Abstract

In this paper we solve additive β-functional inequalities with three variables and their Hyers-Ulam stability in non-Archimedean Banach spaces as well as in complex Banach spaces. It is shown that the solutions of first and second inequalities are additive mappings. Then Hyers-Ulam stability of these inequalities is studied and proven.

Keywords: additive β-functional equation; additive β-functional inequality; non-Archimedean normed space; complex Banach space; Hyers-Ulam stability

1. Introduction

Let X and Y be a normed spaces on the same field \mathbb{K}, and $f : X \rightarrow Y$. We use the notation $\| \cdot \|$ for all the norm on both X and Y. In this paper, we investigate some additive β-functional inequalities when X is non-Archimedean normed space and Y is non-Archimedean Banach space, or X is complex normed space and Y is complex Banach space.
In fact, when X is non-Archimedean normed space and Y is non-Archimedean Banach space we solve and prove the Hyers-Ulam stability of following additive β-functional inequality. Let $|2| \neq 1$ and let β be a non-Archimedean number $|\beta| < 1$.

\[
\left\| f\left(\frac{x+y}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \leq \beta \left(2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \\
(1.1)
\]

\[
\left\| 2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \\
\leq \beta \left(f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \\
(1.2)
\]

when X is complex normed space and Y is complex Banach spaces we solve and prove the Hyers-Ulam stability of following additive β-functional inequality. Let β be a complex number with $|\beta| < 1$.

\[
\left\| f\left(\frac{x+y}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \leq \beta \left(2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \\
(1.3)
\]

\[
\left\| 2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \\
\leq \beta \left(f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \\
(1.4)
\]

The notions of non-Archimedean normed space and complex normed spaces will be reminded in the next section. The Hyers-Ulam stability was first investigated for functional equation of Ulam in [6] concerning the stability of group homomorphisms.

The functional equation

\[f(x+y) = f(x) + f(y) \]

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The Hyers [7] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Gavruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit
of Rassias’ approach.

\[f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y) \]

is called the *Jensen equation*. See [2, 3, 9, 10] for more information on functional equations.

The Hyers-Ulam stability for functional inequalities have been investigated such as in [14, 15]. Gilany showed that if satisfies the functional inequality

\[\|2f(x) + 2f(y) - f(xy^{-1})\| \leq \|f(xy)\| \]

Then \(f \) satisfies the Jordan-von Newman functional equation

\[2f(x) + 2f(y) - f(xy^{-1}) \] (1.5)

Choonkil Park [17] proved the Hyers-Ulam stability of additive \(\beta \)-functional inequalities. Recently, in [18, 19, 20] the authors studied the Hyers-Ulam stability for the following functional inequalities

\[\|f(x+y) - f(x) - f(y)\| \leq \rho\left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right) \] (1.6)

\[\|2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\| \leq \rho(f(x+y) - f(x) - f(y)) \] (1.7)

in Non-Archimedean Banach spaces and complex Banach spaces.

In this paper, we solve and prove the Hyers-Ulam stability for two \(\beta \)-functional inequalities (1.1)-(1.2), i.e. the \(\beta \)-functional inequalities with three variables [4, 13,14]. Under suitable assumptions on spaces \(X \) and \(Y \), we will prove that the mappings satisfying the \(\beta \)-functional inequalities (1.1) or (1.2). Thus, the results in this paper are generalization of those in [17] for \(\beta \)-functional inequalities with three variables.

The paper is organized as follows: In section preliminaries we remind some basic notations in [18, 19, 20] such as Non-Archimedean field, Non-Archimedean normed space and Non-Archimedean Banach space.

Section 3 is devoted to prove the Hyers-Ulam stability of the additive \(\beta \)-functional inequalities (1.1) and (1.2) when \(X \) Non-Archimedean normed space and \(Y \) Non-Archimedean Banach space.

Section 4 is devoted to prove the Hyers-Ulam stability of the additive \(\beta \)-functional inequalities (1.1) and (1.2) when \(X \) is complex normed space and \(Y \) is complex Banach space.
2. PRELIMINARIES

2.1. Non-Archimedean normed and Banach spaces. In this subsection we recall some basic notations [19, 20] such as Non-Archimedean fields, Non-Archimedean normed spaces and Non-Archimedean normed spaces.

