Existence of Solutions for a Class of $p(x)$-Biharmonic Problems without (A-R) Type Conditions

G.A. Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran, Babolsar, Iran

N.T. Chung
Department of Mathematics, Quang Binh University
312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam

M. Mirzapour
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran, Babolsar, Iran

Copyright © 2018 G.A. Afrouzi, N.T. Chung and M. Mirzapour. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the existence and multiplicity of nontrivial solutions for a class of $p(x)$-biharmonic problems. The interesting point lines in the fact that we do not need the usual Ambrosetti-Rabinowitz type condition for the nonlinear term f. The proofs are essentially based on the mountain pass theorem and its \mathbb{Z}_2 symmetric version.

Mathematics Subject Classification: 35P30, 35D05, 35J60

Keywords: $p(x)$-biharmonic problems, Mountain pass theorem, (A-R) type condition
1 Introduction and preliminary results

In this paper, we are interested in the existence of nontrivial solutions for a class of $p(x)$-biharmonic problems

$$\begin{cases}
\Delta^2_{p(x)} u = K(x)f(u), & x \in \Omega, \\
u = \Delta u = 0, & x \in \Omega,
\end{cases}$$

(1)

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, $N \geq 2$, $p \in C(\bar{\Omega})$ with $\max\{2, \frac{2N}{N+2}\} < p^- := \inf_{x \in \Omega} p(x) \leq p^+ := \sup_{x \in \Omega} p(x)$, and $\Delta^2_{p(x)} u = \Delta(|\Delta u|^{p(x)-2}\Delta u)$ is the operator of fourth order called the $p(x)$-biharmonic operator, $K \in L^\infty(\Omega)$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function.

Recently, Navier problems involving the biharmonic operator have been studied by some authors, see [5, 6, 14] and references therein. In [4], A. Ayoujil and A.R. El Amrouss first studied the spectrum of a fourth order elliptic equation with variable exponent. After that, many authors studied the existence of solutions for problems of this type, see for examples [1, 3, 11, 12, 13, 16]. In [3], A. El Amrouss et al. used the mountain pass theorem to study the existence of nontrivial solutions. For this purpose, the authors need the Ambrosetti-Rabinowitz (A-R) type condition (see [2]) to prove the energy functional satisfies the Palais-Smale (PS) condition. In [12, 16], the authors studied the multiplicity of solutions for a class of Navier boundary value problems involving the $p(x)$-biharmonic operator. We also refer the readers to recent papers [1, 11, 13], in which the authors study the existence of eigenvalues of the $p(x)$-biharmonic operator. Motivated by the ideas introduced in [7] and some properties of the $p(x)$-biharmonic operator in [3, 4, 16], we study the existence and multiplicity of nontrivial solutions for a class of $p(x)$-biharmonic problems without (A-R) type conditions. Our result here is different from one introduced in the previous paper [15].

For the reader’s convenience, we recall some necessary background knowledge and propositions concerning the generalized Lebesgue-Sobolev spaces. We refer the reader to the papers [8, 9, 10]. Let Ω be a bounded domain of \mathbb{R}^N, denote $C_+(\bar{\Omega}) := \{p(x); p(x) \in C(\bar{\Omega}), p(x) > 1, \forall x \in \bar{\Omega}\}$, $p^+ := \max_{x \in \Omega} p(x)$, $p^- := \min_{x \in \Omega} p(x)$ and define the space

$L^{p(x)}(\Omega) := \left\{ u : \Omega \to \mathbb{R}; u \text{ is a measurable such that } \int_\Omega |u(x)|^{p(x)} \, dx < +\infty \right\},$

with the norm

$$\|u\|_{L^{p(x)}(\Omega)} = |u|_{p(x)} := \inf \left\{ \mu > 0; \int_\Omega \left| \frac{u(x)}{\mu} \right|^{p(x)} \, dx \leq 1 \right\}.$$
Denote

\[p^*(x) = \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N, \\ +\infty & \text{if } p(x) \geq N, \end{cases} \]

\[p_k^*(x) = \begin{cases} \frac{Np(x)}{N-kp(x)} & \text{if } kp(x) < N, \\ +\infty & \text{if } kp(x) \geq N \end{cases} \]

for any \(x \in \overline{\Omega}, k \geq 1 \).

