Existence of Three Solutions for Difference Equation Involving P-Laplacian

Yaning Li

College of Mathematics & Statistics
Nanjing University of Information Science & Technology
Nanjing, Jiangsu, 210044, P.R. China

Copyright © 2018 Yaning Li. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, using a three critical points theorem established by B. Ricceri and variational methods, we study the existence of solutions of the Dirichlet boundary value problem for p-Laplacian difference equation depending on two parameters λ, µ, and obtain the existence of three solutions under some appropriate assumptions.

Keywords: P-Laplacian; Three solutions; Boundary value problem; Variational methods

1 Introduction

Denote by \(\mathbb{N}, \mathbb{Z} \) and \(\mathbb{R} \) the sets of all natural numbers, integers and real numbers. For \(a, b \in \mathbb{Z}, \mathbb{Z}(a) = \{ a, a+1, \ldots \}, \mathbb{Z}[a, b] = \{ a, a+1, \ldots, b \} \) when \(a \leq b \).

We will consider the following p-Laplacian difference equation with Dirichlet boundary value condition

\[
-\Delta [\phi_p(\Delta u(k-1))] = \lambda(f(k, u(k)) + \mu g(k, u(k))), \quad k \in \mathbb{Z}[1, T],
\]

\[
u(0) = u(T+1) = 0.
\]

(1.1)

\(^1\)Supported by the NSF of China (11626132).
where T is a positive integer, p, λ, $\mu \in \mathbb{R}$ are constants and $p > 1$, $\lambda > 0$, Δ is defined by $\Delta u(k) = u(k+1) - u(k)$, $\phi_p(s) = |s|^{p-2}s$ is the p-Laplacian operator, $f(k, \cdot)$, $g(k, \cdot) \in C(\mathbb{R}, \mathbb{R})$ for all $k \in \mathbb{Z}[1, T]$.

In recent years, the study of difference equations with p-Laplacian operator has been an interesting topic because of their applications in many fields. Some results are achieved by using fixed point theorems in cone, we refer to [1, 4, 8, 9]. There also have been a large number of papers that study the nonlinear second discrete equations by using critical point theory, see [2, 5, 7]. And in [3, 6], using different three critical points theorem, the authors have studied existence of three solutions for problem (1.1) when $\mu = 0$, i.e. problem

$$-\Delta[\phi_p(\Delta u(k-1))] = \lambda f(k, u(k)), \quad k \in \mathbb{Z}[1, T],$$
$$u(0) = u(T + 1) = 0.$$ (1.2)

We note that P. Candito and N. Giovannelli [3] established the existence of at least three solutions to (1.2) by pointing out a suitable relationship between the behavior of F with a precise bounded interval of parameters λ, where $F(\cdot, t) = \int_0^t f(\cdot, s)ds$. And L. Jiang and Z. Zhou [6] obtained the result for existence of at least three bounded solutions to (1.2) under some assumptions to F and the relationship between F with a bounded interval of λ.

In this paper, our approach is based on a three critical points theorem established by B. Ricceri in [11], and under appropriate assumptions, we admit the existence of an open interval $[-\delta, \delta]$, such that, for every $\mu \in [-\delta, \delta]$, there exists an open interval $\Lambda_\mu \subseteq [0, +\infty)$ and a positive real number β_μ such that for each $\lambda \in \Lambda_\mu$, problem (1.1) admits at least three solutions whose norms in X are less then β_μ. Moreover, it is worth noting that the proof of Lemma 2.1 is completely different with respect to the proof of Lemma 2.2 in [6] and in addition, ensure the same result.

2 Preliminary

Firstly, we construct the T-dimensional Banach space $X = \{u : \mathbb{Z}[0, T + 1] \to \mathbb{R} | u(0) = u(T+1) = 0\}$, endowed with the norm $\|u\| = \left(\sum_{k=1}^{T+1} |\Delta u(k-1)|^p\right)^{1/p}$.

The following theorems and lemma will be used later.