A valuation is a function \(| \cdot |\) from a field \(K\) into \([0, \infty)\) such that 0 is the unique element having the 0 valuation,

\[
|r.s| = |r|.|s|, \forall r, s \in K
\]

and the triangle inequality holds, ie;

\[
|r + s| \leq |r| + |s|, \forall r, s \in K
\]

A field \(K\) is called a valued field if \(K\) carries a valuation. The usual absolute values of \(\mathbb{R}\) and \(\mathbb{C}\) are examples of valuation. Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

\[
|r + s| \leq \max\{|r|, |s|\}, \forall r, s \in K
\]

then the function \(| \cdot |\) is called a norm -Archimedean valuation, and field. Clearly \(|1| = |-1| = 1\) and \(|n| \leq 1, \forall n \in \mathbb{N}\). A trivial example of a non- Archimedean valuation is the function \(| \cdot |\) taking everything except for 0 into 1 and \(|0| = 0\) this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

Definition 2.1.

Let be a vector space over a field \(K\) with a non-Archimedean \(| \cdot |\). A function \(\| \cdot \| : X \to [0, \infty)\) is said a non-Archimedean norm if it satisfies the following conditions:

1. \(\|x\| = 0\) if and only if \(x = 0\);
2. \(\|rx\| = |r|\|x\| (r \in K, x \in X)\);
3. the strong triangle inequality

\[
\|x + y\| \leq \max\{\|x\|, \|y\|\}, x, y \in X
\]

hold. Then \((X,\| \cdot \|)\) is called a norm -Archimedean norm space.
Definition 2.2.

(1) Let \(\{x_n\} \) be a sequence in a norm-Archimedean normed space \(X \). Then sequence \(\{x_n\} \) is called Cauchy if for a given \(\epsilon > 0 \) there a positive integer \(N \) such that
\[
\|x_n - x\| \leq \epsilon
\]
for all \(n, m \geq N \).

(2) Let \(\{x_n\} \) be a sequence in a norm-Archimedean normed space \(X \). Then sequence \(\{x_n\} \) is called cauchy if for a given \(\epsilon > 0 \) there a positive integer \(N \) such that
\[
\|x_n - x\| \leq \epsilon
\]
for all \(n, m \geq N \). The we call \(x \in X \) a limit of sequence \(x_n \) and denote
\[
\lim_{n \to \infty} x_n = x.
\]

(3) If every sequence Cauchy in \(X \) converger, then the norm-Archimedean normed space \(X \) is called a norm-Archimedean Banach space.

2.2. Solutions of the inequalities. The functional equation
\[
f(x + y) = f(x) + f(y)
\]
is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an additive mapping.

3. Additive \(\beta \)-functional inequality in Non-Archimedean Banach space

Now, we first study the solutions of (1.1) and (1.2). Note that for these inequalities, \(X \) is non-Archimedean normed space and \(Y \) is non-Archimedean Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) and (1.2) is additive. These results are given in the following.

Lemma 3.1. A mapping \(f:X \to Y \) saties
\[
\left\| f\left(\frac{x + y}{2} + z \right) - f\left(\frac{x + y}{2} \right) - f(z) \right\| \leq \beta \left(2f\left(\frac{x + y}{2} + z \right) - f\left(\frac{x + y}{2} \right) \right)
\]
for all \(x, y, z \in X \) if and only if \(f:X \to Y \) is additive.

\[
\left(3.1\right)
\]
Proof. Assume that \(f : X \to Y \) satisfies (3.1)
Letting \(x = y = z = 0 \) in (3.1), we get \(\|f(0)\| \leq 0 \). So \(f(0) = 0 \)
Letting \(x = y = z \) in (3.1), we get \(\|f(2x) - 2f(x)\| \leq 0 \) and so \(f(2x) = 2f(x) \) for all \(x \in X \).
Thus
\[
\frac{f(x)}{2} = \frac{1}{2} f(x)
\tag{3.2}
\]
for all \(x \in X \) It follows from (3.1) and (3.2) that:
\[
\left\| f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\| \leq \beta \left\| 2f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
\[
= \beta \left\| 2f \left(\frac{x + y}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
\[
\leq |\beta| \left\| f \left(\frac{x + y}{2} + z \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
and so
\[
f \left(\frac{x + y + z}{2} \right) = f \left(\frac{x + y}{2} \right) + f(z)
\]
for all \(x, y, z \in X \) The converse is obviously true. \(\square \)

Lemma 3.2. A mapping \(f : X \to Y \) satisfy \(f(0) = 0 \) and
\[
\left\| 2f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\| \leq \beta \left\| f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\tag{3.3}
\]
for all \(x, y, z \in X \) if and if \(f : X \to Y \) is additive.