Proposition 1.1 (see [10]). The space \((L^{p(x)}(\Omega), |.|_{p(x)}) \) is separable, uniformly convex, reflexive and its conjugate space is \(L^{q(x)}(\Omega) \) where \(q(x) \) is the conjugate function of \(p(x) \), i.e., \(\frac{1}{p(x)} + \frac{1}{q(x)} = 1 \), for all \(x \in \Omega \). For \(u \in L^{p(x)}(\Omega) \) and \(v \in L^{q(x)}(\Omega) \), we have

\[
\left| \int_{\Omega} uv \, dx \right| \leq \left(\frac{1}{p^-} + \frac{1}{q^-} \right) |u|_{p(x)} |v|_{q(x)} \leq 2|u|_{p(x)} |v|_{q(x)}. \]

The Sobolev space with variable exponent \(W^{k,p(x)}(\Omega) \) is defined as

\[W^{k,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : D^\alpha u \in L^{p(x)}(\Omega), |\alpha| \leq k \}, \]

where \(D^\alpha u = \frac{\partial^{\alpha}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \ldots \partial x_N^{\alpha_N}} u \), with \(\alpha = (\alpha_1, \ldots, \alpha_N) \) is a multi-index and \(|\alpha| = \sum_{i=1}^N \alpha_i \). The space \(W^{k,p(x)}(\Omega) \) equipped with the norm

\[\| u \|_{k,p(x)} := \sum_{|\alpha| \leq k} |D^\alpha u|_{p(x)}, \]

also becomes a separable and reflexive Banach space. For more details, we refer to [10].

Proposition 1.2 (see [10]). For \(p, r \in C_+(\overline{\Omega}) \) such that \(r(x) \leq p_k^*(x) \) for all \(x \in \overline{\Omega} \), there is a continuous embedding \(W^{k,p(x)}(\Omega) \hookrightarrow L^{r(x)}(\Omega) \). If we replace \leq \) with \(< \), the embedding is compact.

We denote by \(W^{k,p(x)}_0(\Omega) \) the closure of \(C_0^\infty(\Omega) \) in \(W^{k,p(x)}(\Omega) \). Note that the weak solutions of problem (1) are considered in the generalized Sobolev space \(X = W^{2,p(x)}(\Omega) \cap W^{1,p(x)}_0(\Omega) \) equipped with the norm

\[\| u \| := \inf \left\{ \mu > 0 : \int_{\Omega} \left| \frac{\Delta u(x)}{\mu} \right|^{p(x)} \, dx \leq 1 \right\}. \]

Proposition 1.3 (see [16]). If \(\Omega \subset \mathbb{R}^N \) is a bounded domain, then the embedding \(X \hookrightarrow C(\overline{\Omega}) \) is compact whenever \(\frac{N}{2} < p^- \).

From Proposition 1.3, there exists a positive constant \(c \) depending on \(p(x), N \) and \(\Omega \) such that

\[|u|_\infty := \sup_{x \in \overline{\Omega}} |u| \leq c \| u \|, \quad \forall u \in X. \]
Remark 1.4. According to [17], the norm $\| \cdot \|_{2,p(x)}$ is equivalent to the norm $|\Delta|_{p(x)}$ in the space X. Consequently, the norms $\| \cdot \|_{2,p(x)}$, $\| \cdot \|$ and $|\Delta|_{p(x)}$ are equivalent.

