Sums of Tribonacci and Tribonacci-Lucas Numbers

Robert Frontczak

Landesbank Baden-Wuerttemberg (LBBW)
Am Hauptbahnhof 2, 70173 Stuttgart, Germany

Copyright © 2018 Robert Frontczak. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this short article, we consider finite nonalternating and alternating sums of Tribonacci and Tribonacci-Lucas numbers. By applying an elementary telescoping argument, we obtain new identities for these sums.

Mathematics Subject Classification: 11B39, 11B37

Keywords: Tribonacci number, Tribonacci-Lucas number, Sum

1 Introduction and Preliminaries

For \(n \geq 2 \), the Tribonacci numbers \((T_n)_{n \geq 0}\) (sequence A000073 in The On-Line Encyclopedia of Integer Sequences [10]) and the Tribonacci-Lucas numbers \((K_n)_{n \geq 0}\) (sequence A001644 in [10]) are defined, respectively, by

\[
T_{n+1} = T_n + T_{n-1} + T_{n-2}, \quad T_0 = 0, T_1 = T_2 = 1, \quad (1)
\]

and

\[
K_{n+1} = K_n + K_{n-1} + K_{n-2}, \quad K_0 = 3, K_1 = 1, K_2 = 3. \quad (2)
\]

The first few terms of the sequence \((T_n)_{n \geq 0}\) are

\[0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705,\]

\[\cdots\]

\[\]
whereas for \((K_n)_{n \geq 0}\) we have

\[3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, 5071.\]

Both sequences must be regarded as generalizations of the famous Fibonacci numbers. The name "Tribonacci numbers" was given by Feinberg [5]. Tribonacci as well as Tribonacci-Lucas numbers are members of the general Tribonacci recurrence. The properties of these numbers are studied in many articles. The most recent articles include but are not limited to [1], [2], [3], [4], [7], [8] and [9].

The Binet formulas are given by

\[T_n = \frac{\alpha^{n+1}}{\alpha - \beta} + \frac{\beta^{n+1}}{(\beta - \alpha)(\beta - \gamma)} + \frac{\gamma^{n+1}}{(\gamma - \alpha)(\gamma - \beta)},\]

(3)

and

\[K_n = \alpha^n + \beta^n + \gamma^n,\]

(4)

where \(\alpha, \beta\) and \(\gamma\) are roots of the cubic equation \(x^3 - x^2 - x - 1 = 0\), i.e.,

\[\alpha = \frac{1 + \sqrt[3]{19 + 3\sqrt{33}} + \sqrt[3]{19 - 3\sqrt{33}}}{3},\]

\[\beta = \frac{1 + \omega \sqrt[3]{19 + 3\sqrt{33}} + \omega^2 \sqrt[3]{19 - 3\sqrt{33}}}{3},\]

\[\gamma = \frac{1 + \omega^2 \sqrt[3]{19 + 3\sqrt{33}} + \omega \sqrt[3]{19 - 3\sqrt{33}}}{3},\]

where \(\omega = \frac{1+i\sqrt{3}}{2}\) is a primitive cube root of unity.

In what follows, we will also need to define the Tribonacci numbers and the Tribonacci-Lucas numbers for negative indices. This can be done as follows (see [9]): We set \(T_{-n} = B_n\) and \(K_{-n} = C_n\) where

\[B_n = -B_{n-1} - B_{n-2} + B_{n-3}, \quad B_{-1} = 1, B_0 = B_1 = 0,\]

(5)

and

\[C_n = -C_{n-1} - C_{n-2} + C_{n-3}, \quad C_{-1} = 1, C_0 = 3, C_1 = -1.\]

(6)

We are interested in finding expressions for the sums \(\sum_{k=1}^{n} T_{mk}, \sum_{k=1}^{n} (-1)^{k-1} T_{mk}, \sum_{k=1}^{n} K_{mk}, \sum_{k=1}^{n} (-1)^{k-1} K_{mk}\), where \(m\) is an integer. The first examples of these evaluations, which may be proved by induction on \(n\), are

\[\sum_{k=1}^{n} T_k = \frac{1}{2}(T_{n+2} + T_n - 1)\]

(7)
Sums of Tribonacci and Tribonacci-Lucas numbers

and

\[\sum_{k=1}^{n} T_{2k} = \frac{1}{2}(T_{2n+1} + T_{2n} - 1). \] (8)

Equation (7) appears as Theorem 2 in [7]. In the same paper, the author also states the following expression for the sum of the 4\(k\) subscripted Tribonacci numbers ([7], Theorem 5):

\[\sum_{k=1}^{n} T_{4k} = \frac{1}{T_4}(T_{4n+4} + 6T_{4n} + T_{4n-4} - T_4). \] (9)

In this note we show that the sum evaluations from above are special cases of more general sum identities that we will present in the next section.

2 Results

We state our results in two separate theorems. We first provide a lemma, which we will use in the proofs of our results.

Lemma 2.1 The following identities hold for Tribonacci and Tribonacci-Lucas numbers:

\[T_{k+n} = T_k K_n - T_{k-n} C_n + T_{k-2n}, \] (10)

and

\[K_{k+n} = K_k K_n - K_{k-n} C_n + C_{2n-k}, \] (11)

where the sequence \(C_n \) may be expressed as \(C_n = \alpha^n \beta^n + \alpha^n \gamma^n + \beta^n \gamma^n \).

PROOF: Both identities follow essentially from the Binet forms (3) and (4). See [9] and [2] for details. \(\square \)

Now we are ready to state the main results of this paper. Proofs will follow in the next section.