Proof. Assume that \(f : X \to Y \) (3.3).
Letting \(x = y = 0 \) in (3.3), we get
\[
\left\| 2f \left(\frac{z}{2} \right) - f(z) \right\| \leq 0
\tag{3.4}
\]
and so
\[
f \left(\frac{z}{2} \right) = \frac{1}{2} f(z)
\]
It follows from (3.3) and (3.4) that
\[
\left\| f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\| = \beta \left\| 2f \left(\frac{x + y + z}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
\[
= \beta \left\| 2f \left(\frac{x + y}{2} \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
\[
\leq |\beta| \left\| f \left(\frac{x + y}{2} + z \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\]
and so.
\[f \left(\frac{x+y}{2} + z \right) = f \left(\frac{x+y}{2} \right) + f(z) \]
for all \(x, y, z \in X \). The converse is obviously true.

\[\square \]

Theorem 3.3. Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping such that
\[
\psi(x, y, z) := \sum_{j=1}^{\infty} |2|^j \psi \left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j} \right) < \infty \quad (3.5)
\]
\[
\left\| f \left(\frac{x+y}{2} + z \right) - f \left(\frac{x+y}{2} \right) - f(z) \right\|
\leq \left\| \beta \left(2f \left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f \left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \varphi(x, y, z) \quad (3.6)
\]
for all \(x, y, z \in X \).

Then there exists a unique mapping \(h : X \to Y \) such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{1}{|2|} \psi(x, x, x) \quad (3.7)
\]
for all \(x \in X \).

Proof. Letting \(x = y = z \) in (3.6), we get
\[
\left\| f(2x) - 2f(x) \right\| \leq \varphi(x, x, x) \quad (3.8)
\]
for all \(x \in X \).

So
\[
\left\| f(x) - 2f \left(\frac{x}{2} \right) \right\| \leq \varphi \left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2} \right)
\]
for all \(x \in X \).

Hence
\[
\left\| 2^l f \left(\frac{x}{2^l} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\|
\leq \max \left\{ \left\| 2^l f \left(\frac{x}{2^l} \right) - 2^{l+1} f \left(\frac{x}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\| \right\}
\]
\[
= \max \left\{ \left\| 2^l \right\| \left\| f \left(\frac{x}{2^l} \right) - 2 f \left(\frac{x}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} \right\| \left\| f \left(\frac{x}{2^{m-1}} \right) - 2 f \left(\frac{x}{2^m} \right) \right\| \right\}
\]
\[
\leq \sum_{j=l}^{\infty} \left\| 2^j \right\| \varphi \left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}} \right) \quad (3.9)
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.9) that the sequence \(\{ 2^n f \left(\frac{x}{2^n} \right) \} \) is a cauchy sequence for all \(x \in X \). Since \(Y \) is a
Non-Archimedean Banach space, the sequence \(\{2^n f\left(\frac{x}{2^n}\right)\} \) converges. So one can define the mapping \(h : X \to Y \) by

\[
h(x) := \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.9), we get (3.7).

Now, let \(T : X \to Y \) be another additive mapping satisfy (3.7) then we have

\[
\|h(x) - T(x)\| = \left\| 2^n h\left(\frac{x}{2^n}\right) - 2^n T\left(\frac{x}{2^n}\right) \right\|
\leq \max\left\{ \left\| 2^n h\left(\frac{x}{2^n}\right) - 2^n f\left(\frac{x}{2^n}\right) \right\|, \left\| 2^n T\left(\frac{x}{2^n}\right) - 2^n f\left(\frac{x}{2^n}\right) \right\| \right\}
\leq |2|^{q-1} \psi\left(\frac{x}{2^{q-1}}, \frac{x}{2^{q-1}}, \frac{x}{2^{q-1}}\right)
\]

which tends to zero as \(q \to \infty \) for all \(x \in X \). So we can conclude that \(h(x) = T(x) \) for all \(x \in X \). The proves the uniqueness of \(h \). It follows from (3.5) and (3.6) that

\[
\left\| h\left(\frac{x+y+z}{2}\right) - h\left(\frac{x+y}{2}\right) - h(z) \right\| = \lim_{n \to \infty} \left\| 2^n \left(f\left(\frac{x+y+z}{2^{n+1}}\right) - f\left(\frac{x+y}{2^n}\right) - f\left(\frac{z}{2^n}\right) \right) \right\|
\leq \lim_{n \to \infty} \left\| 2^n \beta\left(f\left(\frac{x+y+z}{2^{n+2}}\right) - f\left(\frac{x+y}{2^{n+1}}\right) - f\left(\frac{z}{2^n}\right) \right) \right\|
\leq \lim_{n \to \infty} \left\| 2^n \psi\left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n}\right) \right\|
\]

for all \(x, y, z \in X \).

\[
\left\| h\left(\frac{x+y+z}{2}\right) - h\left(\frac{x+y}{2}\right) - h(z) \right\| \leq \beta\left(2h\left(\frac{x+y+z}{2}\right) - h\left(\frac{x+y}{2}\right) - h(z) \right)
\]

for all \(x, y \in X \). By lemma 3.1, the mapping \(h : X \to Y \) is additive. \(\square\)

Theorem 3.4.