Proposition 1.5 (see [3]). If we denote $\rho(u) = \int_{\Omega} |\Delta u|^{p(x)} \, dx$, then for $u, u_n \in X$, we have the following assertions:

(i) $\|u\| < 1$ (respectively $= 1$; > 1) \iff $\rho(u) < 1$ (respectively $= 1$; > 1);
(ii) $\|u\| \leq 1 \Rightarrow \|u\|^{p^+} \leq \rho(u) \leq \|u\|^{p^-}$;
(iii) $\|u\| \geq 1 \Rightarrow \|u\|^{p^+} \leq \rho(u) \leq \|u\|^{p^-}$;
(iv) $\|u_n\| \to 0$ (respectively $\to +\infty$) \iff $\rho(u_n) \to 0$ (respectively $\to +\infty$).

Let us define the functional

$$I(u) = \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} \, dx.$$

It is well known that J is well defined, even and C^1 in X. Moreover, the operator $L = I' : X \to X^*$ defined as

$$\langle L(u), v \rangle = \int_{\Omega} |\Delta u|^{p(x)-2} \Delta u \Delta v \, dx$$

for all $u, v \in X$ satisfies the following assertions.

Proposition 1.6 (see [3]). (i) L is continuous, bounded and strictly monotone.
(ii) L is a mapping of (S_+) type, namely, $u_n \to u$ and $\limsup_{n \to +\infty} L(u_n)(u_n - u) \leq 0$, implies $u_n \to u$.
(iii) L is a homeomorphism.

In order to establish the existence of infinitely many solutions for the problem (1), we will use the following \mathbb{Z}_2 version of the mountain pass theorem in [2].

Proposition 1.7. Let X be an infinite-dimensional Banach space, and let $J \in C^1(X, \mathbb{R})$ be even, satisfy the (PS) condition, and have $J(0)$. Assume that $X = V \oplus Y$, where V is finite dimensional and

(i) There are constants $\rho, \alpha > 0$ such that $\inf_{\partial B_{\rho} \cap Y} J \geq \alpha$;
(ii) For each finite-dimensional subspace $\tilde{X} \subset X$, there is $R = R(\tilde{X})$ such that $J(u) \leq 0$ on $\tilde{X} \setminus B_{R(\tilde{X})}$.

Then the functional J possesses an unbounded sequence of critical values.

2 Main result

In this section, we state and prove the main result of the paper. We shall use c_i to denote general positive constants whose values may be changed from line to line. We first make the definition of weak solutions for (1).
Definition 2.1. We say that $u \in X$ is a weak solution of problem (1) if for all $v \in X$, it holds that

$$
\int_{\Omega} |\Delta u|^{p(x) - 2} \Delta u \Delta v \, dx - \int_{\Omega} K(x) f(u) v \, dx = 0
$$

The main result of the paper can be formulated as follows.

Theorem 2.2. Assume that K, f satisfy the following conditions:

(H1) $K \in L^\infty(\Omega)$ and there exists $k_0 > 0$ such that $K(x) \geq k_0$ for all $x \in \Omega$;

(H2) $f \in C(\mathbb{R}, \mathbb{R})$ and there exist a constant $s_0 \geq 0$ and a decreasing function $\theta(s) \in C(\mathbb{R}\setminus(-s_0, s_0), \mathbb{R})$ such that

$$
0 < (p^+ + \inf_{|s| \geq s_0} \theta(s)) F(s) \leq f(s) s, \quad \forall |s| \geq s_0,
$$

where $\theta(s) > 0$ and $\lim_{|s| \to +\infty} \theta(s) |s| = +\infty$, $\lim_{|s| \to +\infty} \int_{s_0}^{s} \frac{\theta(t)}{t} \, dt = +\infty$,

$$
F(s) = \int_{0}^{s} f(t) \, dt;
$$

(H3) $\lim_{s \to +\infty} \frac{f(s)}{|s|^{p^+-1}} = 0$.

Then problem (1) has a nontrivial weak solution. If further, f is odd, then (1) has infinitely many pairs of weak solutions.

If $\inf_{|s| \geq s_0} \theta(s) > 0$, then it follows from condition (H2) that

$$
0 < (p^+ + \inf_{|s| \geq s_0} \theta(s)) F(s) \leq f(s) s, \quad \forall |s| \geq s_0,
$$

and thus we have the well-known Ambrosetti-Rabinowitz type condition as in [3]. In this paper, we are interested in the case $\inf_{|s| \geq s_0} \theta(s) = 0$. For this reason, we may assume throughout this work that $s_0 \geq 1$ and there is a constant $N_0 > 0$ such that $|\theta(s)| \leq N_0$ for all $s \in \mathbb{R}\setminus(-s_0, s_0)$. Note that the result here is different from one introduced in [15].