Theorem 2.2 Let \(m \) be a positive integer. Then

\[\sum_{k=1}^{n} T_{mk} = \frac{T_{m(n+1)} + (1 - C_m)T_{mn} + T_{m(n-1)} - T_m - B_m}{K_m - C_m}, \] (12)

and

\[\sum_{k=1}^{n} (-1)^{k-1} T_{mk} = \frac{(-1)^{n+1}(T_{m(n+1)} + (1 + C_m)T_{mn} - T_{m(n-1)}) + T_m - B_m}{K_m + C_m + 2}. \] (13)
The corresponding identities for the Tribonacci-Lucas numbers are contained in the next theorem:

Theorem 2.3 Let \(m \) be a positive integer. Then

\[
\sum_{k=1}^{n} K_{mk} = \frac{K_{m(n+1)} + (1 - C_m)K_{mn} + K_{m(n-1)} + 2C_m - K_m - 3}{K_m - C_m},
\]

(14)

and

\[
\sum_{k=1}^{n} (-1)^{k-1}K_{mk} = \frac{(-1)^{n+1}(K_{m(n+1)} + (1 + C_m)K_{mn} - K_{m(n-1)}) + 2C_m + K_m + 3}{K_m + C_m + 2}.
\]

(15)

Before providing proofs, we present some explicit evaluations. The identities in equations (7), (8) and (9) follow from the first part of Theorem 2.2 for \(m = 1, 2 \) and 4, respectively. For \(m = 3 \) we obtain

\[
\sum_{k=1}^{n} T_{3k} = \frac{T_{3n+3} - 4T_{3n} + T_{3n-3} - 1}{2},
\]

(16)

which may be stated in the equivalent form

\[
\sum_{k=1}^{n} T_{3k} = \frac{T_{3n+2} - T_{3n} - 1}{2}.
\]

(17)

Moreover, we have

\[
\sum_{k=1}^{n} (-1)^{k-1}T_{k} = \frac{(-1)^{n+1}(T_{n+1} - T_{n-1}) + 1}{2},
\]

(18)

\[
\sum_{k=1}^{n} (-1)^{k-1}T_{2k} = \frac{(-1)^{n+1}(T_{2n} + T_{2n-1})}{2},
\]

(19)

\[
\sum_{k=1}^{n} K_{k} = \frac{K_{n+2} + K_{n} - 6}{2},
\]

(20)

\[
\sum_{k=1}^{n} (-1)^{k-1}K_{k} = \frac{(-1)^{n+1}(K_{n+1} - K_{n-1}) + 2}{2},
\]

(21)

\[
\sum_{k=1}^{n} K_{2k} = \frac{K_{2n+1} + K_{2n} - 4}{2},
\]

(22)

and

\[
\sum_{k=1}^{n} (-1)^{k-1}K_{2k} = \frac{(-1)^{n+1}(K_{2n} + K_{2n-1}) + 2}{2}.
\]

(23)
3 The Proofs

In this section we prove Theorems 2.2 and 2.3. The method of proof is completely elementary. The idea is to combine Lemma 2.1 with the following sum identities:

Proposition 3.1 Let \(f(k) \) be a real sequence and \(m, n \) and \(j \) be positive integers. Then

\[
\sum_{k=1}^{n} (f(m(k + j)) - f(m(k - j))) = \sum_{k=n+1-j}^{n+j} f(mk) - \sum_{k=1-j}^{j} f(mk), \tag{24}
\]

and

\[
\sum_{k=1}^{n} (-1)^{k-1} (f(m(k + j)) - f(m(k - j))) = \sum_{k=n+1-j}^{n+j} (-1)^{k+j-1} f(mk) - \sum_{k=1-j}^{j} (-1)^{k+j-1} f(mk). \tag{25}
\]

PROOF: These sum relations may be proved straightforwardly by shifting the summation index. See [6] for details and first applications. \(\square \)

PROOF of the main Theorems:

To prove Theorem 2.2 we start with equation (10). Replacing \(n \) by \(m \) and \(k \) by \(mk \) results in

\[
T_{m(k+1)} - T_{m(k-1)} = K_m T_{mk} - (1 + C_m) T_{m(k-1)} + T_{m(k-2)}. \tag{26}
\]

Set \(f(k) = T_k \) and apply (24) with \(j = 1 \) to get

\[
T_{m(n+1)} + T_{mn} - T_m = K_m \sum_{k=1}^{n} T_{mk} - (1 + C_m) \sum_{k=1}^{n} T_{m(k-1)} + \sum_{k=1}^{n} T_{m(k-2)}. \tag{27}
\]

Since,

\[
\sum_{k=1}^{n} T_{m(k-1)} = \sum_{k=1}^{n} T_{mk} - T_{mn},
\]

and

\[
\sum_{k=1}^{n} T_{m(k-2)} = \sum_{k=1}^{n} T_{mk} - T_{mn} - T_{m(n-1)} + T_{-m},
\]

the first part of Theorem 2.2 follows immediately after rearrangement. To prove the second part, set \(f(k) = T_k \) and apply (25) with \(j = 1 \) to get

\[
(-1)^{n+1} T_{m(n+1)} + (-1)^n T_{mn} + T_m = \]
\[K_m \sum_{k=1}^{n} (-1)^{k-1}T_{mk} - (1 + C_m) \sum_{k=1}^{n} (-1)^{k-1}T_{m(k-1)} + \]
\[\sum_{k=1}^{n} (-1)^{k-1}T_{m(k-2)}. \]

(28)

Simplifying gives the stated relation.
The proof of Theorem 2.3 is very similar. Combine (11) with (24) and (25) setting \(f(k) = K_k \) and \(j = 1 \). As the proof is straightforwardly completed, we omit the details.

\[\square \]

References

Received: December 19, 2017; Published: January 18, 2018