Theorem 2.1 ([10], [11]). Let X be a separable and reflexive real Banach space; $\Phi : X \to \mathbb{R}$ a continuously Gateaux differential and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous weakly inverse on X^*; $\Psi : X \to \mathbb{R}$ is a continuously Gateaux differentiable functional whose Gateaux derivative is compact $; I \subseteq \mathbb{R}$ an interval. Assume that

$$\lim_{\|u\| \to +\infty} (\Phi(u) + \lambda \Psi(u)) = +\infty$$ (2.1)
for all $\lambda \in I$, and that there exists a continuous concave function $h : I \rightarrow \mathbb{R}$ such that
\[
\sup_{\lambda \in I} \inf_{u \in X} (\Phi(u) + \lambda \Psi(u) + h(\lambda)) < \inf_{u \in X} \sup_{\lambda \in I} (\Phi(u) + \lambda \Psi(u) + h(\lambda)).
\] (2.2)

Then, there exist an open interval $\Lambda \subseteq I$ and a positive real number β such that, for each $\lambda \in I$, the equation
\[
\Phi'(u) + \lambda \Psi'(u) = 0
\]
has at least three solutions in X whose norms are less than β.

Theorem 2.2 ([10]). Let X be a nonempty set and Φ, J two real functionals on X. Assume that there are $\gamma > 0$, $u_0, u_1 \in X$, such that
\[
\Phi(u_0) = J(u_0) = 0, \quad \Phi(u_1) > \gamma,
\]
and
\[
\sup_{u \in \Phi^{-1}((-\infty, \gamma])} J(u) < \gamma \frac{J(u_1)}{\Phi(u_1)}.
\] (2.3)

Then, for each ρ satisfying
\[
\sup_{u \in \Phi^{-1}((-\infty, \gamma])} J(u) < \rho < \gamma \frac{J(u_1)}{\Phi(u_1)},
\]
one has
\[
\sup_{\lambda \geq 0} \inf_{u \in X} (\Phi(u) + \lambda (\rho - J(u))) < \inf_{u \in X} \sup_{\lambda \geq 0} (\Phi(u) + \lambda (\rho - J(u))).
\] (2.4)

Lemma 2.1. Let $\|u\|_{\infty} = \max_{k \in \mathbb{Z}} |u(k)|$, then for any $u \in X$, the inequality
\[
\|u\|_{\infty} \leq \frac{(T + 1)^{p-1}}{2} \|u\|
\]
holds.

Proof. Let $|u(j)| = \max_{k \in \mathbb{Z} \backslash \{1, T\}} |u(k)|$, since $u(0) = u(T + 1) = 0$, we have
\[
|u(j)| = |u(j) - u(j+1) + u(j+1) - \cdots - u(T) + u(T) - u(T+1)|
\leq \sum_{k=j+1}^{T+1} |u(k) - u(k-1)|,
\]
and
\[
|u(j)| = |u(j) - u(j-1) + u(j-1) - \cdots - u(1) + u(1) - u(0)|
\leq \sum_{k=1}^{j} |u(k) - u(k-1)|,
\]
then
\[2 | u(j) | \leq \sum_{k=1}^{T+1} | u(k) - u(k-1) | = \sum_{k=1}^{T+1} | \Delta u(k-1) |. \]

Thus using the discrete H"older inequality, one has
\[
| u(j) | < \frac{(T + 1)^{p-1}}{2} \| u \|.
\]

□

For the convenience of our proof, we define the following three functionals for all \(u \in X \).
\[
\Phi(u) = \frac{1}{p} \sum_{k=1}^{T+1} | \Delta u(k-1) |^p, \quad J_1(u) = \sum_{k=1}^{T} F(k, u(k)), \quad J_2(u) = \sum_{k=1}^{T} G(k, u(k)),
\]

where \(F(k, \xi) = \int_0^\xi f(k, s)ds, \ G(k, \xi) = \int_0^\xi g(k, s)ds \) for any \(\xi \in \mathbb{R} \) and \(k \in \mathbb{Z}[1, T] \).

Obviously, \(\Phi, \ J_1, \ J_2 \in C^1(X, \mathbb{R}) \), and
\[
(\Phi-\lambda(J_1+\mu J_2))'(u)v = -\sum_{k=1}^{T} [\Delta \phi_p(\Delta u(k-1))+\lambda (f(k, u(k)) + \mu g(k, u(k)))]v(k).
\]

So, solutions of problem (1.1) corresponds to the critical points of \(\Phi - \lambda(J_1 + \mu J_2) \).

