International Journal of Mathematical Analysis
Vol. 12, 2018, no. 12, 585-594
HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81067

Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients

Robert Frontczak ${ }^{1}$
Landesbank Baden-Württemberg (LBBW)
Am Hauptbahnhof 2, 70173 Stuttgart, Germany

Copyright © 2018 Robert Frontczak. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For $a, b \in \mathbb{R}$ we study binomial sums of the form $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} B_{j k+m}$ and $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} C_{j k+m}$, where $\left(B_{n}\right)_{n \geq 0}$ and $\left(C_{n}\right)_{n \geq 0}$ are Balancing and Lucas-Balancing numbers, respectively. We provide closed form solutions for many types of these sums. We also express these sums in a different combinatorial way. This enables us to state new combinatorial expressions for B_{n} and C_{n}.

Mathematics Subject Classification: 11B37, 11B65, 05A15

Keywords: Binomial Sum, Balancing number, Lucas-Balancing number

1 Introduction and Preliminaries

In 1999, Behera and Panda [1] introduced the notion of Balancing numbers $\left(B_{n}\right)_{n \geq 0}$ as solutions to a certain Diophantine equation. They have shown that a Balancing number B_{n} satisfies the recurrence relation $B_{n+1}=6 B_{n}-$ $B_{n-1}, n \geq 1$, with initial terms $B_{0}=0$ and $B_{1}=1$. Another result about Balancing numbers is, that B_{n} is a Balancing number, if and only if B_{n}^{2} is a triangular number, i.e., $8 B_{n}^{2}+1$ is a perfect square. The sequence $C_{n}=$ $\sqrt{8 B_{n}^{2}+1}$ is called a Lucas-Balancing number. It satisfies the same recurrence

[^0]relation as B_{n} : $C_{n+1}=6 C_{n}-C_{n-1}, n \geq 1$, with initial terms $C_{0}=1$ and $C_{1}=3$. The Binet forms for B_{n} and C_{n} are given by, respectively,
$$
B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad C_{n}=\frac{1}{2}\left(\lambda_{1}^{n}+\lambda_{2}^{n}\right)
$$
with $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$.
Ab initio, both B_{n} and C_{n} have gained popularity and are still the subject of research (see for instance [2], [4]-[10] and [12]-[16]). $\left(B_{n}\right)_{n \geq 0}$ is sequence A001109 in the OEIS [17], whereas $\left(C_{n}\right)_{n \geq 0}$ has the id-number A001541 in OEIS.

Expressions for binomial sums involving B_{n} and C_{n} may be derived using their Binet forms. The maybe most obvious examples are

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} B_{2 k+m}=6^{n} B_{n+m} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k} C_{2 k+m}=6^{n} C_{n+m} \tag{1}
\end{equation*}
$$

Other examples appear in [8] and [16]. Some hybrid variants are stated in [6]. In this article, we study the four parameter sums

$$
\begin{equation*}
S_{n}(B)=S_{n}(B ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} B_{j k+m} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}(C)=S_{n}(C ; a, b, j, m)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} C_{j k+m} \tag{3}
\end{equation*}
$$

where $a, b \in \mathbb{R}$ and $j, m \in \mathbb{N}$.

2 A First Result

The first theorem may be seen as an analogue of results from [3]. See also [11]. The theorem answers the following question: Take two integers p and q with $p \neq q$. For what values of a and b does the identity

$$
\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} B_{q k+m}=B_{p n+m}
$$

hold? We also find the answer if B_{n} is replaced by C_{n}. We will need the following lemmas:

Lemma 2.1. The generating functions for the sequences $\left(B_{j n+m}\right)_{n \geq 0}$ and $\left(C_{j n+m}\right)_{n \geq 0}$ are given by

$$
\begin{equation*}
f_{B_{j n+m}}(x)=\sum_{n=0}^{\infty} B_{j n+m} x^{n}=\frac{B_{m}+B_{j-m} x}{1-2 C_{j} x+x^{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{C_{j n+m}}(x)=\sum_{n=0}^{\infty} C_{j n+m} x^{n}=\frac{C_{m}-C_{j-m} x}{1-2 C_{j} x+x^{2}} \tag{5}
\end{equation*}
$$

PROOF: The proof is obvious using the Binet forms and the geometric series. Another proof can be found in [8].

