Distribution of Zeros of Appell-type Degenerate Twisted q-Tangent Numbers and Polynomials

Cheon Seoung Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2018 Cheon Seoung Ryoo. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we construct the Appell-type degenerate twisted q-tangent numbers and polynomials associated with the p-adic integral on \mathbb{Z}_p. We also give some explicit formulas for Appell-type degenerate twisted q-tangent numbers and polynomials. Finally, we investigate the distribution of the zero of Appell-type degenerate twisted q-tangent polynomials.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Degenerate tangent numbers and polynomials, degenerate q-tangent numbers and polynomials, twisted q-tangent numbers and polynomials, Appell-type degenerate twisted q-tangent numbers and polynomials.

1 Introduction

L. Carlitz constructed the degenerate Bernoulli polynomials(see [1]). Feng Qi et al.[2] introduced the partially degenerate Bernoulli polynomials of the first kind in p-adic field. P.T. Young derived some properties of degenerate Bernoulli polynomials(see [7]). T. Kim introduced the Barnes’ type multiple degenerate Bernoulli and Euler polynomials(see [3]). Recently, Ryoo introduced the Appell-type degenerate twisted tangent numbers and polynomials(see [5, 6]). In this paper, we introduce Appell-type degenerate twisted
\(q\)-tangent numbers \(T_{n,\lambda}(\lambda)\) and \(q\)-tangent polynomials \(T_{n,\lambda}(x, \lambda)\). Throughout this paper we use the following notations. By \(\mathbb{N}\) we denote the set of natural numbers, \(\mathbb{C}\) denotes the complex number field, and \(\mathbb{Z}_+ = \mathbb{N} \cup \{0\}\). Let \(r\) be a positive integer, and let \(\zeta\) be \(r\)th root of 1. We recall that the degenerate twisted \(q\)-tangent polynomials are defined by the generating function

\[
\sum_{n=0}^{\infty} T_{n,\lambda}(x, \lambda) \frac{t^n}{n!} = \frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1} (1 + \lambda t)^{x/\lambda}.
\] (1.1)

For \(x = 0\), formula (1.1) reduces to the generating function of the degenerate twisted \(q\)-tangent numbers

\[
\sum_{n=0}^{\infty} T_{n,\zeta}(\lambda) \frac{t^n}{n!} = \frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1}.
\] (1.2)

2 Appell-type degenerate twisted \(q\)-tangent polynomials

In this section, we introduce Appell-type degenerate twisted \(q\)-tangent numbers and polynomials, and we obtain explicit formulas for them. Let us define the Appell-type degenerate twisted \(q\)-tangent numbers \(T_{n,\lambda}(\lambda)\) and polynomials \(T_{n,\lambda}(x, \lambda)\) as follows:

\[
\left(\frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1} \right) e^t = \sum_{n=0}^{\infty} T_{n,\lambda}(x, \lambda) \frac{t^n}{n!},
\] (2.1)

\[
\frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1} = \sum_{n=0}^{\infty} T_{n,\lambda}(\lambda) \frac{t^n}{n!}.
\] (2.2)

Note that \((1 + \lambda t)^{1/\lambda}\) tends to \(e^t\) as \(\lambda \to 0\). From (2.1), we note that

\[
\sum_{n=0}^{\infty} \lim_{\lambda \to 0} T_{n,\lambda}(x, \lambda) \frac{t^n}{n!} = \lim_{\lambda \to 0} \left(\frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1} \right) e^t = \left(\frac{2}{\zeta q e^{2t} + 1} \right) e^t = \sum_{n=0}^{\infty} T_{n,\lambda}(x) \frac{t^n}{n!}.
\]

Thus, we get

\[
\lim_{\lambda \to 0} T_{n,\lambda}(x, \lambda) = T_{n,\lambda}(x), (n \geq 0),
\]
where, $T_{n,q,\zeta}(x)$ are the usual twisted q-tangent polynomials (see [4]). From (2.1), we have
\[
\sum_{n=0}^{\infty} T_{n,q,\zeta}(x,\lambda) \frac{t^n}{n!} = \left(\frac{2}{\zeta q(1 + \lambda t)^{2/\lambda} + 1} \right) e^{xt}
\]
\[
= \left(\sum_{m=0}^{\infty} T_{m,q,\zeta}(\lambda) \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} x^l l! \right)
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} T_{l,q,\zeta}(\lambda) x^{n-l} \right) \frac{t^n}{n!}.
\]

