On One Disturbance of Laguerre-Hahn Forms

Jilani Alaya
Department of Mathematics, College of Science
Qassim University, Buraida, KSA

Néji Bettaibi
Department of Mathematics, College of Science
Qassim University, Buraida, KSA

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2020 Hikari Ltd.

Abstract
We show that if \(u \) is a regular Laguerre-Hahn form of class \(s \), then
the form \(v = u + \lambda \delta_c \) is also a regular and Laguerre-Hahn form of class
\(\tilde{s} \leq s + 2 \) for every complex \(\lambda \) except for a discrete set of numbers
depending on both \(u \) and \(c \).

Mathematics Subject Classification: 33C45, 42C05

Keywords: Generalized Hermite polynomials, recurrent coefficients

1 Introduction

To obtain orthogonal polynomials of type Legendre, Jacobi, Laguerre and
Bessel, several authors have used the method of adding one or more Dirac
measures to a classic forms. This point of view was considerably developed
in the works of Krall and L. L. Littlejohn [6, 7]. The general problem of the
addition of one or more Dirac measures has been studied in [5]. For reasons
of simplification, we treats here the case of a single Dirac measure.
Let \(u \) be a regular Laguerre-Hahn form of class \(s \), we will show that \(v = u + \lambda \delta_c \)
is also a regular Laguerre-Hahn form for

\[
\lambda \neq -\left(\sum_{\nu=0}^{n} \frac{B_{\nu}^2(c)}{\tau_{\nu}} \right)^{-1}, \quad n \geq 0,
\]
where \(\{B_n\}_{n \geq 0} \) denotes the orthogonal sequence polynomials with respect to the regular form \(u \). We prove that \(v \) is of class \(\tilde{s} \) less than or equal \(s + 2 \) and we discuss the cases when \(\tilde{s} = s + 1 \) and when \(\tilde{s} = s + 2 \).

Let \(P \) be the vector space of polynomials with coefficients in \(\mathbb{C} \) and let \(P' \) be its topological dual. We denote by \(\langle u, f \rangle \) the action of \(u \in P' \) on \(f \in P \). In particular, we denote by \((u)_n := \langle u, x^n \rangle \), \(n \geq 0 \), the moments of \(u \). For any linear form \(u \), any polynomial \(h \) and any complex number \(c \), let \(Du = u', hu, \delta_c \) and \((x - c)^{-1}u \) be the linear forms defined by

\[
\begin{align*}
\langle u', f \rangle &= -\langle u, f' \rangle \\
\langle (x - c)^{-1}u, f \rangle &= \langle u, \theta_c f \rangle, \quad (\theta_c f)(x) := \frac{f(x) - f(c)}{x - c} \\
\langle hu, f \rangle &= \langle u, hf \rangle, \quad f \in P \\
\langle \delta_c, f \rangle &= f(c)
\end{align*}
\]

(1.1)

The form \(hu \) is the left-multiplication of a linear form by a polynomial. We also define the right-multiplication of a linear form by a polynomial as

\[
(uh)(x) := iu, \quad xh(x) - \xi_h(x) = \sum_{k=0}^{n} (\sum_{i=k}^{n} a_i(u)_{i-k}) x^k, \quad h(x) = \sum_{j=1}^{n} a_j x^j
\]

It is possible to define the product of two linear forms:

\[
\forall u, v \in P', \quad \forall f \in P, \quad \langle uv, f \rangle := \langle u, vf \rangle
\]

Definition 1.1 A linear form \(u \) is said to be regular if we can associate with it a sequence of monic orthogonal polynomials (MOPS) \(\{B_n\}_{n \geq 0} \), \(\deg B_n = n \), i.e:

- \(\langle u, B_n B_m \rangle = r_n \delta_{n,m}, \quad n, m \geq 0, \quad r_n \neq 0, \quad n \geq 0, \)
- the leading coefficient of \(B_n \) is equal to 1.

The sequence \(\{B_n\}_{n \geq 0} \) is said to be orthogonal polynomials sequence with respect to the linear form \(u \).