Lemma 2.2. The generating functions for $S_{n}(B)$ and $S_{n}(C)$ are

$$
\begin{equation*}
f_{S_{n}(B)}(x)=\sum_{n=0}^{\infty} S_{n}(B) x^{n}=\frac{B_{m}+\left(a B_{j-m}-b B_{m}\right) x}{1-\left(2 b+2 a C_{j}\right) x+\left(a^{2}+2 C_{j} a b+b^{2}\right) x^{2}}, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{S_{n}(C)}(x)=\sum_{n=0}^{\infty} S_{n}(C) x^{n}=\frac{C_{m}-\left(a C_{j-m}+b C_{m}\right) x}{1-\left(2 b+2 a C_{j}\right) x+\left(a^{2}+2 C_{j} a b+b^{2}\right) x^{2}} . \tag{7}
\end{equation*}
$$

PROOF: Applying Theorem 1 from [11] it follows that

$$
f_{S_{n}(B)}(x)=\frac{1}{1-b x} f_{B_{j n+m}}\left(\frac{a x}{1-b x}\right),
$$

and

$$
f_{S_{n}(C)}(x)=\frac{1}{1-b x} f_{C_{j n+m}}\left(\frac{a x}{1-b x}\right) .
$$

Using the equations for $f_{B_{j n+m}}(x)$ and $f_{C_{j n+m}}(x)$ form the first Lemma and simplifying proves the relations.

Theorem 2.3. We have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} B_{q k+m}=B_{p n+m} \tag{8}
\end{equation*}
$$

if and only if $a=B_{p} / B_{q}$ and $b=B_{q-p} / B_{q}$. Analogously, it holds that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} C_{q k+m}=C_{p n+m} \tag{9}
\end{equation*}
$$

if and only if $a=B_{p} / B_{q}$ and $b=B_{q-p} / B_{q}$.
PROOF: Comparing (4) with (6) we get the following system of equations:

$$
\begin{aligned}
C_{p} & =b+a C_{q}, \\
B_{p-m} & =a B_{q-m}-b B_{m}, \\
1 & =a^{2}+2 C_{j} a b+b^{2} .
\end{aligned}
$$

The first two equations produce

$$
a=\frac{B_{p-m}+C_{p} B_{m}}{B_{q-m}+C_{q} B_{m}}=\frac{B_{p}}{B_{q}}
$$

where we have used $B_{n-m}=B_{n} C_{m}-C_{n} B_{m}$. This gives

$$
b=C_{p}-C_{q} \frac{B_{p}}{B_{q}}=\frac{B_{q-p}}{B_{q}} .
$$

The verification of the third equation leads to $B_{q}^{2}-B_{p}^{2}=B_{q+p} B_{q-p}$, which is known as the Catalan identity for Balancing numbers. The proof of the second part of the theorem is very similar and omitted.

Choosing $p=1$ and $q=2$ gives (1). For $p=2$ and $q=1$ we obtain
$\sum_{k=0}^{n}\binom{n}{k}(-6)^{k} B_{k+m}=(-1)^{n} B_{2 n+m} \quad$ and $\quad \sum_{k=0}^{n}\binom{n}{k}(-6)^{k} C_{k+m}=(-1)^{n} C_{2 n+m}$.
The first example in (10) appears in [16]. It is worth to remark that the candidates in (1) and (10) are connected via the binomial transform. As a further example, we choose $q=3$ and $p=1$ and the result is
$\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{6}\right)^{k} B_{3 k+m}=\left(\frac{35}{6}\right)^{n} B_{n+m} \quad$ and $\quad \sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{6}\right)^{k} C_{3 k+m}=\left(\frac{35}{6}\right)^{n} C_{n+m}$.