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1 For $n \geq 0$, we have
\[
T_{n,q,\zeta}(x,\lambda) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q,\zeta}(\lambda) x^{n-l}.
\]

By (2.1), we see that
\[
\frac{d}{dx} T_{m,q,\zeta}(x,\lambda) = m T_{m-1,q,\zeta}(x,\lambda).
\]

By (2.4) we get
\[
\int_{0}^{x} \frac{d}{dt} \left(\frac{T_{n+1,q,\zeta}(t,\lambda)}{n+1} \right) dt = \int_{0}^{x} T_{n,q,\zeta}(t,\lambda) dt
\]
\[
= \frac{T_{n+1,q,\zeta}(x,\lambda) - T_{n+1,q,\zeta}(\lambda)}{n+1}.
\]

By (2.5), we have the following theorem.

Theorem 2.2 For $n \in \mathbb{Z}_+$, we have
\[
\frac{T_{n+1,q,\zeta}(x,\lambda) - T_{n+1,q,\zeta}(\lambda)}{n+1} = \int_{0}^{x} T_{n,q,\zeta}(t,\lambda) dt.
\]

From (2.2), we can derive the following recurrence relation:
\[
2 = (\zeta q(1 + \lambda t)^{2/\lambda} + 1) \sum_{n=0}^{\infty} T_{n,q,\zeta}(\lambda) \frac{t^n}{n!}
\]
\[
= \zeta q(1 + \lambda t)^{2/\lambda} \sum_{n=0}^{\infty} T_{n,q,\zeta}(\lambda) \frac{t^n}{n!} + \sum_{n=0}^{\infty} T_{n,q,\zeta}(\lambda) \frac{t^n}{n!}
\]
\[
= \left(\sum_{l=0}^{\infty} \zeta q(2|\lambda|) tl! \sum_{m=0}^{\infty} T_{m,q,\zeta}(\lambda) \frac{t^m}{m!} \right) + \sum_{n=0}^{\infty} T_{n,q,\zeta}(\lambda) \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} \zeta q(2|\lambda|) T_{l,q,\zeta}(\lambda) \right) \frac{t^n}{n!}.\]
By comparing of the coefficients \(\frac{n^n}{n!} \) on the both sides of (2.6), we have the following theorem.

Theorem 2.3 For \(n \in \mathbb{Z}_+ \), we have

\[
\zeta_q \sum_{l=0}^{n} \binom{n}{l} (2|\lambda)_{l} T_{n-l,q,\zeta}(\lambda) + T_{n,q,\zeta}(\lambda) = \begin{cases}
2, & \text{if } n = 0, \\
0, & \text{if } n \neq 0.
\end{cases}
\]

By (2.1), we get

\[
\sum_{n=0}^{\infty} T_{n,q,\zeta}(1-x,\lambda) \frac{t^n}{n!} = \frac{2}{\zeta_q(1+\lambda t)^{2/\lambda} + 1} e^{(1-x)t}
= \frac{2}{(1+\lambda t)^{2/\lambda} + 1} e^t e^{-xt}
= \left(\sum_{n=0}^{\infty} T_{n,q,\zeta}(1,\lambda) \frac{t^n}{n!} \right) \left(\sum_{l=0}^{\infty} (-x)^{l} \frac{t^l}{l!} \right)
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} T_{n-l,q,\zeta}(1,\lambda)(-x)^{l} \right) \frac{t^n}{n!}.
\]

By comparing of the coefficients \(\frac{n^n}{n!} \) on the both sides of (2.7), we have the following theorem.