Our idea is to prove Theorem 2.2 by using the mountain pass theorem and its \mathbb{Z}_2 symmetric version stated in the celebrated paper [2]. For this purpose, we introduce the following energy functional $J : X \to \mathbb{R}$ defined by

$$
J(u) = \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} \, dx - \int_{\Omega} K(x) F(u) \, dx,
$$

where $F(s) = \int_{0}^{s} f(t) \, dt$. Then J is of $C^1(X, \mathbb{R})$ and its derivative is given by

$$
J'(u)(v) = \int_{\Omega} |\Delta u|^{p(x) - 2} \Delta u \Delta v \, dx - \int_{\Omega} K(x) f(u) v \, dx
$$

for all $u, v \in X$. Hence, weak solutions of problem (1) are exactly the critical points of the functional J.
Lemma 2.3. There exist positive constants ρ and α such that $J(u) \geq \alpha$ for all $u \in X$ with $\|u\| = \rho$.

Proof. From (2) we have that $|u|_\infty \to 0$ if $\|u\| \to 0$. By the hypothesis (H3), for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(s)| \leq \epsilon |s|^{p-1}, \quad \forall |s| < \delta.$$

Hence,

$$|F(s)| \leq \frac{\epsilon}{p^+} |s|^{p^+}, \quad \forall |s| < \delta. \quad (3)$$

Combining (H1) with Proposition 1.5, we deduce for $u \in X$ with $\|u\| < \min\{1, \frac{\delta}{c}\}$ (c is given by (2) that

$$J(u) = \int_\Omega \frac{1}{p(x)} |\Delta u|^{p(x)} \, dx - \int_\Omega K(x) F(u) \, dx$$

$$\geq \frac{1}{p^+} \|u\|^{p^+} - \int_\Omega K(\infty) F(u) \, dx$$

$$\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\epsilon \|K\|_\infty}{p^+} \int_\Omega |u|^{p^+} \, dx$$

$$\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\epsilon \|K\|_\infty \mu(\Omega)}{p^+} \|u\|^{p^+}$$

$$\geq \frac{1}{p^+} \|u\|^{p^+} - \frac{\epsilon \|K\|_\infty \mu(\Omega) c^{p^+}}{p^+} \|u\|^{p^+}$$

$$= \left(\frac{1}{p^+} - \frac{\epsilon \|K\|_\infty \mu(\Omega) c^{p^+}}{p^+} \right) \|u\|^{p^+}. \quad (4)$$

From (4), there exist positive constants ρ and α such that $J(u) \geq \alpha$ for all $u \in X$ with $\|u\| = \rho$. \hfill \Box

Let $S = \{w \in X : \|w\| = 1\}$. We note that, for all $w \in S$ and a.e. $x \in \Omega$ we have $|w(x)| \leq L$ for some $L > 0$. There is a number $s_\lambda \in \{s \in \mathbb{R} : |s| \leq |\lambda L|\}$ such that $\theta(s_\lambda) = \min_{s_0 \leq |s| \leq |\lambda L|} \theta(s)$. Then $|\lambda| \geq \frac{|s_\lambda|}{L}$ and $|s_\lambda| \to +\infty$ when $|\lambda| \to +\infty$. When $|s| \geq s_0$ we have

$$0 < (p^+ + \theta(s)) F(s) \leq f(s).$$

Hence,

$$F(s) \geq C_1 |s|^{p^+} \exp \left(\int_{s_0}^{|s|} \frac{\theta(t)}{t} \, dt \right) = C_1 |s|^{p^+} G(|s|), \quad (5)$$

where $G(|s|) = \exp \left(\int_{s_0}^{|s|} \frac{\theta(t)}{t} \, dt \right)$. Then by (H2), it follows that $G(|s|)$ increases when $|s|$ increases and $\lim_{|s| \to +\infty} G(|s|) = +\infty$.
Lemma 2.4. For any $w \in S$ there exist $\delta_w > 0$ and $\lambda_w > 0$ such that, for all $v \in S \cap B(w, \delta_w)$ and for all $|\lambda| \geq \lambda_w$, we have $J(\lambda v) < 0$, where $B(w, \delta_w) = \{v \in X : \|v - w\| < \delta_w\}$.

