Algorithms for the Calculating
the Proximal Point

S. Kabbadj

Department of Mathematics
Faculty of Sciences of Meknes, B.P. 11201, Morocco

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2019 Hikari Ltd.

Abstract

We propose two algorithms for calculating \(x^*\) proximal point of \(x\) defined by:

\[
x^* = \left(\nabla h + \lambda \partial f\right)^{-1}(\nabla h(x))
\]

The main results extend and improve the existing results. Moreover, the supposed conditions in our results are weaker than those of the existing results.

Keywords: convex optimization, proximal point, proximal point algorithm

1. Introduction

Let \(H\) a real Hilbert with the scalar product \(< . , . >\) and norm \(\| . \|\), \(T\) a maximal monotone operator. The problem

\[
(P) : " \text{find } \bar{x} \text{ such as } \bar{x} = (T + I)^{-1}(x)"
\]

has been studied by Aulender [2] when \(T = T_0 + \partial \chi_C\) where \(C\) is a closed convex and \(T_0\) is bounded on \(C\). Bruck [6] treated the case where the domain of \(T\) is open.

Alart [1] has studied \((P)\) when \(T = \partial f\) subdifferential from a convex function \(f\), proper and lower semicontinuous on \(R^d\) and that \(C := \text{dom} f\), of interior noted \(\text{int} (C)\) not empty, verifies the following conditions:
H_1: C is a convex compact of R^d.

H_2: $\exists \varepsilon > 0, \forall x \in Fr(C), \forall u \in \partial \chi_C(x)$ and $u \neq 0$, $x - \alpha \frac{u}{\|u\|} \in \text{int}(C)$, $\forall \alpha \in]0, \varepsilon].$

In other words, in every point x of the boundary $Fr(C)$ of C, the opposite of every normal is an admissible direction with a step of a uniforme displacement.

This study allows to calculate the iterated x^{k+1} from x^k in Proximal Point Algorithm (PM) see [3,4,11,12,13]. In order to perform this calculation in Entropic Proximal Point Algorithm (PMD), see [7,9,14], we consider the following problem:

(Q): "Find x^* such as $x^* = \text{prox}^h_{\lambda f}x := (\nabla h + \lambda \partial f)^{-1}(\nabla h(x))''$.

In this present labor, we propose two algorithms allowing to calculate x^* while deleting H_2 and lightening H_1.

Throughout this paper, we assume:

(i) $f: R^d \to R \cup \{+\infty\}$ is a convex function, proper and lower semicontinuous.

(ii) $h: S \to R$ is a continuous, strictly convex on S and continuously differentiable on S, where S is an convex open subset of R^d.

(iii) $C := \text{dom} f \subset S$.

(iv) The problem (Q) admits a unique solution x^* in S. (Conditions on h and f are required in [8, 10] to ensure the existence and uniqueness of x^* in S).

Our notation is fairly standard, the closure of the set A is denoted by \overline{A} and χ_A is the characteristic function of A. For any convex function f, we denote by:

(1) $\text{dom} f = \{x \in R^d; f(x) < +\infty\}$ its effective domain,

(2) $\partial f(.) = \{v, f(y) \geq f(.) + \langle v, y - . \rangle - \varepsilon, \forall y\}$ its ε-subdifferential,
2. Study of a first algorithm

By eliminating the hypothesis H_2 and by keeping H_1, we propose the following algorithm:

--- Algorithm: $A_1(h)$

1: input: $x_0 \in C$
2: for $n = 0, 1, 2, \ldots$, do
3: pick $v_n \in \partial \varepsilon_n f(x_n)$, with $\varepsilon_n > 0$,
4: $w_n = x_n - \rho_n u_n$ with $\rho_n \geq 0$ and
 $u_n = \frac{\nabla h(x_n) - \nabla h(x)}{\lambda} + v_n$
5: $x_{n+1} = P(w_n)$, $P(w_n)$ is the projection of w_n on C
6: end for.

The existence of the sequence $\{x_n\}_n$ generated by $A_1(h)$ is related to that of the sequence $\{v_n\}_n$.

For every n, $x_n \in \text{dom } f$ and $\varepsilon_n > 0$, so $\partial \varepsilon_n f(x_n) \neq \emptyset$. Which justifies the existence of the sequence $\{x_n\}_n$.