3 Main results

\textbf{Theorem 3.1} Suppose there exist four positive constants \(a, \ d, \ \alpha, \ \beta \) such that \(\alpha < p < \beta \) and the following conditions hold for all \(k \in \mathbb{Z}[1, T] \):

\begin{enumerate}
\item[(C1)] \(F(k, d) > 0; \)
\item[(C2)] \(F(k, \xi) = o(\| \xi \|^\beta) \) as \(\xi \to 0; \)
\item[(C3)] \(F(k, \xi), \ |G(k, \xi)| \leq a(1 + |\xi|^\alpha) \) for all \(\xi \in \mathbb{R} \).
\end{enumerate}

Then, there exists \(\delta > 0 \) such that, for each \(\mu \in [-\delta, \delta] \), there exist a positive real number \(\beta_\mu \) and an open interval \(\Lambda_\mu \subset [0, +\infty) \) such that, for each \(\lambda \in \Lambda_\mu \), the problem (1.1) has at least three solutions in \(X \) whose norms are less than \(\beta_\mu \), respectively.
Proof. Let $\Psi(u) = -J(u) = -(J_1(u) + \mu J_2(u))$, then the solutions of the problem (1.1) are equivalent to the solutions of the equation

$$
\Phi'(u) + \lambda \Psi'(u) = 0.
$$

From the definitions of Φ, J_1, J_2, we know that Φ is a continuously Gateaux differentiable and sequentially weakly lower semi-continuous functional whose Gateaux derivative admits a continuous inverse on X^*, and Ψ is a continuously Gateaux differentiable functional whose Gateaux derivative is compact.

By (C3) and Lemma 2.1, we have

$$
\Phi(u) + \lambda \Psi(u) = \frac{\|u\|^p}{p} - \lambda \left(\frac{T}{\|u\|^\beta} \right) - \mu \left(a(1 + \|u\|^\alpha) \right)
$$

Since $\alpha < p$, we can easily get

$$
\lim_{\|u\| \to +\infty} \Phi(u) + \lambda \Psi(u) = +\infty, \lambda \in [0, +\infty).
$$

Then (2.1) of Theorem 2.1 is satisfied.

If (2.4) of Theorem 2.2 holds, let $h(\lambda) = \rho \lambda$, $\Psi(u) = -J(u)$, then we get the inequality (2.2) and all the assumptions of Theorem 2.1 are satisfied. So we only need to verify the conditions of Theorem 2.2. Let $u_0 = 0$, we can easily get $\Phi(u_0) = \Psi(u_0) = 0$.

Now, Let

$$
u_1(k) = \begin{cases} d, & k \in \mathbb{Z}[1, T], \\ 0, & k \in \{0, T+1\}. \end{cases}
$$

then $\Phi(u_1) = \frac{2d^p}{p}$. For each γ_1 satisfying $0 < \gamma_1 < \min\left\{ \frac{2d^p}{p}, 1 \right\}$ and choose $\gamma \in (0, \gamma_1)$, we can obtain $\Phi(u_1) > \gamma$.

Next, we will prove that the inequality (2.3) holds.

From (C2), there exist $\eta \in (0, 1]$, $c_3 > 0$, such that

$$
F(k, \xi) \leq c_3 \left| \xi \right|^\beta, \xi \in [-\eta, \eta], k \in \mathbb{Z}[1, T].
$$

(3.1)

Since $\alpha < p < \beta$, if we let

$$
c_4 = \max \left\{ c_3, \sup_{|\xi| > \eta} \frac{a(1 + |\xi|^\alpha)}{|\xi|^\beta} \right\},
$$

then c_4 is a finite number. Combining with (C3), we have

$$
F(k, \xi) \leq c_4 \left| \xi \right|^\beta, k \in \mathbb{Z}[1, T], \xi \in \mathbb{R}.
$$

(3.2)
When \(u \in \Phi^{-1}((-\infty, \gamma]) \), that is, \(\|u\| \leq (p\gamma)^{\frac{1}{p}} \), by Lemma 2.1, we have
\[
\|u\|_\infty \leq \frac{(T + 1)^{\frac{p - 1}{p}}}{2} \|u\| \leq \frac{(T + 1)^{\frac{p - 1}{p}}}{2} (p\gamma)^{\frac{1}{p}}.
\] (3.3)