It is well known that the sequence \(\{B_n\}_{n \geq 0} \) satisfies the following second-order recurrence relation (see [2, 4, 7]):

\[
\begin{align*}
B_0(x) &= 1 \\
B_1(x) &= x - \beta_0 \\
B_{n+2}(x) &= (x - \beta_{n+1})B_{n+1}(x) - \gamma_{n+1}B_n(x), \quad n \geq 0 \\
\gamma_0 &= 1, \quad \gamma_{n+1} \in \mathbb{C} - \{0\}, \quad \beta_n \in \mathbb{C}
\end{align*}
\]

(1.2)
2 Characterization of the orthogonal polynomial sequence with respect to the form \(v = u + \lambda \delta c \)

Let \(\lambda \) and \(c \) be two complex numbers, \(u \) a regular linear form on \(P \) and \(\{B_n\}_{n \geq 0} \) be the orthogonal polynomials sequence with respect to \(u \). We consider the form

\[
 v = u + \lambda \delta c.
\] (2.1)

In this section we answer the following question: for what value of \(\lambda \) \(v \) is regular? From (2.1), we have

\[
(x - c)v = (x - c)u = \eta.
\] (2.2)

Remark that if \(\{\tilde{B}_n\}_{n \geq 0} \) is the orthogonal polynomials sequence with respect to \(v \), then it is strict quasi-orthogonal of order 1 with respect to \(\eta \) (see [7]).

We will determine the sequence \(\{\tilde{B}_n\}_{n \geq 0} \) in the form

\[
(x - c)\tilde{B}_n(x) = \sum_{\nu=0}^{n+1} \lambda_{n,\nu} B_{\nu}(x) , \ n \geq 0.
\] (2.3)

Remark 2.1 The form \(\eta \) is not necessarily regular.

From (2.2), we deduce that

\[
< \eta, B_m \tilde{B}_n > = \lambda_{n,m} < u, B_m^2 > , \ 0 \leq m \leq n + 1.
\] (2.4)

From the condition of the strict quasi-orthogonality, we have

\[
\begin{cases}
< \eta, B_m \tilde{B}_n > = 0 , \ 0 \leq m \leq n - 2 , \ n \geq 2 \\
< \eta, B_{n-1} \tilde{B}_n > \neq 0 , \ n \geq 1.
\end{cases}
\] (2.5)

From (2.4) and (2.5), we have

\[
\lambda_{n,m} = 0, \ 0 \leq m \leq n - 2, \ n \geq 2; \ \lambda_{n,n-1} = a_{n-1} \neq 0, \ n \geq 1,
\] (2.6)

therefore

\[
\begin{cases}
(x - c)\tilde{B}_n(x) = B_{n+1}(x) + b_n(x)B_n(x) + a_{n-1}B_{n-1}(x) , \ n \geq 0 \\
b_n = \lambda_{n,n}
\end{cases}
\] (2.7)

with the convention \(B_{-1}(x) = 0 \).

If \(B_1(x) = x - \beta_0 \), then

\[
(x - c)\tilde{B}_0(x) = B_1(x) + b_0B_0(x)
\]
thus
\[b_0 = \lambda_{0,0} = \beta_0 - c. \] (2.8)

The orthogonality condition for the sequence \(\{ \tilde{B}_n \}_{n \geq 0} \) can be written in the two following relations
\[<v, \tilde{B}_{n+1}> = 0 \quad ; \quad <v, \tilde{B}_n^2> \neq 0 \quad , \quad n \geq 0. \] (2.9)

But, from (2.7), we get
\[B_{n+2}(c) + b_{n+1}B_{n+1}(c) + a_nB_n(c) = 0, \quad n \geq 0. \] (2.10)

Then
\[\tilde{B}_{n+1}(x) = \frac{B_{n+2}(x) - B_{n+2}(c)}{x-c} + b_{n+1} \frac{B_{n+1}(x) - B_{n+1}(c)}{x-c} + a_n \frac{B_n(x) - B_n(c)}{x-c} \] (2.11)

and considering (2.1), we obtain
\[<u, \tilde{B}_{n+1}> = B^{(1)}_{n+1}(c) + \lambda B'_{n+2}(c) + b_{n+1}(B^{(1)}_n(c) + \lambda B'_{n+1}(c)) + a_n(B^{(1)}_{n-1}(c) + \lambda B'_{n}(c)) = 0, \quad n \geq 0, \] (2.12)

where
\[B^{(1)}_n(x) = iu, B_{n+1}(x) - B_{n+1}(\xi)x - \xi \frac{d}{dx} = (u \theta_0 B_{n+1})(x), \quad n \geq 0. \]

\(\{ B^{(1)}_n \}_{n \geq 0} \) is called the sequence associated to the sequence \(\{ B_n \}_{n \geq 0} \) with respect to the form \(u \) (see [2, 3, 7]).