Proof. Fix $w \in S$. By $\|w\| = 1$, we know that $\mu(\{x \in \Omega : w(x) \neq 0\}) > 0$ and that there exists a $\lambda_w > s_0$ such that $\mu(\{x \in \Omega : \lambda_w w(x) \geq s_0\}) > 0$, where μ is the Lebesgue measure. Let $\Omega_w^1 := \{x \in \Omega : \lambda_w w(x) < s_0\}$, $\Omega_w^2 := \{x \in \Omega : \lambda_w w(x) \geq s_0\}$.

Then $\mu(\Omega_w^1) > 0$. When $x \in \Omega_w^1$ we have $|w(x)| \geq \frac{s_0}{\lambda_w}$. Let $\delta_w = \frac{s_0}{2\lambda_w}$. Then, for any $v \in S \cap B(w, \delta_w)$,

$$\|v - w\|_{\infty} \leq L\|v - w\| < \frac{s_0}{2\lambda_w}. $$

Hence, when $x \in \Omega_w^1$, we observe that $v(x) \geq \frac{s_0}{2\lambda_w}$ and

$$|v(x)|^p^+ \geq \left(\frac{s_0}{2\lambda_w}\right)^{p^+} = C_2. \quad (6)$$

When $|\lambda| \geq 2\lambda_w$, one has $|\lambda v| \geq s_0$ in Ω_w^2. By the condition $(H1)$ and (5), (6) we know that

$$|\lambda|^{-p^+} \int_{\Omega_w^2} K(x)F(\lambda v) \, dx \geq C_1 \int_{\Omega_w^2} K(x)|v|^p^+ G(|\lambda v|) \, dx$$

$$\geq C_1 C_2 \int_{\Omega_w^2} K(x)G(|\lambda v|) \, dx$$

$$\geq C_1 C_2 \mu(\Omega_w^2) k_0 G \left(\frac{s_0}{2\lambda_w} |\lambda|\right), \quad (7)$$

since $G(|s|)$ increases when $|s|$ increases and $|\lambda v(x)| \geq \frac{s_0}{2\lambda_w} |\lambda|$. There exists a $C_3 > 0$ such that $F(s) \geq -C_3$ when $|s| \leq s_0$. However, $F(s) > 0$ if $|s| \geq s_0$, so

$$\int_{\Omega_w^1} K(x)F(\lambda v) \, dx \geq \int_{\Omega_w^1 \cap \{x \in \Omega : |\lambda v(x)| \leq s_0\}} K(x)F(\lambda v) \, dx \geq -C_3 \|K\|_{\infty}. $$

Hence, by Proposition 1.5, for any $v \in S \cap B(w, \delta_w)$ and $|\lambda| > 1$, we have

$$J(\lambda v) = \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda v)|^{p(x)} \, dx - \int_{\Omega} K(x)F(\lambda v) \, dx$$

$$\leq \frac{1}{p} |\lambda|^{p^+} \|v\|^{p^+} - \int_{\Omega_w^1} K(x)F(\lambda v) \, dx - \int_{\Omega_w^2} K(x)F(\lambda v) \, dx$$

$$= |\lambda|^{p^+} \left(\frac{1}{p} - |\lambda|^{-p^+} \int_{\Omega_w^1} K(x)F(\lambda v) \, dx \right) - \int_{\Omega_w^1} K(x)F(\lambda v) \, dx$$
\[|\lambda|^p \left(\frac{1}{p} - C_1 C_2 \mu(\Omega^2_{w}) k_0 G \left(\frac{s_0}{2\lambda_w} |\lambda| \right) \right) + C_3 \|K\|_\infty. \] \tag{8}

From (8), \(J(\lambda v) \to -\infty\) uniformly for \(v \in S \cap B(w, \delta_w)\) as \(|\lambda| \to +\infty\). Therefore, there exists a \(\lambda_w > 2\lambda_w\) such that \(J(\lambda v) < 0\) for any \(v \in S \cap B(w, \delta_w)\) and \(|\lambda| \geq \lambda_w\).