In the following we define the $D_h(\ldots)$ kernel by:

$D_h(x, y) := h(x) - h(y) - \langle x - y, \nabla h(y) \rangle$.

Lemma 2.1. [8, 10]

(i) $D_h(x, y) = \begin{cases} 0 & \text{if } x = y, \\ > 0 & \text{if } x \neq y \end{cases}$

(ii) $\forall x, y \in S : D_h(x, y) + D_h(y, x) = \langle x - y, \nabla h(x) - \nabla h(y) \rangle$.

(iii) If h is strongly convex on S with parametr α then,

$\forall x \in \mathcal{S}, \forall y \in S, D_h(x, y) \geq \frac{\alpha}{2} \|x - y\|^2$.

Proposition 2.2. Let x, x', y and $y' \in \mathbb{R}^d$. Let $\varepsilon, \varepsilon' \geq 0$ such as:

$x \in \partial \varepsilon f(x')$ and $y \in \partial \varepsilon' f(y')$.

Then: \(< x - y, x' - y' > \geq -(\varepsilon + \varepsilon') \).

Proof. Since \(x \in \partial \varepsilon f(x') \) and \(y \in \partial \varepsilon' f(y') \), we have:

\[
\forall \ y \in \mathbb{R}^d, \ f(y) \geq f(x') + < y - x', x > - \varepsilon. \tag{4}
\]

\[
\forall \ z \in \mathbb{R}^d, \ f(z) \geq f(y') + < z - y', y > - \varepsilon'. \tag{5}
\]

By replacing \(y \) by \(y' \) in (4), \(z \) by \(x' \) in (5) and by adding (4) at (5), we deduce the result. \(\square \)

Theorem 2.3. We suppose that:

i. \(C \) is a compact of \(S \),

ii. \(\sum_{n=0}^{\infty} \rho_n = +\infty \) and \(\sum_{n=0}^{\infty} \rho_n (\varepsilon_n + \rho_n) < +\infty \),

iii. \(\{\|v_n\|\}_n \) is bounded.

Then \(\{x_n\}_n \) generated by \(A_1(h) \) converges to the solution \(x^* \) of \((Q) \).

Proof. We have:

\[
v_n = u_n - \lambda^{-1} (\nabla h(x_n) - \nabla h(x)) \in \partial \varepsilon_n f(x_n)
\]
and

\[
\lambda^{-1} (\nabla h(x) - \nabla h(x^*)) \in \partial f(x^*).
\]

From the proposition 2.2.,

\[
< u_n - \lambda^{-1} (\nabla h(x_n) - \nabla h(x)) - \lambda^{-1} (\nabla h(x) - \nabla h(x^*)) , x_n - x^* > \geq -\varepsilon_n,
\]

From (2), we have:

\[
< u_n , x_n - x^* > \geq -\varepsilon_n + \lambda^{-1} [D_h(x_n, x^*) + D_h(x^*, x_n)].
\]

From (1), we have:

\[
< u_n , x_n - x^* > \geq -\varepsilon_n + \lambda^{-1} D_h(x_n, x^*). \tag{6}
\]

Since \(x^* \in C \), we have:

\[
\|x_{n+1} - x^*\|^2 = \|P(w_n) - P(x^*)\|^2 \leq \|w_n - x^*\|^2.
\]
Let again,
\[\|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 - 2 < x_n - x^*, \rho_n u_n > + \rho_n^2 \|u_n\|^2. \]
(7)

From i., the sequence \(\{x_n\}_n \) is bounded. Since \(\{x_n\}_n \subset C \subset \mathcal{S} \) and \(\nabla h \) is continuous on \(\mathcal{S} \), we deduce that \(\{\nabla h(x_n)\}_n \) is bounded. Therefore, the sequence \(\{u_n\}_n \) is bounded. So,

\[\exists L > 0, \forall n \in \mathbb{N}, \|u_n\|^2 \leq L \]
(8)

From (6), (7) and (8), we have

\[2\rho_n \lambda^{-1} D_h(x_n, x^*) + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + 2\rho_n \varepsilon_n + L^2 \rho_n^2. \]