Theorem 2.4 For \(n \in \mathbb{Z}_+ \), we have

\[
T_{m,q,\zeta}(1-x,\lambda) = \sum_{l=0}^{n} \binom{n}{l} T_{n-l,q,\zeta}(1,\lambda)(-x)^{l}.
\]

Again, from (2.2), we have

\[
\sum_{n=0}^{\infty} T_{n,q,\zeta}(x+y,\lambda) \frac{t^n}{n!} = \frac{2}{(1+\lambda t)^{2/\lambda} + 1} e^{(x+y)t}
= \frac{2}{\zeta_q(1+\lambda t)^{2/\lambda} + 1} e^t e^{yt}
= \left(\sum_{n=0}^{\infty} T_{m,q,\zeta}(x,\lambda) \frac{t^n}{n!} \right) \left(\sum_{n=0}^{\infty} y^n \frac{t^n}{n!} \right)
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} T_{l,q,\zeta}(x,\lambda)y^{n-l} \right) \frac{t^n}{n!}.
\]

Therefore, by (2.8), we have the following theorem.
Theorem 2.5 For \(n \in \mathbb{Z}_+ \), we have
\[
T_{n,q,\zeta}(x + y, \lambda) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q,\zeta}(x, \lambda) y^{n-l}.
\]

Then, it is easy to deduce that \(T_{n,q,\zeta}(x, \lambda) \) are polynomials of degree \(n \). Here is the list of the first Appell-type degenerate twisted \(q \)-tangent’s polynomials.

\[
T_{0,q,\zeta}(x, \lambda) = \frac{2}{1 + \zeta q},
\]

\[
T_{1,q,\zeta}(x, \lambda) = -\frac{4\zeta q}{(1 + \zeta q)^2} + \frac{2x}{(1 + \zeta q)^2} + \frac{2\zeta qx}{(1 + \zeta q)^2},
\]

\[
T_{2,q,\zeta}(x, \lambda) = -\frac{8\zeta q}{(1 + \zeta q)^3} + \frac{4\lambda q}{(1 + \zeta q)^3} + \frac{8\zeta^2 q^2}{(1 + \zeta q)^3} + \frac{4\lambda q^2}{(1 + \zeta q)^3} - \frac{2x^2}{(1 + \zeta q)^3} - \frac{8\zeta qx}{(1 + \zeta q)^3} - \frac{2\lambda q^3}{(1 + \zeta q)^3}.
\]

\[
T_{3,q,\zeta}(x, \lambda) = -\frac{16\zeta q}{(1 + \zeta q)^4} + \frac{24\lambda q}{(1 + \zeta q)^4} - \frac{8\lambda^2 \zeta q}{(1 + \zeta q)^4} + \frac{64\zeta^2 q^2}{(1 + \zeta q)^4} - \frac{16\lambda^2 q^2}{(1 + \zeta q)^4} - \frac{16\zeta^3 q^3}{(1 + \zeta q)^4} - \frac{24\lambda q^2}{(1 + \zeta q)^4} - \frac{12\lambda q^3}{(1 + \zeta q)^4} - \frac{24\zeta q^2 x}{(1 + \zeta q)^4} - \frac{12\lambda q^2 x}{(1 + \zeta q)^4} - \frac{2\lambda q^3 x}{(1 + \zeta q)^4} + \frac{2x^3}{(1 + \zeta q)} - \frac{2x^2}{(1 + \zeta q)}.
\]

3 Zeros of the Appell-type degenerate twisted \(q \)-tangent polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the Appell-type degenerate twisted \(q \)-tangent polynomials \(T_{n,q,\zeta}(x, \lambda) \).

We investigate the zeros of the \(T_{n,q,\zeta}(x, \lambda) \) by using a computer. Let \(\zeta = e^{\frac{2\pi i}{N}} \) in \(\mathbb{C} \). We plot the zeros of the Appell-type degenerate twisted \(q \)-tangent polynomials \(T_{n,q,\zeta}(x, \lambda) \) for \(n = 30, N = 1, 3, 5, 7 \) and \(x \in \mathbb{C} \)(Figure 1). In Figure 1(top-left), we choose \(n = 30, q = 1/2, \lambda = 1/10, \) and \(\zeta = e^{\frac{2\pi i}{5}} \). In Figure 1(top-right), we choose \(n = 30, q = 1/2, \lambda = 1/10, \) and \(\zeta = e^{\frac{2\pi i}{10}} \). In Figure 1(bottom-left), we choose \(n = 30, q = 1/2, \lambda = 1/10, \) and \(\zeta = e^{\frac{2\pi i}{15}} \). In Figure 1(bottom-right), we choose \(n = 30, q = 1/2, \lambda = 1/10, \) and \(\zeta = e^{\frac{2\pi i}{24}} \). Stacks of zeros of \(T_{n,q,\zeta}(x, \lambda) \) for \(1 \leq n \leq 30 \) from a 3-D structure are presented(Figure 2). In Figure 2(left), we choose \(1 \leq n \leq 30 \) and \(\zeta = e^{\frac{2\pi i}{2}}, q = 1/2, \lambda = 1/10. \) In Figure 2(right), we choose \(1 \leq n \leq 30 \) and \(\zeta = e^{\frac{2\pi i}{3}}, q = 1/2, \lambda = 1/10. \) Our numerical results for approximate solutions of real zeros of \(T_{n,q,\zeta}(x, \lambda) \) are displayed(Tables 1, 2).
\begin{figure}
\centering
\includegraphics[width=\textwidth]{zeros.png}
\caption{Zeros of $T_{n,q,\zeta}(x, \lambda)$}
\end{figure}