\textbf{Lemma 2.5.} The functional \(J\) satisfies the (PS) condition.

\textit{Proof.} Let \(\{u_m\}\) be a (PS) sequence of the functional \(J\), that is,
\[|J(u_m)| \leq c \quad \text{and} \quad |J'(u_m)(v)| \leq \epsilon_m \|v\| \tag{9} \]
for all \(v \in X\) with \(\epsilon_m \to 0\) as \(m \to \infty\). We shall prove that \(\{u_m\}\) is bounded in \(X\). Indeed, if \(\{u_m\}\) is not bounded, we may assume that \(\|u_m\| \to +\infty\) as \(m \to \infty\). Let \(\{\lambda_m\} \subset \mathbb{R}\) such that \(u_m = \lambda_m w_m, \ w_m \in S\). Then \(|\lambda_m| \to +\infty\) as \(m \to \infty\).

Let us define the sets
\[\Omega^1_m = \{x \in \Omega: |\lambda_m w_m(x)| \geq L\} \quad \text{and} \quad \Omega^2_m = \{x \in \Omega: |\lambda_m w_m(x)| < L\}. \]
Then we have
\[-\epsilon_m |\lambda_m| = -\epsilon_m \|u_m\| \leq J'(u_m)(u_m) \]
\[= \int_{\Omega} |\Delta u_m|^{p(x)} \, dx - \int_{\Omega} K(x) f(u_m) u_m \, dx \]
\[= \int_{\Omega} |\Delta (\lambda_m w_m)|^{p(x)} \, dx - \int_{\Omega^1_m} K(x) f(\lambda_m w_m) \lambda_m w_m \, dx \]
\[- \int_{\Omega^2_m} K(x) f(\lambda_m w_m) \lambda_m w_m \, dx, \tag{10} \]
which implies that
\[\int_{\Omega^1_m} K(x) f(\lambda w_m) \lambda_m w_m \, dx \leq \int_{\Omega} |\Delta (\lambda_m w_m)|^{p(x)} \, dx + \epsilon_m |\lambda_m| \]
\[- \int_{\Omega^2_m} K(x) f(\lambda_m w_m) \lambda_m w_m \, dx \]
\[\leq p^+ \int_{\Omega} \frac{1}{p(x)} |\Delta (\lambda_m w_m)|^{p(x)} \, dx + \epsilon_m |\lambda_m| \]
\[- \int_{\Omega^2_m} K(x) f(\lambda_m w_m) \lambda_m w_m \, dx. \tag{11} \]
We know that
\[0 < (p^+ + \theta(s \lambda_m)) F(\lambda_m w_m) \leq f(\lambda_m w_m) \lambda_m w_m \text{ in } \Omega^1_m. \]
Combining this with (11) we then have
\[J(u_m) = J(\lambda_m w_m) \]
\[= \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx - \int_{\Omega_m^2} K(x) F(\lambda_m w_m) \, dx - \int_{\Omega_m^2} K(x) F(\lambda_m w_m) \, dx \]
\[\geq \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx - \frac{p^+}{p^+ + \theta(s_{\lambda_m})} \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx \]
\[- \int_{\Omega_m^2} K(x) F(\lambda_m w_m) \, dx \]
\[\geq \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx - \frac{p^+}{p^+ + \theta(s_{\lambda_m})} \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx \]
\[- \int_{\Omega_m^2} K(x) F(\lambda_m w_m) \, dx \]
\[= \frac{\theta(s_{\lambda_m})}{p^+ + \theta(s_{\lambda_m})} \int_{\Omega} \frac{1}{p(x)} |\Delta(\lambda_m w_m)|^{p(x)} \, dx - \frac{\epsilon_m |\lambda_m|}{p^+ + \theta(s_{\lambda_m})} + \psi(\lambda_m w_m) \]
\[\geq \frac{\theta(s_{\lambda_m})}{(p^+ + N_0)p^+} |\lambda_m|^{p^+ - 1} - \frac{\epsilon_m |\lambda_m|}{p^+} + \psi(\lambda_m w_m) \]
\[\geq |\lambda_m| \left(\frac{\theta(s_{\lambda_m})}{(p^+ + N_0)p^+} |\lambda_m|^{p^+ - 1} - \frac{\epsilon_m}{p^+} \right) + \psi(\lambda_m w_m), \quad (12) \]