The coefficients \(b_{n+1} \) and \(a_n \) are solutions of the following system
\[
\begin{cases}
 B_{n+1}(c)b_{n+1} + B_n(c)a_n = -B_{n+2}(c) \\
 (B^{(1)}_n(c) + \lambda B'_{n+1}(c))b_{n+1} + (B^{(1)}_{n-1}(c) + \lambda B'_{n}(c))a_n = -\left(B^{(1)}_{n+1}(c) + \lambda B'_{n+2}(c) \right).
\end{cases} \] (2.13)

Knowing that
\[B_{n+1}(x)B^{(1)}_{n-1}(x) - B_n(x)B^{(1)}_n(x) = \prod_{\nu=0}^{n-1} \gamma_\nu = \tau_n \]

and using the Cristoffel-Darboux identity (see [4]), the determinant of the above system is
\[d_n = \tau_n \left\{ 1 + \lambda \sum_{\nu=0}^{n} \frac{B^2_{\nu}(c)}{\tau_\nu} \right\}, \quad n \geq 0, \] (2.14)
which satisfies the following recurrence relation

\[d_{n+1} = \gamma_n d_n + \lambda B^2_{n+1}(c). \]

(2.15)

Taking into account the relations (1.2) and (2.14), when \(d_n \neq 0, \ n \geq 0 \), we have,

\[a_n = \frac{d_{n+1}}{d_n} \neq 0, \ n \geq 0; \ (a_{-1} = d_0 = 1 + \lambda) \]

(2.16)

\[b_{n+1} = \beta_{n+1} - c - \frac{\lambda}{d_n} B_n(c) B_{n+1}(c), \ n \geq 0. \]

(2.17)

Then, using the Christoffel-Darboux identity, we deduce the expression of \(\tilde{B}_n \):

\[\tilde{B}_{n+1}(x) = -\frac{\lambda \tau_n}{d_n} B_{n+1}(c) \sum_{\nu=0}^n \frac{B_{\nu}(c) B_{\nu}(x)}{\tau_{\nu}} + B_{n+1}(x), \ n \geq 0. \]

(2.18)

Then the regularity of \(v \) is equivalent to \(d_n \neq 0, \ n \geq 0 \).

So, if we put

\[\lambda_n = -\left(\sum_{\nu=0}^n \frac{B^2_{\nu}(c)}{\tau_{\nu}} \right)^{-1}, \ n \geq 0, \]

(2.19)

one gets the following result

Theorem 2.1 Let \(u \) be a regular form. Then, the form \(v = u + \lambda \delta c, (c \in \mathbb{C}) \) is regular if and only if \(\lambda \neq \lambda_n, \ n \geq 0 \).

Proposition 2.1 (See [8]) Let \(u \) be a regular form, \(v = u + \lambda \delta c \ (\lambda \neq \lambda_n) \) and put

\[\rho_n = a_{n-1} - \gamma_n; \ \sigma_n(x) = x - \beta_n + b_n, \ n \geq 0. \]

Then

\[(x - c)B_n(x) = \frac{\rho_n}{a_{n-1}} \tilde{B}_{n+1}(x) + \frac{\gamma_n}{a_{n-1}} \sigma_{n+1}(x) \tilde{B}_n(x), \ n \geq 0 \]

(2.20)

\[(x - c)B_{n+1}(x) = (\sigma_n(x) - \rho_n) \frac{b_n}{a_{n-1}} \tilde{B}_{n+1}(x) - \frac{\gamma_n}{a_{n-1}} \rho_{n+1} \tilde{B}_n(x), \ n \geq 0. \]

(2.21)

Remark 2.2 From Proposition 2.1, for \(x = c \), we deduce that

\[\frac{\rho_n}{a_{n-1}} \tilde{B}_{n+1}(c) + \frac{\gamma_n}{a_{n-1}} \sigma_{n+1}(c) \tilde{B}_n(c) = 0 \]

(2.22)

and

\[\left\{ \sigma_n(c) - \rho_n \frac{b_n}{a_{n-1}} \right\} \tilde{B}_{n+1}(c) - \frac{\gamma_n}{a_{n-1}} \rho_{n+1} \tilde{B}_n(c) = 0 \]

(2.23)
In the sequel, we suppose that the form v is regular ($\lambda \neq \lambda_n$). The following result gives the coefficients $\tilde{\gamma}_{n+1}$ and $\tilde{\beta}_n$, $n \geq 0$, of the recurrence relation of the sequence $\{\tilde{B}_n\}_{n \geq 0}$.