3 Some Special Sums

From (6) and (7) evaluations of some special binomial sums can be inferred.
Theorem 3.1. We have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{C_{j}}\right)^{k} B_{j k+m}= \begin{cases}8^{\frac{n}{2}} B_{m}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is even } \tag{12}\\ -8^{\frac{n-1}{2}} C_{m}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is odd }\end{cases}
$$

Especially,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{C_{j}}\right)^{k} B_{j k}= \begin{cases}0 & \text { if } n \text { is even } \tag{13}\\ -8^{\frac{n-1}{2}}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is odd }\end{cases}
$$

PROOF: If we choose $a=-b / C_{j}$, then $\left(2 b+2 a C_{j}\right) x$ vanishes from (6). Next,

$$
a^{2}+2 C_{j} a b+b^{2}=\frac{b^{2}\left(1-C_{j}^{2}\right)}{C_{j}^{2}}=-b^{2} \frac{8 B_{j}^{2}}{C_{j}^{2}},
$$

and

$$
a B_{j-m}-b B_{m}=-b \frac{B_{j} C_{m}}{C_{j}}
$$

Hence,

$$
f_{S_{n}(B)}(x)=\sum_{n=0}^{\infty} B_{m}\left(\frac{8 B_{j}^{2}}{C_{j}^{2}}\right)^{n} b^{2 n} x^{2 n}-\sum_{n=0}^{\infty} \frac{B_{j} C_{m}}{C_{j}}\left(\frac{8 B_{j}^{2}}{C_{j}^{2}}\right)^{n} b^{2 n+1} x^{2 n+1} .
$$

Comparing the coefficients of x^{n} proves the stated identity.
The companion result for Lucas-Balancing numbers is stated without proof.
Theorem 3.2. We have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{C_{j}}\right)^{k} C_{j k+m}= \begin{cases}8^{\frac{n}{2}} C_{m}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is even } \tag{14}\\ -8^{\frac{n+1}{2}} B_{m}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is odd }\end{cases}
$$

Especially,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(\frac{1}{C_{j}}\right)^{k} C_{j k}= \begin{cases}8^{\frac{n}{2}}\left(\frac{B_{j}}{C_{j}}\right)^{n} & \text { if } n \text { is even } \tag{15}\\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Theorem 3.3. For $n \geq 1$ the following identities are valid:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \lambda_{1}^{j k} B_{j k+m}=(-1)^{n}(2 \sqrt{8})^{n-1} \lambda_{1}^{j n+m} B_{j}^{n} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \lambda_{2}^{j k} B_{j k+m}=-(2 \sqrt{8})^{n-1} \lambda_{2}^{j n+m} B_{j}^{n} \tag{17}
\end{equation*}
$$

PROOF: To derive the identities we choose a such that $a^{2}+2 C_{j} a b+b^{2}=0$ in (6). We have

$$
a_{1 / 2}(j, b)=b\left(-C_{j} \pm \sqrt{C_{j}^{2}-1}\right)=b\left(-C_{j} \pm \sqrt{8} B_{j}\right) .
$$

Thus, $a_{1}(j, b)=-b \lambda_{2}^{j}$ and $a_{2}(j, b)=-b \lambda_{1}^{j}$. Also,

$$
2 b+2 a_{1}(j, b) C_{j}=b 2 \sqrt{8} \lambda_{2}^{j} B_{j}
$$

and

$$
2 b+2 a_{2}(j, b) C_{j}=-b 2 \sqrt{8} \lambda_{1}^{j} B_{j}
$$

This gives

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}\left(a_{2}(b, j)\right)^{k} b^{n-k} B_{j k+m} x^{n}=B_{m} x^{0} \\
& +\sum_{n=1}^{\infty}\left((-1)^{n}\left(2 \sqrt{8} B_{m} \lambda_{1}^{j} B_{j}+B_{m}+\lambda_{1}^{j} B_{j-m}\right)\left(2 \sqrt{8} \lambda_{1}^{j} B_{j}\right)^{n-1}\right) b^{n} x^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}\left(a_{1}(b, j)\right)^{k} b^{n-k} B_{j k+m} x^{n}=B_{m} x^{0} \\
& +\sum_{n=1}^{\infty}\left(\left(2 \sqrt{8} B_{m} \lambda_{2}^{j} B_{j}-B_{m}-\lambda_{2}^{j} B_{j-m}\right)\left(2 \sqrt{8} \lambda_{2}^{j} B_{j}\right)^{n-1}\right) b^{n} x^{n}
\end{aligned}
$$