Let \(L' = \max\{2, L^2\} \), thus we have:

\[2\rho_n \lambda^{-1} D_h(x_n, x^*) + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + L' \rho_n (\varepsilon_n + \rho_n). \]
(9)

Let : \(a_n := \|x_n - x^*\|^2 \) and \(b_n := D_h(x_n, x^*) \). By adding the inequality (9) from 0 to \(k \), we have:

\[2\lambda^{-1} \sum_{n=0}^{n=k} \rho_n b_n + a_{k+1} \leq a_0 + L' \sum_{n=0}^{n=k} \rho_n (\varepsilon_n + \rho_n). \]
(10)

From (10) and ii., we have:

\[\sum_{n=0}^{\infty} \rho_n b_n < +\infty \]
(11)

It exists the sub-sequence \(\{b_{j_n}\} \) of \(\{b_n\} \) such as : \(b_{j_n} \to 0 \). Otherwise, it will exist \(\varepsilon > 0, j_0 \) such that

\[b_j \geq \varepsilon, \forall j \geq j_0 \]
(12)

From (11) and (12), we have \(\sum_{n=0}^{\infty} \rho_n < +\infty \), which contradicts the hypothesis ii.

\(\{x_{j_n}\} \) is bounded, it exists the sub-sequence \(\{x_{k_n}\} \) of \(\{x_{j_n}\} \) such as : \(x_{k_n} \to u^* \in \mathcal{S} \).

On the other hand,

\[b_{k_n} = D_h(x_{k_n}, x^*) \Rightarrow \lim b_{k_n} = \lim D_h(x_{k_n}, x^*) \]
\[\Rightarrow 0 = D_h(u^*, x^*) \]
\[\Rightarrow u^* = x^* \]
\[\Rightarrow x_{j_n} \to x^* \]
\[\Rightarrow a_{j_n} \to 0. \]
From (1) and (9), we have

\[a_{n+1} \leq a_n + L' \rho_n (\varepsilon_n + \rho_n). \]

(13)

\[\sum_{n=0}^{\infty} \rho_n (\varepsilon_n + \rho_n) < +\infty \Rightarrow a_n \to l \in R. \] As \(a_j \to 0 \), this leads to the conclusion that \(a_n \to 0 \), that is \(x_n \to x^* \).

If the sequence \(\{\rho_n\}\) is defined like in Bruck [5] and \(h \) is a function strongly convex, then we can give an estimation the error due to the following proposition:

Proposition 2.4. In addition to the hypothesis of the theorem 2.3, let’s suppose:

i. \(h \) is strongly convex on \(S \) with parametr \(2\alpha \),

ii. \(\forall n \geq 1, \rho_n = \varepsilon_n = \frac{1}{\alpha(n+\sigma)} \),

with \(\sigma = (\frac{\theta_1 K}{d})^2 \) where \(K = \frac{\lambda}{\alpha} \), \(\theta_1^2 = 2 + \sup_{1 \leq i \leq n} \{\|u_i\|^2\} \) and \(d \) designates the diameter of \(C \).

Then \(\forall n \geq 1 \),

\[\|x_n - x^*\| \leq K d_n \theta_n, \]

where \(d_n := 1/\sqrt{(n + \sigma - 1)} \).

Proof. We have:

\[2\rho_n \lambda^{-1} D_h(x_n, x^*) + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + 2\rho_n \varepsilon_n + \rho_n^2 \|u_n\|^2. \]

Since \(h \) is strongly convex on \(S \), from (3) we have,

\[D_h(x_n, x^*) \geq \alpha \|x_n - x^*\|^2. \]

It follows that:

\[2\rho_n \lambda^{-1} \alpha \|x_n - x^*\|^2 + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + 2\rho_n \varepsilon_n + \rho_n^2 \|u_n\|^2. \]

Let again

\[\|x_{n+1} - x^*\|^2 \leq (1 - 2\rho_n \lambda^{-1} \alpha) \|x_n - x^*\|^2 + \rho_n^2 (2 + \|u_n\|^2). \]
Which leads
\[\| x_{n+1} - x^* \|^2 \leq (1 - \frac{1}{n+\sigma})^2 \| x_n - x^* \|^2 + K^2 \frac{\theta_n^2}{(n+\sigma)^2} \theta_n^2. \] \quad (14)

Let the recurrence hypothesis:
\[\| x_n - x^* \| \leq K d_n \theta_n. \]

That is true in the rank \(n=1 \), cause \(K d_1 \theta_1 = d \).

