential is usually written as $d^n x := dx_1 \cdots dx_n$, while - to be picky - it is the (alternating) differential n-form $dx_1 \wedge \cdots \wedge dx_n$. (In particular, it means that it always includes the orientation of the coordinate system.) By successive integration of a smooth function $f : U \to \mathbb{C}$ over a bounded volume $V \subset U \subset \mathbb{R}^2$ along dx_1, \ldots, dx_n, the differentials drop out, yielding the volume integral $\int_V \frac{f(x)}{x} dx_1 \wedge \cdots \wedge dx_n \in \mathbb{C}$. If the volume V has a smooth boundary $\Gamma(V)$, then $\Gamma(V)$ has an $(n - 1)$-dimensional tangent space T_x for every $x \in \Gamma(V)$ and its differential volume $da_1 \wedge \cdots \wedge da_{n-1}$ defines the differential surface element in n dimensions, which is commonly written as $\tilde{n} d^{n-1} a$, where \tilde{n} is the unit vector of the orthogonal complement of T_x in \mathbb{R}^n.

That association of the differential surface element $da_1 \wedge \cdots \wedge da_{n-1}$ with its normal vector \tilde{n} is arbitrary and misleads to assume that $\int_{\Gamma(V)} f da_1 \wedge \cdots \wedge da_n$ was only defined for vector fields $f : U \in \mathbb{C}^n$, which is untrue. For instance, constant functions on $(n - 1)$-dimensional r-spheres can be cut into 2^n sections of equal absolute size of area, but with alternating parity of the coordinates; so the surface integral of a constant function over $\Gamma(B_r)$ is zero, and therefore the surface integral of a constant function over the closure of any bounded, convex open set $U \subset \mathbb{R}^n$ always vanishes.

Similarly, within $Cl(n)$, the distinction between vectors and scalars becomes insignificant: divergence of a vector field as well as the gradient of a scalar field boil down to the derivative $\frac{d}{dx}$, and for any $f \in \mathcal{X}_+(U)$ any order $m \geq 0$,
and any \(r\)-ball \(B_r \subset U \) we have: \(\int_{B_r} I^n f(x) d^n x = \int_{\Gamma(B_r)} I^{n+1} d^{n-1} a \), where
\[d^n x := dx_1 \wedge \cdots \wedge dx_n \quad \text{and} \quad d^{n-1} a := da_1 \wedge \cdots \wedge da_{n-1}. \]
This is the divergence theorem in a more general form.

Remark 2.3 (Euler’s formula). In two dimensions, within \(\mathbb{R}^2 \), the unit circle around the origin is given by the set of all \((x_1, x_2) \) with \(x_1 = \cos(\phi), x_2 = \sin(\phi), \, (0 \leq \phi < 2\pi) \), which map under the \(Cl(n) \)-embedding to \(x_1 e_1 + x_2 e_2 = \cos(\phi)e_1 + \sin(\phi)e_2 = \cos(\phi)e_1 - \sin(\phi)(e_1 e_2)e_1 = e^{-\epsilon_1 e_2} e_1 \).
Since \((e_1 e_2)^2 = -1 \), \(e_1 e_2 = \pm i \), setting \(e_1 e_2 := -i \), and this becomes equivalent to Euler’s formula \(x + iy = e^{i\phi} \) for \(x + iy \in \mathbb{C} \).

There is a subtle sign mismatch between the differential forms in \(\mathbb{R}^n \) and in \(Cl(n) \): While in \(\mathbb{R}^n \) the \(n\)-form \(dx_1 \wedge \cdots \wedge dx_n \) is defined to be real-valued, within \(Cl(n) \), the \(n\)-form rewrites to
\[(r \cos(\phi_1), r \sin(\phi_1) \cos(\phi_2), \ldots, r \sin(\phi_1) \cdots \sin(\phi_{n-2}) \cos(\phi_{n-1}), r \sin(\phi_1) \cdots \sin(\phi_{n-2}) \sin(\phi_{n-1})) \]
we have to integrate the polar angles \(\phi_{n-1}, \ldots, \phi_2 \) successively from 0 to \(\pi \), and the azimuthal angle \(\phi_1 \) from 0 to \(2\pi \). With \(f \) and \(I^m f \), after the first \(n-2 \) integrations along the polar angles, what we get are integrable functions \(I^{n-2} f \) and \(I^{n+m-2} f \) in the \((r, \phi) \)-plane, which are to be integrated along the r-circle from \((r, 0) \) to \((r, 0) \). So these vanish, which proves (i) and (ii). And for \(x \mapsto \frac{1}{(x-x_0)^{n-1}} \)
we get \(\frac{S_{n-1}}{2\pi r} \), which in the \((r, \phi_1)\)-plane integrates to \(\frac{S_{n-1}}{2\pi} 2\pi = S_{n-1} \), which proves (iii). Statement (iv) follows for \(m = 1 \) by integrating \(\int_{\gamma} f(\cdot) (\cdot - x_0) d\gamma \) by parts, where \(\gamma \) is a (piecewise smooth) closed path, which gives \(-\int_{\gamma} (I f) d\gamma \). And because the primitive \(I f \) is integrable, this term vanishes. For \(m > 1 \), (iv) follows by induction. Then the product \(f g \) is integrable on \(B(r) \) for any uniformly converging power series \(g = c \sum c_k x^k \) with \(c_k \in \mathbb{C} \) and \(c \in Cl(n) \). So, (v) follows, since

\[
\frac{1}{(x - x_0)^m} = - \frac{1}{x_0^m} \frac{1}{1 - x_0^{-1} x} = - \frac{1}{x_0^m} \sum_{k \geq 0} \binom{m + k - 1}{k} (x_0^{-1} x)^k
\]

converges absolutely for \(\|x\| < \|x_0\| \) and \(x \in B(r) \), and it extends onto \(B(r) \) via analytic continuation.

To get at the analogue of the Cauchy formula for \(n \geq 2 \) dimensions, we need to consider the integral \(\int_{S_{n-1}(r)} \frac{f(y)}{(x - y)^{n-1}} dy \) over the boundary \(S_{n-1}(r) \) of the \(r \)-ball around \(x \in U \): For \(r \to 0 \):

\[
\left| \int_{S_{n-1}(r)} \frac{f(x) - f(y)}{(x - y)^{n-1}} dy \right| \leq S_{n-1} \sup_{y \in S_{n-1}(r)} |f(x) - f(y)|,
\]

where \(S_{n-1} \) denotes the area of the \((n-1)\)-dimensional unit sphere. Because \(f \) is continuous, \(\sup_{y \in S_{n-1}(r)} |f(x) - f(y)| \) converges to 0 as \(r \to 0 \). So, we are left to calculate the value of the surface integral of \(\frac{1}{x^{n-1}} \) over the \((n-1)\)-dimensional unit sphere around the origin, which we did in the above lemma.

Therefore, the Cauchy formula in \(n \) dimensions is

\[
f(x) = \frac{1}{S_{n-1}} \int_{S_{n-1}(r)} \frac{f(y)}{(x - y)^{n-1}} dy,
\]

which holds for any \(r \)-ball \(B_r(x) \) around \(x \), on which \(f \) is uniformly continuous. In particular, \(f \) is analytic in all points \(x \) in the interior of the \(r \)-ball \(B_r(x) \). This proves the claim. □

References

Received: March 27, 2022; Published: May 25, 2022