Let \(\varphi : X \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying

\[
\psi(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{|2|^j} \varphi(2^j x, 2^j y, 2^j z) < \infty
\]

(3.12)
and
\[
\left\| f\left(\frac{x+y}{2} + z \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \\
\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \varphi(x, y, z)
\]
\hspace{1cm} (3.13)

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(h : X \rightarrow Y \) such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{1}{|2|} \psi(x, x, x)
\]
\hspace{1cm} (3.14)

for all \(x \in X \).

Proof. Letting \(x = y = z \) in (3.13), we get
\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{1}{|2|} \psi(x, x, x)
\]
for all \(x \in X \).

Hence
\[
\left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x) \right\|
\leq \max \left\{ \left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^{l+1}} f(2^{l+1} x) \right\|, \ldots, \left\| \frac{1}{2^{m-1}} f(2^{m-1} x) - \frac{1}{2^m} f(2^m x) \right\| \right\}
\]
\[
= \max \left\{ \frac{1}{|2|^l} \left\| f(2^l x) - \frac{1}{2} f(2^{l+1} x) \right\|, \ldots, \frac{1}{|2|^{m-1}} \left\| f(2^{m-1} x) - \frac{1}{2} f(2^m x) \right\| \right\}
\]
\[
\leq \sum_{j=1}^{\infty} \frac{1}{|2|^{j+1}} \varphi(2^j x, 2^j y, 2^j z)
\]
\hspace{1cm} (3.15)

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows (3.15) that the sequence \(\left\{ \frac{1}{2^n} f(2^n x) \right\} \) is sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\left\{ \frac{1}{2^n} f(2^n x) \right\} \) converges so one can define the mapping \(h : X \rightarrow Y \) by
\[
h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.15), we get (3.14). the rest of the proof is similar to the proof of the Theorem 3.3.

\[\square\]
Theorem 3.5.

Let $\varphi : X^3 \to [0, \infty)$ be a function and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and

$$\psi(x, y, z) := \sum_{j=1}^{\infty} 2^j \psi \left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j} \right) < \infty \quad (3.16)$$

$$\left\| 2f \left(\frac{x+y}{2^l} + \frac{z}{2^l} \right) - f \left(\frac{x+y}{2^l} \right) - f(z) \right\|
\leq \left\| \beta \left(f \left(\frac{x+y}{2^l} + z \right) - f \left(\frac{x+y}{2^l} \right) - f(z) \right) \right\| + \varphi(x, y, z) \quad (3.17)$$

for all $x, y, z \in X$. Then there exists a unique mapping $h : X \to Y$ such that

$$\| f(z) - h(z) \| \leq \psi(0, 0, z) \quad (3.18)$$

for all $z \in X$.

Proof. Letting $x = y = 0$ in (3.17)

$$\left\| 2f \left(\frac{z}{2^l} \right) - f(z) \right\| \leq \varphi(0, 0, z) \quad (3.19)$$

for all $x \in X$.

So

$$\left\| 2^l f \left(\frac{z}{2^l} \right) - 2^m f \left(\frac{z}{2^m} \right) \right\|
\leq \max\left\{ \left\| 2^l f \left(\frac{z}{2^l} \right) - 2^{l+1} f \left(\frac{z}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} f \left(\frac{z}{2^{m-1}} \right) - 2^m f \left(\frac{z}{2^m} \right) \right\| \right\}
= \max\left\{ |2|^l \left\| f \left(\frac{z}{2^l} \right) - 2 f \left(\frac{z}{2^{l+1}} \right) \right\|, \ldots, |2|^{m-1} \left\| f \left(\frac{z}{2^{m-1}} \right) - 2 f \left(\frac{z}{2^m} \right) \right\| \right\}
\leq \sum_{j=l+1}^{\infty} |2|^{j+l} \varphi(0, 0, \frac{z}{2^j}) < \infty \quad (3.20)$$

for all nonnegatives integers m and l with $m > l$ and all $x \in X$. It follows from (3.20) that the sequence $\{2^k f \left(\frac{z}{2^k} \right) \}$ is Cauchy for all $x \in X$. Since Y is a non-Archimedean Banach space, the sequence, $\{2^k f \left(\frac{z}{2^k} \right) \}$ converges. So one can define the mapping $h : X \to Y$ by

$$h(z) := \lim_{k \to \infty} 2^k f \left(\frac{z}{2^k} \right)$$

for all $z \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (3.20), we get (3.18).
The rest of the proof is similar to the proof of the theorem (3.3).

\[\square \]

Theorem 3.6.

Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and

\[\psi(x, y, z) := \sum_{j=1}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y 2^j z) < \infty; \quad (3.21) \]

\[\left\| 2f \left(\frac{x+y+z}{2} \right) - f \left(\frac{x+y}{2} \right) - f(z) \right\| \leq \left\| \beta \left(f \left(\frac{x+y+z}{2} \right) - f \left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \varphi(x, y, z) \quad (3.22) \]

for all \(x, y, z \in X \). Then there exists a unique mapping \(h : X \to Y \) such that

\[\left\| f(x) - h(x) \right\| \leq \psi(0, 0, z) \quad (3.23) \]

for all \(z \in X \).

Proof. Letting \(x = y = 0 \) in (3.22)

\[\left\| 2f \left(\frac{z}{2} \right) - f(z) \right\| \leq \varphi(0, 0, z) \quad (3.24) \]

for all \(z \in X \).

So

\[\left\| f(z) - \frac{1}{2} f(2z) \right\| \leq \frac{1}{2} \varphi(0, 0, 2z) \]

for all \(z \in X \). Hence

\[\left\| \frac{1}{2^l} f(2^l z) - \frac{1}{2^m} f(2^m z) \right\| \]

\[\leq \max \left\{ \left\| \frac{1}{2^l} f(2^l z) - \frac{1}{2^{l+1}} f(2^{l+1} z) \right\|, \ldots, \left\| \frac{1}{2^{m-1}} f(2^{m-1} z) - \frac{1}{2^m} f(2^m z) \right\| \right\} \]

\[= \max \left\{ \left\| \frac{1}{2^l} f(2^l z) - \frac{1}{2^{l+1}} f(2^{l+1} z) \right\|, \ldots, \left\| \frac{1}{2^{m-1}} f(2^{m-1} z) - \frac{1}{2^m} f(2^m z) \right\| \right\} \]

\[\leq \sum_{j=l+1}^{\infty} \frac{1}{2^j} \varphi(0, 0, 2^j z) < \infty \quad (3.25) \]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(z \in X \). It follows from (3.25) that the sequence \(\{ 2^n f \left(\frac{z}{2^n} \right) \} \) is a cauchy sequence for all \(z \in X \). Since is complete, the sequence \(\{ 2^n f \left(\frac{z}{2^n} \right) \} \) coverges. So one can define the mapping \(h : X \to Y \) by
\[
h(z) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n z)
\]
for all \(z \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.25), we get (3.24).

The rest of the proof is similar to the proof of theorem 3.3.

\[\square\]

Corollary 3.7.

let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping such that
\[
\left\| f \left(\frac{x+y}{2} + z \right) - f \left(\frac{x+y}{2} \right) - f(z) \right\|
\leq \left\| \beta \left(2f \left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f \left(\frac{x+y}{2} \right) - f(z) \right) \right\|
+ \theta (\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all \(x, y, z \in X \).
Then there exits a unique additive maaping \(h : X \to Y \) such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{2\theta}{|2^r - |2|^r|} \|x\|^r
\]
for all \(x \in X \)

Corollary 3.8.

let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping such that
\[
\left\| f \left(\frac{x+y}{2} + z \right) - f \left(\frac{x+y}{2} \right) - f(z) \right\|
\leq \left\| \beta \left(2f \left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f \left(\frac{x+y}{2} \right) - f(z) \right) \right\|
+ \theta (\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all \(x, y, z \in X \).
Then there exits a unique additive maaping \(h : X \to Y \) such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{2\theta}{|2^r - |2|^r|} \|x\|^r
\]
for all \(x \in X \).
Corollary 3.9.

Let $r < 1$ and θ be a nonnegative real number and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and
\[
\left\| 2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\|
\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all $x, y, z \in X$. The there exists a unique additive mapping $h : X \to Y$ such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{|2|^r \theta}{|2|^r - |2|} \|x\|^r
\]
for all $x \in X$.

Corollary 3.10.

Let $r > 1$ and θ be a nonnegative real number and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and
\[
\left\| 2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\|
\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all $x, y, z \in X$. The there exists a unique additive mapping $h : X \to Y$ such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{|2|^r \theta}{|2|^r - |2|} \|x\|^r
\]
for all $x \in X$.

4. Additive β-functional inequality in complex Banach space

Now, we study the solutions of (1.1) and (1.2). Note that for these inequalities, X is complex normed space and Y is complex Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) and (1.2) is additive. These results are give in the following.

Lemma 4.1.

A mapping $f : X \to Y$ satisfies
\[
\left\| f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \leq \left\| \beta\left(2f\left(\frac{x+y+z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\|
\]
for all $x, y, z \in X$ if and only if $f : X \to Y$ is additive.

Proof. The proof is similar to the proof of lemma 3.1.
Lemma 4.2.