Finally, the Binet form for B_{n} can be used to show that

$$
2 \sqrt{8} B_{m} \lambda_{1}^{j} B_{j}+B_{m}+\lambda_{1}^{j} B_{j-m}=\lambda_{1}^{j+m} B_{j}
$$

and

$$
2 \sqrt{8} B_{m} \lambda_{2}^{j} B_{j}-B_{m}-\lambda_{2}^{j} B_{j-m}=-\lambda_{2}^{j+m} B_{j} .
$$

Corollary 3.4. For $n \geq 1$ we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} B_{j k} B_{j k+m}= \begin{cases}2(2 \sqrt{8})^{n-2} B_{j}^{n} C_{j n+m} & \text { if } n \text { is even } \tag{18}\\ -(2 \sqrt{8})^{n-1} B_{j}^{n} B_{j n+m} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} C_{j k} B_{j k+m}= \begin{cases}\frac{1}{2}(2 \sqrt{8})^{n} B_{j}^{n} B_{j n+m} & \text { if } n \text { is even } \tag{19}\\ -(2 \sqrt{8})^{n-1} B_{j}^{n} C_{j n+m} & \text { if } n \text { is odd } .\end{cases}
$$

The analogue results for C_{n} can be inferred from (7) and are stated without proof.

Theorem 3.5. For $n \geq 1$ the following identities are valid:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \lambda_{1}^{j k} C_{j k+m}=\frac{(-1)^{n}}{2}(2 \sqrt{8})^{n} \lambda_{1}^{j n+m} B_{j}^{n} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \lambda_{2}^{j k} C_{j k+m}=\frac{1}{2}(2 \sqrt{8})^{n} \lambda_{2}^{j n+m} B_{j}^{n} \tag{21}
\end{equation*}
$$

Corollary 3.6. For $n \geq 1$ we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} B_{j k} C_{j k+m}= \begin{cases}\frac{1}{2}(2 \sqrt{8})^{n} B_{j}^{n} B_{j n+m} & \text { if } n \text { is even } \tag{22}\\ -(2 \sqrt{8})^{n-1} B_{j}^{n} C_{j n+m} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} C_{j k} C_{j k+m}= \begin{cases}\frac{1}{2}(2 \sqrt{8})^{n} B_{j}^{n} C_{j n+m} & \text { if } n \text { is even } \tag{23}\\ -\frac{1}{4}(2 \sqrt{8})^{n+1} B_{j}^{n} B_{j n+m} & \text { if } n \text { is odd }\end{cases}
$$

Note that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} C_{j k} B_{j k+m}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} B_{j k} C_{j k+m} \tag{24}
\end{equation*}
$$

4 Combinatorial Identities for $S_{n}(B)$ and $S_{n}(C)$

Theorem 4.1. The following combinatorial identity is valid
$S_{n}(B)=\delta(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-1-2 l}\left(\frac{n}{n-2 l}\left(b+a C_{j}\right) B_{m}+a C_{m} B_{j}\right)$,
where $u=2\left(b+a C_{j}\right), v=a^{2}-b^{2}$ and

$$
\delta(n)= \begin{cases}B_{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor} & \text { if } n \text { is even } \tag{26}\\ 0 & \text { if } n \text { is odd. }\end{cases}
$$