Table 1. Numbers of real and complex zeros of $T_{n,q,\zeta}(x, \lambda)$

<table>
<thead>
<tr>
<th>degree n</th>
<th>$\zeta = e^{\frac{2\pi i}{n}}, q = \frac{1}{2}, \lambda = \frac{1}{10}$</th>
<th>$\zeta = e^{\frac{2\pi i}{n}}, q = \frac{1}{2}, \lambda = \frac{1}{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>real zeros</td>
<td>complex zeros</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
For $q = \frac{1}{2}$ and $\lambda = \frac{1}{10}$, a plot of real zeros of $T_{n,q,\zeta}(x, \lambda)$ for $1 \leq n \leq 30$ structure are presented (Figure 3).

We observe a remarkably regular structure of the complex roots of the Appell-type degenerate twisted q-tangent polynomials $T_{n,q,\zeta}(x, \lambda)$ (see Table 1). Next, we calculated an approximate solution satisfying $T_{n,q,\zeta}(x, \lambda) = 0$ for $q = \frac{1}{2}, \lambda = \frac{1}{10}, x \in \mathbb{C}$. The results are given in Table 2.

Table 2. Approximate solutions of $T_{n,q,\zeta}(x, \lambda) = 0, w = e^{2\pi i}, x \in \mathbb{C}$

<table>
<thead>
<tr>
<th>degree n</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.59968 + 0.41731i$</td>
</tr>
<tr>
<td>2</td>
<td>$-0.38816 + 0.26932i, 1.5875 + 0.5653i$</td>
</tr>
<tr>
<td>3</td>
<td>$-1.03755 - 0.00382i, 0.42299 + 0.70680i, 2.4136 + 0.5490i$</td>
</tr>
<tr>
<td>4</td>
<td>$-1.4774 - 0.4068i, -0.56189 + 0.72195i$ $1.3325 + 0.9280i, 3.1055 + 0.4261i$</td>
</tr>
</tbody>
</table>
4 Conclusions and future developments

This study introduced the Appell-type degenerate twisted q-tangent polynomials. We have derived several formulas for the Carlitz-type (h, q)-tangent numbers and polynomials. Some properties for the Appell-type degenerate twisted q-tangent polynomials are also obtained. Moreover, the results of [5] can be derived from ours as special cases when $q \to 1$. By numerical experiments, we will make a series of the following conjectures: Many more values of n have been checked. It still remains unknown if the conjecture holds or fails for any value n (see Figure 1, Table 1). Prove or disprove that $T_{n,q,ζ}(x, λ) = 0$ has n distinct solutions. In the notations: $R_{T_{n,q,ζ}(x, λ)}$ denotes the number of real zeros of $T_{n,q,ζ}(x, λ)$ lying on the real plane $Im(x) = 0$ and $C_{T_{n,q,ζ}(x, λ)}$ denotes the number of complex zeros of $T_{n,q,ζ}(x, λ)$. Since n is the degree of the polynomial $T_{n,q,ζ}(x, λ)$, the number of real zeros $R_{T_{n,q,ζ}(x, λ)}$ lying on the real plane $Im(x) = 0$ is then $R_{T_{n,q,ζ}(x, λ)} = n - C_{T_{n,q,ζ}(x, λ)}$. See Table 1 for tabulated values of $R_{T_{n,q,ζ}(x, λ)}$ and $C_{T_{n,q,ζ}(x, λ)}$.

References

Received: October 19, 2018; Published: November 1, 2018