A mapping \(f: X \to Y \) satisfies \(f(0) = 0 \) and
\[
\|2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(\frac{x+y}{2} + z\right)\| \leq \|\beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(\frac{x+y}{2} + z\right)\right)\| + \varphi(x, y, z)
\]
(4.2)
for all \(x, y, z \in X \) if and only if \(f: X \to Y \) is additive.

Proof. The proof is similar to the proof of lemma 3.2.

Theorem 4.3.

Let \(\varphi: X^3 \to [0, \infty) \) be a function and let \(f: X \to Y \) be a mapping such that
\[
\psi(x, y, z) := \sum_{j=1}^{\infty} 2^j \varphi\left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j}\right) < \infty
\]
(4.3)
\[
\|f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(\frac{x+y}{2} + z\right)\| \leq \|\beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(\frac{x+y}{2} + z\right)\right)\| + \varphi(x, y, z)
\]
(4.4)
for all \(x, y, z \in X \). Then there exists a unique mapping \(h: X \to Y \) such that
\[
\|f(x) - h(x)\| \leq \frac{1}{2} \psi(x, x, x)
\]
(4.5)
for all \(x \in X \).

Proof. Let \(x = y = z \) in (4.4), we get
\[
\|f(2x) - 2f(x)\| \leq \varphi(x, x, x)
\]
(4.6)
for all \(x \in X \). So
\[
\|f(x) - 2f\left(\frac{x}{2}\right)\| \leq \varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)
\]
for all \(x \in X \). Hence
\[
\left\|2^l f\left(\frac{x}{2^l}\right) - 2^m f\left(\frac{x}{2^m}\right)\right\|
\leq \sum_{j=1}^{m-1} \left\|2^j f\left(\frac{x}{2^j}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \leq \sum_{j=1}^{m-1} \|2^j \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\|
\]
(4.7)
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (4.7) that the sequence \(\left\{2^m f\left(\frac{x}{2^m}\right)\right\} \) is a cauchy sequence for all \(x \in X \). Since
is complete, the sequence \(\left\{ 2^n f \left(\frac{x}{2^n} \right) \right\} \) converges. So one can define the mapping \(h : X \to Y \) by

\[
h(x) := \lim_{n \to \infty} \frac{1}{2^n} f \left(2^n x \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (4.7), we get (4.5).

Now, let \(T : X \to Y \) be another additive mapping satisfying (4.5). Then we have

\[
\| h(x) - T(x) \| = \left\| 2^q h \left(\frac{x}{2^q} \right) - 2^q T \left(\frac{x}{2^q} \right) \right\|
\]

\[
\leq \left\| 2^q h \left(\frac{x}{2^q} \right) - 2^q f \left(\frac{x}{2^q} \right) \right\| + \left\| 2^q T \left(\frac{x}{2^q} \right) - 2^q f \left(\frac{x}{2^q} \right) \right\|
\]

\[
\leq 2^q \psi \left(\frac{x}{2^q}, \frac{x}{2^q}, \frac{x}{2^q} \right)
\]

which tends to zero as \(q \to \infty \) for all \(x \in X \). So we can conclude that \(h(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(h \). It follows from (4.3) and (4.4) that

\[
\| h \left(\frac{x+y+z}{2} \right) - h \left(\frac{x+y}{2} \right) - h(z) \|
\]

\[
= \lim_{n \to \infty} \| 2^n \left(f \left(\frac{x+y}{2^{n+2}} + \frac{z}{2^{n+1}} \right) - f \left(\frac{x+y}{2^{n+1}} \right) - f \left(\frac{z}{2^n} \right) \right) \|
\]

\[
\leq \lim_{n \to \infty} \| 2^n \beta \left(2f \left(\frac{x+y}{2^{n+3}} + \frac{z}{2^{n+2}} \right) - f \left(\frac{x+y}{2^{n+1}} \right) - f \left(\frac{z}{2^n} \right) \right) \|
\]

\[
+ \lim_{n \to \infty} 2^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n} \right)
\]

\[
\leq \beta \left(2h \left(\frac{x+y}{2^2} + \frac{z}{2} \right) - h \left(\frac{x+y}{2} \right) - h(z) \right) \tag{4.8}
\]

for all \(x, y, z \in X \).

So

\[
\| h \left(\frac{x+y+z}{2} \right) - h \left(\frac{x+y}{2} \right) - h(z) \| \leq \beta \left(2h \left(\frac{x+y}{2^2} + \frac{z}{2} \right) - h \left(\frac{x+y}{2} \right) - h(z) \right)
\]

for all \(x, y, z \in X \). By Lemma 4.1, the mapping \(h : X \to Y \) is additive. \(\square \)

Theorem 4.4.

Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping such that

\[
\psi(x, y, z) := \sum_{j=1}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) < \infty \tag{4.9}
\]
Ly Van An

and

\[
\left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f(z) \right\| \\
\leq \|\beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z)\right)\| + \phi(x, y, z)
\]

(4.10)

for all \(x, y, z \in X\). Then there exists a unique mapping \(h : X \to Y\) such that

\[
\left\| f(x) - h(x) \right\| \leq \frac{1}{2} \psi(x, x, x)
\]

(4.11)

for all \(x \in X\).

Proof. It follows from (4.10) that

\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{1}{2} \phi(x, x, x)
\]

for all \(x \in X\). Hence

\[
\left\| \frac{1}{2^l} f\left(2^l x\right) - \frac{1}{2^m} f\left(2^m x\right) \right\| \\
\leq \sum_{j=1}^{m-1} \left\| \frac{1}{2^j} f\left(2^j x\right) - \frac{1}{2^{j+1}} f\left(2^{j+1} x\right) \right\| \\
\leq \sum_{j=1}^{m-1} \frac{1}{2^j} \phi\left(2^j x, 2^j x, 2^j x\right)
\]

(4.12)

for all nonnegative integers \(m\) and \(l\) with \(m > l\) and all \(x \in X\). It follows from (4.12) that the sequence \(\left\{\frac{1}{2^m} f\left(2^n x\right)\right\}\) is a cauchy sequence for all \(x \in X\). Since is complete, the sequence \(\left\{\frac{1}{2^n} f\left(2^n x\right)\right\}\) coversges. So one can define the mapping \(h : X \to Y\) by

\[
h(x) := \lim_{n \to \infty} \frac{1}{2^n} f\left(2^n x\right)
\]

for all \(x \in X\). Moreover, letting \(l = 0\) and passing the limit \(m \to \infty\) in (4.12), we get (4.11).

The rest of the proof is similar to the proof of theorem 4.3.

\[\square\]

Theorem 4.5.

Let \(\phi : X^3 \to [0, \infty)\) be a function and let \(f : X \to Y\) be a mapping such that

\[
\psi(x, y, z) := \sum_{j=1}^{\infty} 2^j \phi\left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j}\right) < \infty
\]

(4.13)
\[\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \leq \left\| \beta\left(f\left(\frac{x+y}{2} + z \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \varphi(x, y, z) \]

(4.14)

for all \(x, y, z \in X \). Then there exists a unique mapping \(h: X \rightarrow Y \) such that

\[\left\| f(x) - h(x) \right\| \leq \frac{1}{2} \psi(x, x, x) \]

(4.15)

for all \(x \in X \).

Proof. Letting \(y = x = 0 \) in (4.14), we get

\[\left\| f(z) - 2f\left(\frac{z}{2} \right) \right\| = \left\| 2f\left(\frac{z}{2} \right) - f(z) \right\| \leq \varphi(0, 0, z) \]

(4.16)

for all \(x \in X \). So

\[\left\| 2^l f\left(\frac{z}{2^l} \right) - 2^m f\left(\frac{z}{2^m} \right) \right\| \leq \sum_{j=1}^{m-1} \left\| 2^j f\left(\frac{z}{2^j} \right) - 2^{j+1} f\left(\frac{z}{2^{j+1}} \right) \right\| \leq \sum_{j=1}^{m-1} 2^j \varphi(0, 0, \frac{z}{2^j}) \]

(4.17)

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (4.17) that the sequence \(\{2^n f\left(\frac{z}{2^n} \right) \} \) is a cauchy sequence for all \(z \in X \). Since is complete, the sequence \(\{2^n f\left(\frac{z}{2^n} \right) \} \) converges. So one can define the mapping \(h: X \rightarrow Y \) by

\[h(z) := \lim_{n \rightarrow \infty} 2^n f\left(\frac{z}{2^n} \right) \]

(4.18)

for all \(z \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \rightarrow \infty \) in (4.17), we get (4.15). The rest of the proof is similar to the proof of theorem 4.3. \(\square \)

Theorem 4.6.

