An Alternative Proof of an Inequality by Zhu

Kwara Nantomah

Department of Mathematics, Faculty of Mathematical Sciences
University for Development Studies, Navrongo Campus
P. O. Box 24, Navrongo, UE/R, Ghana

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

In this short note, we provide a new and relatively simple proof of an inequality established by Zhu in 2009. The main tools employed are Lazarevic inequality and the arithmetic-geometric mean inequality.

Mathematics Subject Classification: 33B10, 26D05

Keywords: Lazarevic inequality, Wilker inequality, Wilker-type inequality, hyperbolic Wilker inequality

1 Introduction

In 1989, Wilker[5, p. 55] put forward the following two problems.

(a) Prove that if $0 < z < \pi/2$, then

$$\left(\frac{\sin z}{z}\right)^2 + \frac{\tan z}{z} > 2.$$ \hfill (1)

(b) For $0 < z < \pi/2$, determine the largest number λ such that

$$\left(\frac{\sin z}{z}\right)^2 + \frac{\tan z}{z} > 2 + \lambda z^3 \tan z.$$ \hfill (2)
In 1991, Sumner et al. [4] provided solutions to the above problems and further proved that

\[\frac{16}{\pi^3} z^3 \tan z < \left(\frac{\sin z}{z} \right)^2 + \frac{\tan z}{z} - 2 < \frac{8}{45} z^3 \tan z, \quad (3) \]

for \(0 < z < \pi/2 \), where the constants \(16/\pi \) and \(8/45 \) are the best possible.

In 2003, Guo et al. [1] gave new proofs of (1) and (2). In 2005, Zhu [9] also gave another proof of (1). Also in 2007, Zhang and Zhu [8] provided a new and elementary proof of (3). Since then, these elegant inequalities continue to attract the attention of researchers. For instance, Wu and Srivastava [7] established the Wilker-type inequality

\[\left(\frac{z}{\sin z} \right)^2 + \frac{z}{\tan z} > 2, \quad (4) \]

where \(0 < z < \pi/2 \). The hyperbolic counterpart of (1) was established by Zu [10] as

\[\left(\frac{\sinh z}{z} \right)^2 + \frac{\tanh z}{z} > 2, \quad (5) \]

where \(z \in \mathbb{R} \setminus \{0\} \). Also, the hyperbolic counterpart of (4) was established by Wu and Debnath [6] as

\[\left(\frac{z}{\sinh z} \right)^2 + \frac{z}{\tanh z} > 2, \quad (6) \]

where \(z \in \mathbb{R} \setminus \{0\} \). Then in [11], Zhu generalized (5) and (6) by proving the following theorem among other things.

Theorem 1.1. Let \(z > 0 \) and \(a \geq 1 \). Then the inequality

\[\left(\frac{\sinh z}{z} \right)^{2a} + \left(\frac{\tanh z}{z} \right)^{a} > \left(\frac{z}{\sinh z} \right)^{2a} + \left(\frac{z}{\tanh z} \right)^{a} > 2, \quad (7) \]

holds.

By using some classical inequalities, the motive of this note is to provide a new and relatively simple proof of this theorem. The results are given in the following section.

2 Results

To start with, we recall the following result which is well known in the literature as Lazarevic inequality (see [2] or [3, p. 270]).
Lemma 2.1. Let \(z \in \mathbb{R} \setminus \{0\} \). Then the inequality
\[
\left(\frac{\sinh z}{z} \right)^q > \cosh z,
\]
holds if and only if \(q \geq 3 \).

Proof of Theorem 1.1. Since \((\alpha^2 + \beta)/(1/\alpha^2 + 1/\beta) = \alpha^2 \beta\) for all \(\alpha, \beta \in \mathbb{R} \), then by applying Lemma 2.1, we obtain
\[
\frac{(\sinh z)^2}{z} + \left(\frac{\tan z}{\sinh z} \right)^2 = \left(\frac{\sinh z}{z} \right)^a \left(\frac{\tan z}{z} \right)^a
\]
\[
= \left\{ \left(\frac{\sinh z}{z} \right)^3 \frac{1}{\cosh z} \right\}^a
\]
\[
> 1,
\]
which gives the left-hand side of (7). Next, let \(H \) be defined for \(z > 0 \) and \(a \geq 1 \) as
\[
H(z) = \left(\frac{z}{\sinh z} \right)^{2a} + \left(\frac{z}{\tanh z} \right)^a.
\]
Then by differentiating and applying the arithmetic-geometric mean inequality, we obtain
\[
H'(z)
\]
\[
= 2a \left(\frac{z}{\sinh z} \right)^{2a-1} \left[\frac{1}{\sinh z} - z \frac{\cosh z}{\sinh^2 z} \right] + a \left(\frac{z}{\sinh z} \right)^{a-1} \left[\frac{\cosh z}{\sinh z} - \frac{z}{\sinh^2 z} \right]
\]
\[
= \frac{a}{\sinh z} \left(\frac{z}{\sinh z} \right)^{2a} \left[\frac{\cosh^a z \sinh^{a+1} z}{z^{a+1}} + \left(\frac{2 \sinh z}{z^{a+1}} - \frac{\sinh^a z}{x^a} \right) - 2 \cosh z \right]
\]
\[
\geq \frac{a}{\sinh z} \left(\frac{z}{\sinh z} \right)^{2a} \left[2 \sqrt{\cosh^a z \sinh^{a+1} z} \left(\frac{2 \sinh z}{z^{a+1}} - \frac{\sinh^a z}{x^a} \right) - 2 \cosh z \right]
\]
\[
= \frac{2a}{\sinh z} \left(\frac{z}{\sinh z} \right)^{2a} \sqrt{\cosh^a z} \left[\frac{\sinh^{2a+1} z}{z} \left(\frac{2 \sinh z}{z} - 1 \right) - \sqrt{\cosh z} \right]
\]
\[
> 0,
\]
which is as a result of Lemma 2.1 and the fact that \(\frac{\sinh z}{z} > 1 \). Thus \(H(z) \) is increasing and hence, for \(z > 0 \), we have
\[
H(z) > H(0+) = \lim_{z \to 0} H(z) = 2
\]
which gives the right-hand side of (7). These complete the proof.

Acknowledgements. The author would like to thank the anonymous reviewers for careful reading of the manuscript.
References

Received: April 12, 2020; Published: April 23, 2020