Proposition 2.2 The recurrence coefficients $\tilde{\gamma}_{n+1}$ and $\tilde{\beta}_n$ of the sequence $\{\tilde{B}_n\}_{n \geq 0}$, are given by:

$$
\tilde{\gamma}_0 = 1 + \lambda; \quad \tilde{\gamma}_{n+1} = \gamma_n \frac{d_{n+1}d_{n-1}}{d_n^2}, \quad n \geq 0, \quad d_{-1} = 1 \quad (2.24)
$$

$$
\tilde{\beta}_n = \beta_{n+1} + b_n - b_{n+1}, \quad n \geq 0. \quad (2.25)
$$

Proof.

The sequence $\{\tilde{B}_n\}_{n \geq 0}$ verifies

$$
\begin{cases}
\tilde{B}_{n+2}(x) = (x - \tilde{\beta}_{n+1})\tilde{B}_{n+1}(x) - \tilde{\gamma}_{n+1}\tilde{B}_n(x) & n \geq 0 \\
\tilde{B}_0(x) = 0 & \tilde{B}_1(x) = x - \tilde{\beta}_0.
\end{cases} \quad (2.26)
$$

and we have

$$
\tilde{\gamma}_0 = \langle v, 1 \rangle = \langle u, 1 \rangle + \lambda < \delta_c, 1 \rangle = \gamma_0 + \lambda.
$$

From (2.26), we have

$$
\langle v, x\tilde{B}_{n+1}\tilde{B}_n \rangle = \tilde{\gamma}_{n+1} \langle v, \tilde{B}^2_n \rangle = \langle u, \tilde{B}^2_{n+1} \rangle.
$$

$$
\langle v, (x - c)\tilde{B}_n\tilde{B}_{n+1} \rangle = \langle u + \lambda \delta_c, (x - c)\tilde{B}_n\tilde{B}_{n+1} \rangle = \langle u, (x - c)\tilde{B}_n\tilde{B}_{n+1} \rangle = \langle v, \tilde{B}^2_{n+1} \rangle. \quad (2.27)
$$

This relation together with (2.7) give

$$
\langle v, (x - c)\tilde{B}_n\tilde{B}_{n+1} \rangle = \langle u, \tilde{B}_n(B_{n+2} + b_{n+1}B_{n+1} + a_nB_n) \rangle = a_n < u, \tilde{B}_nB_n > = a_n < u, B^2_n >,
$$

therefore

$$
\prod_{\nu=0}^{n+1} \tilde{\gamma}_\nu = \langle v, \tilde{B}^2_{n+1} \rangle = a_n < u, B^2_n > \frac{d_{n+1}d_{n-1}}{d_n^2} \prod_{\nu=0}^{n} \gamma_\nu.
$$

From where $\tilde{\gamma}_{n+1} = \gamma_n \frac{d_{n+1}d_{n-1}}{d_n^2}$, $n \geq 0$, $d_{-1} = 1$.

On the other hand, we have

$$
\tilde{B}_{n+1}\tilde{B}_n = (x - \tilde{\beta}_n)\tilde{B}_{n+1}^2 - \tilde{\gamma}_n\tilde{B}_n\tilde{B}_{n-1}.
$$
Consequently, \(<v, (x - \tilde{\beta}_n)\tilde{B}^2_n> = 0 \), if and only if

\[
<v, x\tilde{B}^2_n> = \tilde{\beta}_n <v, \tilde{B}^2_n> - <(x - c)\tilde{B}^2_n> + c <v, \tilde{B}^2_n>.
\]

But from (2.7), we have

\[
(x - c)\tilde{B}^2_n = B_{n+1}\tilde{B}_n + b_n B_n \tilde{B}_n + a_{n-1} B_{n-1} \tilde{B}_n.
\]

So,

\[
\tilde{\beta}_n <v, \tilde{B}^2_n> = b_n <v, \tilde{B}^2_n> + <v, B_{n+1} \tilde{B}_n> + c <v, \tilde{B}^2_n> = (b_n + c) <v, \tilde{B}^2_n> + \lambda B_{n+1}(c) \tilde{B}_n(c).
\]

Furthermore, from (2.18) we have, for \(n \geq 1 \),

\[
\tilde{B}_n(c) = -\frac{\lambda \tau_{n-1}}{d_{n-1}} B_n(c) \sum_{\nu=0}^{n-1} \frac{B^2_n(\tau)}{\tau^\nu} + B_n(c)
\]

\[
= -\frac{B_n(c)}{d_{n-1}} \left(d_{n-1} - \tau_{n-1} \right) + B_n(c) = \frac{<u, \tilde{B}^2_n>}{d_n} B_n(c).
\]

Thus, \(\tilde{\beta}_n = b_n + c + \frac{\lambda}{d_n} B_n(c) B_{n+1}(c) \). Finally, considering (2.17), we get

\[
\tilde{\beta}_n = \beta_{n+1} + b_n - b_{n+1}, \quad n \geq 0.
\]

\[\blacksquare\]

Exemple 2.1

1. When \(u \) is defined positive and \(c \in \mathbb{R} \), the form \(v \) is regular for each value of \(\lambda \in \mathbb{C} - (-\infty, 0] \).