Let’s show that \(\| x_{n+1} - x^* \| \leq K d_{n+1} \theta_{n+1} \).

We have from (14):
\[\| x_{n+1} - x^* \|^2 \leq (1 - \frac{1}{n+\sigma})^2 d_n^2 \theta_n^2 K^2 + \frac{K^2}{(n+\sigma)^2} \theta_n^2 \]

Let again,
\[\| x_{n+1} - x^* \|^2 \leq \left[(1 - \frac{1}{n+\sigma})^2 d_n^2 + \frac{1}{(n+\sigma)^2} \right] K^2 \theta_n^2 \]

Like:
\[(1 - \frac{1}{n+\sigma})^2 d_n^2 + \frac{1}{(n+\sigma)^2} = \frac{1}{n+\sigma} = d_{n+1}^2 \] \quad (15)

And \(\{ \theta_n^2 \}_n \) is an increasing sequence, it follows that:
\[\| x_{n+1} - x^* \|^2 \leq d_{n+1}^2 \theta_{n+1}^2 K^2, \]

from which the result.

□

Remark 2.5. On the practical plan, this estimation is better than the one obtained by Alart [1], cause it requires the knowledge of upper bound of the sequence \(\{v_n\}_n \).

3. Study of a second algorithm

In this paragraph, we give an algorithm whose convergence is realized without assuming the hypotheses \(H_1 \) and \(H_2 \). Let’s consider the algorithm:

```
Algorithm : A_2(h)
```

```
1: input: x_0 \in C
```
2: for \(n = 0, 1, 2, \ldots \), do
3: pick \(v_n \in \partial \varepsilon_n f(x_n) \), with \(\varepsilon_n > 0 \),
4: \(w_n = x_n - \frac{\rho_n}{\|u_n\| + r} u_n \) with \(r > 0 \), \(\rho_n > 0 \) and
\[
\begin{align*}
 u_n &= \frac{\nabla h(x_n) - \nabla h(x)}{\lambda} + v_n
\end{align*}
\]
5: \(x_{n+1} = P(w_n) \), \(P(w_n) \) is the projection of \(w_n \) on \(C \)
6: end for

The existence of the sequence \(\{x_n\}_n \) generated by \(A_2(h) \) is insured like in the algorithm \(A_1(h) \).

Theorem 3.1. Let’s suppose that :
- i. \(C \) is a closed of \(S \).
- ii. \(\sum_{n=0}^{\infty} \rho_n = +\infty \) and \(\sum_{n=0}^{\infty} \rho_n (\varepsilon_n + \rho_n) < +\infty \),
- iii. \(\{\|v_n\|\}_n \) is bounded.
Then \(\{x_n\}_n \) generated by \(A_2(h) \) converges to the solution \(x^* \) of \((Q) \).

Proof. We have :
\[
\|x_{n+1} - x^*\|^2 \leq \|w_n - x^*\|^2.
\]
Which leads :
\[
\|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 - 2\frac{\rho_n}{\|u_n\| + r} < x_n - x^*, u_n > \rho_n^2 \|u_n\|^2 (\|u_n\| + r)^2
\]
(16)
The relation (6) demonstrated in the section 2. still being verified, we deduce then :
\[
-2\frac{\rho_n}{\|u_n\| + r} < x_n - x^*, u_n > \leq 2\frac{\rho_n \varepsilon_n}{\|u_n\| + r} - 2\frac{\rho_n \lambda^{-1}}{\|u_n\| + r} D_h(x_n, x^*).
\]
(17)
(16) and (17) lead that :
\[
2\frac{\rho_n \lambda^{-1}}{\|u_n\| + r} D_h(x_n, x^*) + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + 2\frac{\rho_n \varepsilon_n}{\|u_n\| + r} + \rho_n^2.
\]
(18)
Let \(M = \max\{\frac{2}{r}, 1\} \), we have then :
\[
2\frac{\rho_n \lambda^{-1}}{\|u_n\| + r} D_h(x_n, x^*) + \|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + M \rho_n (\rho_n + \varepsilon_n).
\]
(19)
We deduce that :
\[\|x_{n+1} - x^*\|^2 \leq \|x_n - x^*\|^2 + M\rho_n(\rho_n + \varepsilon_n). \]