where
\[\psi(\lambda_m w_m) = \int_{\Omega_m^2} \left(\frac{1}{p^+ + \theta(s_{\lambda_m})} K(x) f(\lambda_m w_m) \lambda_m w_m - K(x) F(\lambda_m w_m) \right) \, dx. \]

By the condition \((H2)\), the sequence \(\{\psi(\lambda_m w_m)\}\) is bounded from below. On the other hand, we know that \(|\lambda_m| \to +\infty\), and so \(|s_{\lambda_m}| \to +\infty\) as \(m \to +\infty\). By \((H2)\),
\[\lim_{m \to +\infty} |\lambda_m|^{p^+ - 1} \theta(s_{\lambda_m}) \geq \lim_{m \to +\infty} |s_{\lambda_m}| \theta(s_{\lambda_m}) = +\infty. \]
Hence, \(J(u_m) \to +\infty\), and we obtain the contradiction. Now, \(\{u_m\}\) is bounded in \(X\). Since \(X\) is compactly embedded into \(C(\Omega)\) there exist a function \(u \in X\) and a subsequence still denoted by \(\{u_m\}\) of \(\{u_m\}\) such that it converges strongly towards \(u\) in \(C(\Omega)\). From this and the continuity of \(f\), we then have
\[\left| \int_{\Omega} K(x) f(u_m) (u_m - u) \, dx \right| \leq |K|_{\infty} \max_{|s| \leq \|u\|_{\infty} + 1} |f(s)| \|u_m - u\|_{\infty} \to 0 \quad (13) \]
when \(m \to +\infty\). Combining (9) and (13) imply that
\[\int_{\Omega} |\Delta u_m|^{p(x)-2} \Delta u_m (\Delta u_m - \Delta u) \, dx \to 0 \text{ as } m \to +\infty. \quad (14) \]
By Proposition 1.6, the sequence \(\{u_m\} \) converges strongly to \(u \) in \(X \) and the functional \(J \) satisfies the \((PS)\) condition.

\[\]

\textbf{Proof of Theorem 2.2.} By Lemmas 2.3, 2.4 and 2.5, the functional \(J \) satisfies the conditions of the classical mountain pass theorem due to Ambrosetti and Rabinowitz [2]. Thus, we obtain a nontrivial weak solution of problem (1).

If, further, \(f \) is odd, then \(J \) is even. By Lemma 2.3, the functional \(J \) satisfies Proposition 1.7(i) and the \((PS)\) condition. For any finite-dimensional subspace \(\hat{X} \subset X \), \(S \cap \hat{X} = \{ w \in \hat{X} : \|w\| = 1 \} \) is compact. From Lemma 2.5 and the finite covering theorem, it is easy to verify that \(J \) satisfies condition (ii) of Proposition 1.7. Therefore, \(J \) has a sequence of critical points \(\{u_m\} \). That is, problem (1) has infinitely many pairs of solutions.

\[\]

\textbf{Acknowledgements.} This research is supported by Quang Binh University Foundation for Science and Technology Development (Grant. N.CS.09.2018).

\[\]

\textbf{References}

Received: September 12, 2018; Published: October 22, 2018