2. If \(u \) is symmetric and real, then for each \(c, \lambda \in \mathbb{C} \) such that \(\Re(c) = 0 \) and \(\Im(\lambda) \neq 0 \), the form \(v \) is regular (in particular, if \(u \) is definite positive).

3 Case of Laguerre-Hahn form

Henceforth \(u \) will denote a Laguerre-Hahn form of class \(s \) (see [1], [2]). It then verifies the functional equation

\[
(\Phi(x)u)' + \Psi(x)u + B(x^{-1}u^2) = 0
\]

and the following condition

\[
\prod_{\alpha} \{|\Psi(\alpha) + \Phi'(\alpha)| + |B(\alpha)| + |<u, \theta_{\alpha} \Psi + \theta_{\alpha}^2 \Phi + u(\theta_{\alpha} B)>|\} \neq 0,
\]

\[\text{(3.2)}\]
where \(\alpha \) goes through the zeros of \(\Phi \). We recall that the class of the form \(u \) is given by

\[
s = \max \left[\deg \Psi - 1, \max (\deg \Psi, \deg B) - 2 \right].
\]

In the following theorem, we give the functional equation of the form \(v \) and specify its class.

Theorem 3.1 Let \(u \) be a Laguerre-Hahn form of class \(s \) satisfying (3.1) such that \(v = u + \lambda \delta_c \) supposed regular. Then \(v \) is a Laguerre-Hahn form of class \(s' \leq s + 2 \) and verifies the functional equation:

\[
(\tilde{\Phi}v) + \tilde{\Psi}(x)v + \tilde{B}(x^{-1}v^2) = 0,
\]

with the following cases:

1. if \(\Phi(c) + \lambda B(c) \neq 0 \), then

\[
\begin{align*}
\tilde{\Phi}(x) &= (x - c)^2 \Phi(x) \\
\tilde{\Psi}(x) &= (x - c) \left\{ (x - c) \Psi(x) - 2 \Phi(x) - 2 \lambda B(x) \right\} \\
\tilde{B}(x) &= (x - c)^2 B(x),
\end{align*}
\]

and \(v \) is of class \(s + 2 \);

2. if \(\Phi(c) = B(c) = 0 \) and \(\Psi(c) - \lambda B'(c) \neq 0 \), then

\[
\begin{align*}
\tilde{\Phi}(x) &= (x - c) \Phi(x) \\
\tilde{\Psi}(x) &= (x - c) \Psi(x) - \Phi(x) - 2 \lambda B(x) \\
\tilde{B}(x) &= (x - c) B(x),
\end{align*}
\]

and \(v \) is of class \(s + 1 \);

3. if \(\Phi(c)B(c) \neq 0 \), \(\Psi(c) - \lambda B'(c) \neq 0 \) and \(\lambda = -\frac{\Phi(c)}{B(c)} \) is not a singular value, then \(v \) is of class \(s + 1 \) and verifies the functional equation given by (3.5);

4. if we have \(\Psi(c) - \lambda B'(c) = 0 \) together with \(\Phi(c) = B(c) = 0 \) or \(\Phi(c)B(c) \neq 0 \) then the form \(v \) is of class less than \(s \).

Proof.

Using (1.1), one can prove easily that

\[
(x - c) B(x^{-1}u \delta_c) = B(x)u.
\]

\((*)\)

Since the form \(u \) verifies the functional equation

\[
(\Phi u)' + \Psi u + B(x^{-1}u^2) = 0,
\]
so, the form \(v = u + \lambda \delta_c \) satisfies the following functional equation

\[
(\Phi(v - \lambda \delta_c))' + \Psi(v - \lambda \delta_c) + B(x^{-1}(v - \lambda \delta_c)^2) = 0.
\]

which is equivalent to

\[
(\Phi v)' + \Psi v + B(x^{-1}v^2) = \lambda(\Phi \delta_c)' + \lambda(\Psi \delta_c) + 2\lambda B(x^{-1}v \delta_c) - \lambda^2 B(x^{-1}\delta_c^2). \tag{3.6}
\]