Using the upper estimate in (3.2) and (3.3), we obtain
\[
J_1(u) = \sum_{k=1}^{T} F(k, u(k)) \leq Tc_4 \|u\|_\infty^p \leq Tc_4 \left(\frac{(T + 1)^{\frac{p - 1}{p}}}{2} \right)^{\frac{p}{2}} (p\gamma)^{\beta}. \]

Since \(\beta > p \), one has
\[
\lim_{\gamma \to 0^+} \sup_{u \in \Phi^{-1}((-\infty, \gamma])} \frac{J_1(u)}{\gamma} \leq 0.
\] (3.4)

By (C1) we can get \(J_1(u_1) > 0 \), so when \(\gamma \in (0, \gamma_1) \) is small enough, use (3.4) to obtain
\[
\sup_{u \in \Phi^{-1}((-\infty, \gamma])} J_1(u) \leq \frac{\gamma J_1(u_1)}{2 \Phi(u_1)}. \] (3.5)

Furthermore, from the continuity of \(J_2 \) and (3.3), we know that \(\sup_{u \in \Phi^{-1}((-\infty, \gamma])} |J_2(u)| \) is a finite number, so there exists \(\delta > 0 \) satisfying
\[
\delta \left(\sup_{u \in \Phi^{-1}((-\infty, \gamma])} |J_2(u)| + \gamma \frac{|J_2(u_1)|}{\Phi(u_1)} \right) < \frac{\gamma J_1(u_1)}{2 \Phi(u_1)}. \] (3.6)

Now, when \(\mu \in [-\delta, \delta] \), from (3.5) and (3.6), we have
\[
\sup_{u \in \Phi^{-1}((-\infty, \gamma])} (J_1(u) + \mu J_2(u)) \leq \sup_{u \in \Phi^{-1}((-\infty, \gamma])} J_1(u) + \sup_{u \in \Phi^{-1}((-\infty, \gamma])} \delta |J_2(u)| \]
\[
< \frac{\gamma J_1(u_1)}{2 \Phi(u_1)} + \frac{\gamma J_1(u_1)}{2 \Phi(u_1)} - \gamma \frac{\delta |J_2(u_1)|}{\Phi(u_1)} \]
\[
\leq \frac{\gamma J_1(u_1) + \mu J_2(u_1)}{\Phi(u_1)},
\]
that is,
\[
\sup_{u \in \Phi^{-1}((-\infty, \gamma])} J(u) < \gamma \frac{J(u_1)}{\Phi(u_1)}.
\]

Then, all the assumptions of Theorem 2.2 are satisfied and the proof is complete. \(\square \)

Example 3.2 We consider problem (1.1) with \(T = 10, \ p = 4, \ k \in \mathbb{Z}[1,10] \), and
\[
f(k, u) = \begin{cases} ku^6, & |u| \leq 1, \\ ku^2 + |u| - 1, & |u| > 1, \end{cases} \quad g(k, u) = \begin{cases} k(u^6 + u^8), & |u| \leq 1, \\ 2ku^2 + |u| - 1, & |u| > 1. \end{cases}
\]
then,

$$F(k, u) = \begin{cases} \frac{1}{7}ku^7, & |u| \leq 1, \\ \frac{1}{3}ku^3 + \frac{1}{2} |u - u|, & |u| > 1. \end{cases}$$

$$G(k, u) = \begin{cases} k(\frac{1}{7}u^7 + \frac{1}{3}u^9), & |u| \leq 1, \\ \frac{2}{3}ku^3 + \frac{1}{2} |u - u|, & |u| > 1. \end{cases}$$

Let $d = 2$, $\beta = 5$, and $\alpha = 3$, then, all the conditions of theorem 3.1 are satisfied and problem (1.1) has at least three solutions when T, p, f, g are defined as above.

References

https://doi.org/10.1016/s0022-247x(03)00018-0

https://doi.org/10.1016/s0895-7177(00)00220-x

Received: April 25, 2018; Published: July 6, 2018