Let \(\varphi: X^3 \rightarrow [0, \infty) \) be a function and let \(f: X \rightarrow Y \) be a mapping satisfying \(f(0) = 0 \), and

\[\psi(x, y, z) := \sum_{j=1}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) < \infty \]

(4.19)

\[\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2} \right) - f\left(\frac{x+y}{2} \right) - f(z) \right\| \leq \left\| \beta\left(f\left(\frac{x+y}{2} + z \right) - f\left(\frac{x+y}{2} \right) - f(z) \right) \right\| + \varphi(x, y, z) \]

(4.20)
for all $x, y, z \in X$. Then there exists a unique mapping $h : X \to Y$ such that
\[\| f(z) - h(z) \| \leq \frac{1}{2} \psi(0, 0, z) \] (4.21)
for all $z \in X$

Proof. Letting $y = x = 0$ in (4.20), we get
\[\| f(z) - 2f\left(\frac{z}{2}\right) \| = \| 2f\left(\frac{z}{2}\right) - f(z) \| \leq \varphi(0, 0, z) \] (4.22)
It follows from (4.20) that
\[\| f(z) - \frac{1}{2} f(2z) \| \leq \frac{1}{2} \varphi(0, 0, 2z) \]
for all $z \in X$. Hence
\[\left\| \frac{1}{2^l} f(2^l z) - \frac{1}{2^m} f(2^m z) \right\| \leq \sum_{j=1}^{m-1} \left\| \frac{1}{2^j} f(2^j z) - \frac{1}{2^{j+1}} f(2^{j+1} z) \right\| \leq \sum_{j=1}^{m-1} \frac{1}{2^j} \varphi(0, 0, 2^j x) \] (4.23)
for all nonnegative integers m and l with $m > l$ and all $z \in X$. It follows from (4.23) that the sequence $\{ \frac{1}{2^n} f(2^n z) \}$ is a cauchy sequence for all $z \in X$. Since is complete, the sequence $\{ \frac{1}{2^n} f(2^n z) \}$ covers. So one can define the mapping $h : X \to Y$ by
\[h(z) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n z) \] (4.24)
for all $z \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (4.23), we get (4.22). The rest of the proof is similar to the proof of theorem 4.3.

□

Corollary 4.7.

Let $r > 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping such that
\[\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f(z) \| \leq \beta \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z)\right) + \theta(\|x\|^r + \|y\|^r + \|z\|^r) \]
for all $x, y, z \in X$. Then there exists a unique additive mapping $h : X \to Y$ such that
\[\| f(x) - h(x) \| \leq \frac{2\theta}{2^r - 2}\|x\|^r \]
for all \(x \in X \)

Corollary 4.8.

Let \(r < 1 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping such that
\[
\left\| \left(\frac{x + y}{2} + z \right) - f \left(\frac{x + y}{2} \right) - f(z) \right\|
\leq \left\| \beta \left(2f \left(\frac{x + y}{2^2} + \frac{z}{2} \right) - f \left(\frac{x + y}{2} \right) \right) \right\| + \theta (\| x \|^r + \| y \|^r + \| z \|^r)
\]
for all \(x,y,z \in X \). Then there exists a unique additive mapping \(h : X \to Y \) such that
\[
\left\| f(x) - h(x) \right\| \leq \frac{2\theta}{2^r - 2} \| x \|^r
\]
for all \(x \in X \)

Corollary 4.9.

Let \(\varphi : X^3 \to [0, \infty) \) be a function and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \),
\[
\psi(x,y,z) := \sum_{j=1}^{\infty} 2^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j} \right) < \infty
\]
\[
\left\| 2f \left(\frac{x + y}{2^2} + \frac{z}{2} \right) - f \left(\frac{x + y}{2} \right) \right\|
- f(z) - \beta \left(f \left(\frac{x + y}{2} + z \right) - f \left(\frac{x + y}{2} \right) \right) \right\|
\leq \varphi(x,y,z)
\]
for all \(x,y,z \in X \). Then there exists a unique mapping \(h : X \to Y \) such that
\[
\left\| f(z) - h(z) \right\| \leq \frac{1}{2} \psi(0,0,z)
\]
for all \(z \in X \)

Corollary 4.10.

Let \(r > 1 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping such that
\[\left\| 2f\left(\frac{x+y}{2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z)\right\| \leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f(z)\right)\right\| + \theta\left(\|x\|^r + \|y\|^r + \|z\|^r\right)\]

for all \(x, y, z \in X\). Then there exists a unique additive mapping \(h : X \to Y\) such that

\[\left\| f(x) - h(x)\right\| \leq \frac{2\theta}{2^r - 2}\|x\|^r\]

for all \(x \in X\)

Remark: If \(\beta\) is a real number such that \(-1 < \beta < 1\) and is \(Y\) is a real Banach space, then all the assertions in this sections remain valid.

5. Conclusion

In this paper, it is shown that the solutions of the first and second \(\beta\)-functional inequalities are additive mappings and the Hyers-Ulam stability is proved. These are the main results of the paper, which are a generalization of the results in [17, 20].

References

[17] Choonkil Park, Additive β-functional inequalities, *Journal of Nonlinear Science and Appl.*, **7** (2014), 296-310. https://doi.org/10.22436/jnsa.007.05.02

Received: December 11, 2019; Published: June 12, 2020