From (*), this last expression multiplied by \(x - c \), becomes:

\[
(\Phi v)' + (x - c)\Phi v + (x - c)B(x^{-1}v^2) = \lambda(\Phi \delta_c)' - \Phi \delta_c + 2\lambda B(x)v - \lambda^2 B\delta_c.
\]

That is

\[
(\Phi v)' + (x - c)\Phi v - 2\lambda B(x)v + (x - c)B(x^{-1}v^2) = \lambda\left\{\Phi(c) + \lambda B(c)\right\}\delta_c. \tag{3.7}
\]

The equation (3.7) becomes after multiplication by \(x - c \):

\[
(\tilde{\Phi} v)' + \tilde{\Psi} v + \tilde{B}(x^{-1}v^2) = 0, \tag{3.8}
\]

where

\[
\tilde{\Phi} = (x - c)^2\Phi, \quad \tilde{\Psi} = (x - c)\left((x - c)\Psi - 2\Phi - 2\lambda B\right), \quad \tilde{B} = (x - c)^2B.
\]

Let us write

\[
\deg \Psi = p, \quad \deg \Phi = t, \quad \deg B = r, \quad d = \max(t, r),
\]

\[
\deg \tilde{\Psi} = \tilde{p}, \quad \deg \tilde{\Phi} = \tilde{t}, \quad \deg \tilde{B} = \tilde{r},
\]

\[
\tilde{d} = \max(\tilde{r}, \tilde{t}) \quad \text{and} \quad s_1 = \max(\tilde{p} - 1, \tilde{d} - 2).
\]

Then,

\[
\tilde{p} \leq \sup(p + 2, t + 1, r + 1), \quad \tilde{t} = t + 2 \quad \text{and} \quad \tilde{r} = r + 2.
\]

Furthermore, we have the following cases:

- if \(0 \leq d \leq p \) then \(\tilde{p} = p + 2 \) and \(0 \leq \tilde{d} \leq \tilde{p} \), so
 \[
 s_1 = \tilde{p} - 1 = p + 1 = s + 2.
 \]

- if \(d = p + 1 \) then \(\tilde{d} = p + 3 \), so \(\tilde{p} \leq p + 2 = \tilde{d} - 1 \) and we have the two following subcases:
\(\tilde{d} = \tilde{p} + 1\), then \(s_1 = \tilde{p} - 1 = d - 2 = p + 1 = s + 2\).

- if \(\tilde{d} \geq \tilde{p} + 2\) then \(s_1 = \tilde{d} - 2 = (p + 3) - 2 = p + 1 = s + 2\).

- if \(d \geq p + 2\), then \(\tilde{p} \leq d + 1 = \tilde{d} - 1\) so \(s_1 = \tilde{d} - 2 = d = s + 2\).

Does the triplet \((\tilde{\Phi}, \tilde{\Psi}, \tilde{B})\) given by (3.4) and (3.5) provide the class of \(v\)? For the answer, we shall use (3.2).

From (3.4), \(c\) is a root of \(\tilde{\Phi}\) and \(\tilde{\Psi}(c) + \tilde{\Phi}'(c) = \tilde{B}(c) = 0\). We should therefore calculate
\[
< v, \theta_c(\tilde{\Psi} + \theta_c\tilde{\Phi})u + v(\theta_0\theta_c\tilde{B}) > .
\]

We have
\[
< v, \theta_c\tilde{\Psi} + \theta_c^2\tilde{\Phi} + v(\theta_0\theta_c\tilde{B}) > = < v, (x - c)\Psi - 2\Phi - 2\lambda B(x) + \Phi + v(\theta_0(x - c)B > \\
= < u, (x - c)\Psi(x) > - < u, \Phi > - 2\lambda < u, B > + < u^2, \theta_0(x - c)B > \\
+ \lambda(< \delta_c, (x - c)\Psi(x) > - < \delta_c, \Phi > - 2\lambda < \delta_c, B >)
\]
\[
= < (\Phi u)' + \Psi u, (x - c) > + < u^2, \theta_0((x - c)B) > + 2\lambda < u, \delta_c\theta_0(x - c)B > \\
+ \lambda^2 < \delta_c, \delta_c\theta_0(x - c)B > - 2\lambda < u, B > - \lambda\left\{\Phi(c) + 2\lambda B(c)\right\}
\]
\[
= < (\Phi u)' + \Psi u + B(x^{-1}u^2), x - c > - \lambda\left\{\Phi(c) + \lambda B(c)\right\}
\]
\[
= -\lambda\left(\Phi(c) + \lambda B(c)\right) .
\]

For \(v\) to be of class \(s + 2\), it is necessary that \(\Phi(c) + \lambda B(c) \neq 0\).