\[\sum_{n=0}^{\infty} \rho_n(\varepsilon_n + \rho_n) < +\infty, \quad \text{leqds thqt the sequence } \{x_n\}_n \text{ is bounde}, \quad \text{so the sequence } \{u_n\}_n \text{ is bounded}. \quad \text{Like in the section 2.}, \quad \text{we show that :} \]

\[\sum_{n=0}^{\infty} \frac{2\lambda^{-1}\rho_n}{\|u_n\|} \cdot D_h(x_n, x^*) < +\infty \]

\{u_n\}_n \text{ is bounded}, \quad \text{so } \sum_{n=0}^{\infty} \rho_n b_n < +\infty, \quad \text{therefore } x_n \longrightarrow x^*, \quad \text{like in the sections 2.} \quad \square \]

By following the same demarche that in the section 2. , we give the following estimation :

Proposition 3.2. In addition to the hypotheses of the theorem 3.1. , let’s suppose :

i. \(h \) is strongly convex on \(S \) with parametr \(2\alpha \).

ii. \(\|x_1 - x^*\| \leq R, \)

ii. \(\forall n \geq 1, \rho_n = \varepsilon_n = \frac{\lambda K}{\alpha(n+\sigma)}, \)

\(K := \sup \{r + \|u_n\|\} \) and \(\sigma = (\frac{L}{K})^2 \) where \(L^2 = (1 + \frac{2}{r}) \frac{\lambda^2 K^2}{\alpha^2}. \)

Then :

\[\forall n \geq 1, \|x_n - x^*\|^2 \leq d_n^2 L^2. \]

where \(d_n := \frac{1}{\sqrt{(n+\sigma - 1)}} \)

Proof . From (18) we have

\[\|x_{n+1} - x^*\|^2 \leq (1 - 2\alpha \rho_n \lambda^{-1} K^{-1})\|x_n - x^*\|^2 + \frac{r}{\lambda^2 \rho_n^2 + \rho_n^2}, \]

Let again ,

\[\|x_{n+1} - x^*\|^2 \leq (1 - \frac{1}{n+\sigma})^2\|x_n - x^*\|^2 + (1 + \frac{2}{r}) \frac{\lambda^2 K^2}{\alpha^2} \frac{1}{(n+\sigma)^2}. \quad (20) \]

Let the hypothesis of the recurrence :

\[\|x_n - x^*\|^2 \leq d_n^2 L^2. \]

That is true for \(n=1 \), because : \(d_1 L = R \) and \(\|x_1 - x^*\| \leq R. \)

Let’s show that : \(\|x_{n+1} - x^*\|^2 \leq d_{n+1}^2 L^2. \) From (20) ,
\[\|x_{n+1} - x^*\|^2 \leq (1 - \frac{1}{n+\sigma})^2 d_n^2 L^2 + \frac{L^2}{(n+\sigma)^2} \]

From (15), we have:
\[\|x_{n+1} - x^*\|^2 \leq L^2((1 - \frac{1}{n+\sigma})^2 d_n^2 + \frac{1}{(n+\sigma)^2}) = L^2 d_{n+1}^2, \]

From where the desired inequality.

\[\square \]

4. Conclusion

The results of convergence of the algorithms making allowing to solve (P) are established by [1] under restrictive conditions such as \(H_1 \) and \(H_2 \). In our analysis, the considered problem (Q) generalises (P) and the results of convergence of the proposed algorithms are established by deleting \(H_2 \) and by lightning \(H_1 \), more precisely:

(i) For \(\lambda = 1 \) and \(h(.) = \frac{1}{2} \| . \|^2 \), \((P) \Leftrightarrow (Q)\)

(ii) With the compacity of the dom \(f \), the algorithm \(A_1(h) \) converges to \(x^* \) solution of (Q) with an estimation of the error, better than the one given by Bruck [5].

(iii) Without the compacity of the dom \(f \), the algorithm \(A_2(h) \) converges to \(x^* \) which improves the results given by Alart [1].

References

Received: September 7, 2019; Published: October 2, 2019