PROOF: For notational brevity we set $w=a B_{j-m}-b B_{m}$. Then, again from (6) we have

$$
\begin{aligned}
f_{S_{n}(B)}(x)= & \left(B_{m}+w x\right) \sum_{n=0}^{\infty} x^{n}(u-(v+b u) x)^{n} \\
= & B_{m} \sum_{n=0}^{\infty} \sum_{s=0}^{n}\binom{n}{s}(-1)^{s}(v+b u)^{s} u^{n-s} x^{n+s} \\
& +w \sum_{n=0}^{\infty} \sum_{s=0}^{n}\binom{n}{s}(-1)^{s}(v+b u)^{s} u^{n-s} x^{n+s+1} \\
= & B_{m} \sum_{r=0}^{\infty} \sum_{l=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\binom{r-l}{l}(-1)^{l}(v+b u)^{l} u^{r-2 l} x^{r} \\
& +w \sum_{r=1}^{\infty} \sum_{l=0}^{\left.\frac{r-1}{2}\right\rfloor}\binom{r-l-1}{l}(-1)^{l}(v+b u)^{l} u^{r-2 l-1} x^{r} .
\end{aligned}
$$

Comparing the coefficients gives the relation
$S_{n}(B)=\delta(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{l}(v+b u)^{l} u^{n-2 l-1}\left(u B_{m}\binom{n-l}{l}+w\binom{n-l-1}{l}\right)$,
where $\delta(n)$ is defined above. We have $w=-\frac{1}{2} u B_{m}+a C_{m} B_{j}$. The statement now follows since

$$
\binom{n-l}{l}=\frac{n-l}{n-2 l}\binom{n-l-1}{l}
$$

and

$$
\binom{n-l}{l}-\frac{1}{2}\binom{n-l-1}{l}=\frac{n}{2(n-2 l)}\binom{n-l-1}{l} .
$$

The analogue result for $S_{n}(C)$ is stated without proof.
Theorem 4.2. The following combinatorial identity is valid
$S_{n}(C)=\delta^{*}(n)+\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l}(v+b u)^{l} u^{n-1-2 l}\left(\frac{n}{n-2 l}\left(b+a C_{j}\right) C_{m}+8 a B_{m} B_{j}\right)$,
where $u=2\left(b+a C_{j}\right), v=a^{2}-b^{2}$ and

$$
\delta^{*}(n)= \begin{cases}C_{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}(v+b u)^{\left\lfloor\frac{n}{2}\right\rfloor} & \text { if } n \text { is even } \tag{28}\\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Identities (25) and (27) contain a range of combinatorial formulas for B_{n} and C_{n} as special cases. We give three examples of such formulas: From $S_{n}(B ; 1,1,2,0)$ we can easily deduce the known identity

$$
\begin{equation*}
B_{n}=\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l} 6^{n-2 l-1} \tag{29}
\end{equation*}
$$

Similarly, $S_{n}(C ; 1,1,2,0)$ gives

$$
\begin{equation*}
C_{n}=3 \sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-l-1}{l}(-1)^{l} 6^{n-2 l-1} \frac{n}{n-2 l}+d(n), \tag{30}
\end{equation*}
$$

where

$$
d(n)= \begin{cases}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Also, using the relations (see [8])

$$
\begin{equation*}
\sum_{k=0}^{2 n}\binom{2 n}{k}(-1)^{k} B_{k}=4^{n} B_{n} \quad \text { and } \quad \sum_{k=0}^{2 n}\binom{2 n}{k}(-1)^{k} C_{k}=4^{n} C_{n} \tag{31}
\end{equation*}
$$

we get from $S_{n}(B ; 1,-1,1,0)$ and $S_{n}(C ; 1,-1,1,0)$ the combinatorial results ($n \geq 1$)

$$
\begin{equation*}
B_{n}=\sum_{l=0}^{\left\lfloor\frac{2 n-1}{2}\right\rfloor}\binom{2 n-l-1}{l} 4^{n-l-1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}=1+2 \sum_{l=0}^{\left\lfloor\frac{2 n-1}{2}\right\rfloor}\binom{2 n-l-1}{l} 4^{n-l-1} \frac{n}{n-l} \tag{33}
\end{equation*}
$$