Case 1: \(\Phi(c) + \lambda B(c) \neq 0\)

Let \(a \neq c\) be one root of \(\tilde{\Phi}\), then it is a root of \(\Phi\). That is
\[
\tilde{\Phi}(x) = (x - a)\tilde{\Phi}_a(x) ; \Phi(x) = (x - a)\Phi_a(x),
\]

From (3.4), we deduce that
\[
\tilde{\Phi}_a(x) = (x - c)^2\Phi_a(x) .
\]

By Euclidean division, we obtain:
\[
\Psi(x) + \Phi_a(x) = (x - a)q_a(x) + r_a ; \quad r_a \in \mathbb{C} \\
\tilde{\Psi}(x) + \tilde{\Phi}_a(x) = (x - a)\tilde{q}_a(x) + \tilde{r}_a ; \quad \tilde{r}_a \in \mathbb{C} .
\]

The two relations (3.4) and (3.10) imply that
\[
\tilde{r}_a = \tilde{\Psi}(a) + \tilde{\Phi}'(a) = (a - c)^2\left\{\Psi(a) + \Phi'(a)\right\} - 2\lambda(a - c)B(a) .
\]

- **a)** \(B(a) \neq 0 \iff \tilde{B}(a) \neq 0\), from (3.2), we deduce that the class of the form \(v\) is equal to \(s + 2\).
b) \(B(a) = 0 \iff \tilde{B}(a) = 0 \), from (3.11) we have:

\[
\tilde{q}_a = (a - c) \tilde{g}_a(c) = (a - c)^2 \left\{ \Psi(a) + \Phi'(a) \right\}.
\]

Two cases are envisaged:

i) \(\Psi(a) + \Phi'(a) \neq 0 \) then \(\tilde{\Psi}(a) + \tilde{\Phi}'(a) \neq 0 \), So, from (3.11) \(v \) is of class \(s + 2 \).

ii) \(\Psi(a) + \Phi'(a) = 0 \) then \(\Psi(x) + \Phi_a(x) = (x - a)q_a(x) \).

From (3.4) and (3.10), we have

\[
\tilde{q}_a(x) = (x - c)^2 q_a(x) - 2(x - c) \left\{ \Phi_a(x) + \lambda B_a(x) \right\}.
\]

Then,

\[
< v, \theta_a \tilde{\Psi} + \theta_a^2 \tilde{\Phi} + v(\theta_0 \theta_a \tilde{B}) > = < v, \theta_a (\tilde{\Psi} + \tilde{\Phi}_a) + v(\theta_0 \tilde{B}_a) > = < v, \tilde{q}_a + v(\theta_0 \tilde{B}_a) >.
\]

But,

\[
< v, \tilde{q}_a > = < v, (x - c)^2 q_a(x) - 2(x - c) (\Phi_a(x) + \lambda B_a(x)) >
\]

\[
= < u, (x - c)^2 q_a(x) - 2(x - c) (\Phi_a(x) + \lambda B_a(x)) >
\]

\[
= < u, (x - c)^2 \theta_a \Psi > + < u, (x - c)^2 \theta_a^2 \Phi >
\]

\[
- 2 < u, (x - c) \theta_a \Phi > - 2 \lambda < u, (x - c) \theta_a B >.
\]

and

\[
< v, v(\theta_0 \tilde{B}_a) > = < v^2, \theta_0 \tilde{B}_a >
\]

\[
= < u^2 + 2u \delta_c + \lambda^2 \delta_a^2, \theta_0 (x - c)^2 B_a >
\]

\[
= < x^{-1} u^2, (x - c)^2 B_a > + 2 \lambda < u, \theta_c (x - c)^2 B_a > + \lambda^2 < \delta_c, (x - c)^2 B_a >
\]

\[
= < x^{-1} u^2, (x - c)^2 B_a > + 2 \lambda < u, (x - c) B_a > + \lambda^2 < \delta_c, (x - c) B_a >.
\]

Then, by (3.2) and (3.4), we obtain:

\[
< v, \theta_a \tilde{\Psi} + \theta_a^2 \tilde{\Phi} + v(\theta_0 \theta_a \tilde{B}) > = < (\theta_a \Phi u)' + \theta_a (\Psi + \theta_a \Phi) u + \theta_a B(x^{-1} u^2), (x - c)^2 >.
\]

So, if we put

\[
w = (\theta_a \Phi u)' + \theta_a (\Psi + \theta_a \Phi) u + \theta_a B(x^{-1} u^2),
\]

we get

\[
(x - a)w = (\Phi u)' + \Psi u + B(x^{-1} u^2) = 0.
\]

So, \(w = \gamma \delta_a \). But,

\[
< w, 1 > = < u, \theta_a \Psi + \theta_a^2 \Phi + u(\theta_0 \theta_a B) > \neq 0,
\]
because \(u \) is of class \(s \). Then, \(\gamma \neq 0 \) and \(<w,(x-c)^2> = \gamma(a-c)^2 \neq 0 \), therefore \(v \) is of class \(s + 2 \).

Case 2: \(\Phi(c) = B(c) = 0 \)

From (3.2) \(v \) is of class \(\tilde{s} \leq s + 1 \). We deduce that \(v \) verifies the functional equation (3.3), with

\[
\begin{align*}
\tilde{\Phi}(x) &= (x-c)\Phi(x) \\
\tilde{\Psi}(x) &= (x-c)\Psi(x) - \phi(x) - 2\lambda B(x) \\
\tilde{B}(x) &= (x-c)B(x).
\end{align*}
\]

It’s obvious that \(\tilde{p} \leq \sup(p+1,t,r) \); \(\tilde{t} = t + 1 \); \(\tilde{r} = r + 1 \)

- if \(0 \leq d \leq p \) then \(\tilde{p} = p + 1 \) and \(0 \leq \tilde{d} \leq \tilde{p} \), so \(s_1 = \tilde{p} - 1 = p = s + 1 \).

- if \(d = p + 1 \) then \(\tilde{d} = p + 2 \), so \(\tilde{p} \leq p + 1 = \tilde{d} - 1 \) and we have the two following subcases:
 - if \(\tilde{d} = \tilde{p} + 1 \), then \(s_1 = \tilde{p} - 1 = \tilde{d} - 2 = p = s + 1 \).
 - if \(\tilde{d} \geq \tilde{p} + 2 \) then \(s_1 = \tilde{d} - 2 = p = s + 1 \).

- if \(d \geq p + 2 \), then \(\tilde{p} = d = \tilde{d} - 1 \) so \(s_1 = \tilde{p} - 1 = d - 1 = s + 1 \).

From (3.14) we find:

\[\tilde{B}(c) = \tilde{\Psi}(c) + \tilde{\Phi}'(c) = 0\]

and a simple calculus gives

\[<v,\theta_c\tilde{\Psi} + \theta_c^2\tilde{\Phi} + v(\theta_0\theta_c\tilde{B})(x)> = \lambda\left(\Psi(c) - \lambda B'(c)\right).\]

(3.15)

Two cases to consider

a) if \(\Psi(c) - \lambda B'(c) = 0 \), then the form \(v \) is of class \(\tilde{s} \leq s \).

b) if \(\Psi(c) - \lambda B'(c) \neq 0 \), then using the same steps as in the proof of Case 1, we prove that \(v \) is of class \(s + 1 \).

Case 3: \(\Phi(c) \neq 0 \) and \(B(c) \neq 0 \)

If we suppose that \(\lambda = -\frac{\Phi(c)}{B(c)} \) is not a singular value to ensure the regularity of the form \(v \), with the condition \(\Psi(c) - \lambda B'(c) \neq 0 \), then \(v \) is also of class \(s + 1 \). Indeed \(\tilde{\Psi}(c) + \tilde{\Phi}'(c) = -2\lambda B(c) \neq 0 \).
Remark 3.1

In the four cases below, \(v = u + \lambda \delta_c \) is of class \(\bar{s} \leq s \) and verifies the functional equation \((\tilde{\Phi} v) + \tilde{\Psi}(x)v + \tilde{B}(x^{-1}v^2) = 0\), with \(\Phi(x) = \Phi(x) \), \(\Psi(x) = \Psi(x) - 2\lambda \theta_c B(x) \), \(\bar{B}(x) = B(x) \):

1) \(\Phi(c) = B(c) = \Psi(c) = B'(c) = 0 \)
2) \(\Phi(c) = B(c) \), \(B'(c) \neq 0 \) et \(\lambda = \frac{\Psi(c)}{B'(c)} \neq \lambda_n \)
3) \(\Phi(c) \neq 0 \), \(\Psi(c) = B'(c) = 0 \) et \(\lambda = \frac{\Phi(c)}{B(c)} \neq \lambda_n \)
4) \(\Phi(c) \neq 0 \), \(B'(c) \neq 0 \) et \(\lambda = \frac{\Phi(c)}{B(c)} = \frac{\Psi(c)}{B'(c)} \neq \lambda_n \).

References

Received: January 1, 2020; Published: January 21, 2020