Finally, $S_{n}(B ; 3,-1,1,0)$ and $S_{n}(C ; 3,-1,1,0)$ can be combined with two other identities from [8] to get

$$
\begin{gather*}
B_{2 n}=3 \sum_{l=0}^{\left\lfloor\frac{2 n-1}{2}\right\rfloor}\binom{2 n-l-1}{l} 2^{5(n-l)-4}, \tag{34}\\
B_{2 n+1}=\sum_{l=0}^{n}\binom{2 n-l}{l} 2^{5(n-l)} \frac{2 n+1}{2(n-l)+1}, \tag{35}\\
C_{2 n}=\sum_{l=0}^{\left\lfloor\frac{2 n-1}{2}\right\rfloor}\binom{2 n-l-1}{l} 2^{5(n-l)-1} \frac{n}{n-l}+1, \tag{36}
\end{gather*}
$$

and

$$
\begin{equation*}
C_{2 n+1}=3 \sum_{l=0}^{n}\binom{2 n-l}{l} 2^{5(n-l)} . \tag{37}
\end{equation*}
$$

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fibonacci Quart., 37 (1999), no. 2, 98-105.
[2] A. Berczes, K. Liptai and I. Pink, On generalized balancing sequences, The Fibonacci Quart., 48 (2010), no. 2, 121-128.
[3] L. Carlitz, Some Classes of Fibonacci Sums, The Fibonacci Quart., 16 (1978), no. 5, 411-426.
[4] P. Catarino, H. Campos and P. Vasco, On some identities for balancing and cobalancing numbers, Anal. Math. et Inf., 45 (2015), 11-24.
[5] R. K. Davala and G. K. Panda, On Sum and Ratio Formulas for Balancing Numbers, J. Ind. Math. Soc., 82 (2015), no. 1-2, $23-32$.
[6] R. Frontczak, A Note on Hybrid Convolutions Involving Balancing and Lucas-Balancing Numbers, Appl. Math. Sci., 12 (2018), no. 25, 1201 1208. https://doi.org/10.12988/ams.2018.87111
[7] R. Keskin and O. Karaatli, Some new properties of balancing numbers and square triangular numbers, J. Integer Seq., 15 (2012), Article 12.1.4.
[8] T. Komatsu and G. K. Panda, On several kinds of sums of balancing numbers, Preprint, (2018), arXiv:1608.05918v3 [math.NT] 11 Jan 2018.
[9] K. Liptai, Fibonacci Balancing numbers, The Fibonacci Quart., 42 (2004), no. 4, 330-340.
[10] K. Liptai, F. Luca, A. Pintér and L. Szalay, Generalized balancing numbers, Indagationes Mathematicae, 20 (2009), 87-100.
https://doi.org/10.1016/s0019-3577(09)80005-0
[11] P. Haukkanen, Formal Power Series for Binomial Sums of Sequences of Numbers, The Fibonacci Quart., 31 (1993), no. 1, 28-31.
[12] G. K. Panda and R. K. Davala, Perfect Balancing Numbers, The Fibonacci Quart., 53 (2015), no. 3, 261-264.
[13] G. K. Panda, T. Komatsu and R. K. Davala, Reciprocal Sums of Sequences Involving Balancing and Lucas-Balancing Numbers, Math. Reports, 20 (2018), no. 2, 201-214.
[14] P. K. Ray, Some congruences for balancing and Lucas-balancing numbers and their applications, Integers, 14 (2014), \#A8.
[15] P. K. Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17 (2015), no. 2, 225-233.
[16] P. K. Ray and J. Sahu, Generating functions for certain Balancing and Lucas-Balancing numbers, Palestine J. Math., 5 (2016), no. 2, 122-129.
[17] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at https://oeis.org.

Received: October 21, 2018; Published: November 22, 2018

[^0]: ${ }^{1}$ Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not necessarily reflect the views of LBBW.

