On a Hilbert-Type Integral Inequality in the Whole Plane with the Exponential Function

Zhaohui Gu
School of Economics and Trade
Guangdong University of Foreign Studies
Guangzhou 510006, P. R. China

Bicheng Yang
Department of Mathematics
Guangdong University of Education
Guangzhou, Guangdong 51003, P. R. China

Copyright © 2017 Zhaohui Gu and Bicheng Yang. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

By introducing the exponential function as the interval variable and obtaining the weight functions, a new Hilbert-type integral inequality in the whole plane with a best possible constant factor expressed by the beta function is given. The equivalent forms and a few particular cases are considered.

Mathematics Subject Classification: 26D15

Keywords: Hilbert-type integral inequality in the whole plane; weight function; equivalent form; beta function; operator

1Corresponding author
1 Introduction

In 1925, Hardy [1] gave the following Hardy-Hilbert’s integral inequality by introducing one pair of conjugate exponents \((p, q)\) \((\frac{1}{p} + \frac{1}{q} = 1)\): If \(p > 1, f(x), g(y) \geq 0, 0 < \int_{0}^{\infty} f^p(x)dx < \infty\) and \(0 < \int_{0}^{\infty} g^q(y)dy < \infty\), then

\[
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y}dxdy < \frac{\pi}{\sin(\pi/p)} \left(\int_{0}^{\infty} f^p(x)dx\right)^{\frac{1}{p}} \left(\int_{0}^{\infty} g^q(y)dy\right)^{\frac{1}{q}},
\]

with the best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\). For \(p = q = 2\), (1) reduces to the well known Hilbert’s integral inequality. (1) as well as Hilbert’s integral inequality are important in analysis and its applications (cf. [2], [3], [4]).

In recent years, a number of extensions of (1) were given by Yang [4]. Noticing that inequalities (1) is with a homogenous kernel of degree \(-1\), in 2009, a survey of the study of Hilbert-type inequalities with the homogeneous kernels of degree negative numbers and some parameters is given by [5]. Recently, some inequalities with the homogenous kernels of degree 0 and non-homogenous kernels have been studied by [6]-[10]. All of the above integral inequalities are built in the quarter plane.

In 2007, Yang [11] first gave a Hilbert-type integral inequality in the whole plane as follows:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x)g(y)}{(1+e^{x+y})\lambda}dxdy < B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \left(\int_{-\infty}^{\infty} e^{-\lambda x}f^2(x)dx \int_{-\infty}^{\infty} e^{-\lambda y}g^2(y)dy\right)^{\frac{1}{2}},
\]

where, the constant factor \(B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)(\lambda > 0)\) is the best possible, and

\[
B(u, v) := \int_{0}^{\infty} \frac{t^{u+1}dt}{(1+t)^{u+v}} = \int_{0}^{1} \frac{t^{v-1}dt}{(1-t)^{1-u}} (u, v > 0)
\]

is the beta function (cf. [12]). Since then, He et al. [13]-[17] also provided some Hilbert-type integral inequalities in the whole plane.

In this paper, by introducing the exponential function as the interval variable and obtaining the weight functions, a new Hilbert-type integral inequality in the whole plane with the best possible constant factor

\[
k_{\beta}(\lambda) := 2 \left| B(1 - \lambda - \beta, \frac{\lambda}{2}) - B(1 - \lambda - \beta, \frac{\lambda}{2} + \beta) \right|,
\]

similar to (2) is given as follows:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|e^{\beta x} - e^{\beta y}|}{e^{x} - e^{y}\lambda+\beta} f(x)g(y)dxdy < k_{\beta}(\lambda) \left(\int_{-\infty}^{\infty} e^{-\lambda x}f^2(x)dx \int_{-\infty}^{\infty} e^{-\lambda y}g^2(y)dy\right)^{\frac{1}{2}},
\]
On a Hilbert-type integral inequality

\((\beta \in (-1, 0) \cup (0, 1), \max\{0, -2\beta\} < \lambda < 1 - \beta)\). Moreover, a general form of (4) with multi-parameters and the equivalent forms are considered.

2 Equivalent inequalities

Definition 1. Suppose that \(\mathbb{R} = (-\infty, \infty), a, b \in \mathbb{R} \setminus \{0\}, \beta \in (-1, 0) \cup (0, 1), \lambda_1, \lambda_2 > \max\{0, -\beta\}, \lambda_1 + \lambda_2 = \lambda < 1 - \beta\). We define weight functions \(\omega(\lambda_1, y)\) and \(\varpi(\lambda_2, x)\) as follows:

\[
\omega(\lambda_1, y) = e^{b\lambda_1 y} \int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{|e^{ax+by} - 1|^{1+\beta}} e^{a\lambda_1 x} dx \quad (y \in \mathbb{R}),
\]

\[
\varpi(\lambda_1, x) = e^{a\lambda_1 x} \int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{|e^{ax+by} - 1|^{1+\beta}} e^{b\lambda_1 y} dy \quad (x \in \mathbb{R}).
\]

Lemma 1. As regards the assumptions of Definition 1, we set

\[
k(\lambda_1) := \left| \sum_{i=1}^{2} (B(1 - \lambda - \beta, \lambda_i) - B(1 - \lambda - \beta, \lambda_i + \beta)) \right|.
\]

Then for \(y, x \in \mathbb{R}\), we have

\[
\omega(\lambda_1, y) = \frac{1}{|a|} k(\lambda_1) \in \mathbb{R}_+ = (0, \infty),
\]

\[
\varpi(\lambda_1, x) = \frac{1}{|b|} k(\lambda_1) \in \mathbb{R}_+.
\]

Proof. Setting \(u = e^{ax+by}\) in (5) and (6), it follows that

\[
\omega(\lambda_1, y) = e^{b\lambda_1 y} \int_{-\infty}^{\infty} \frac{|u^\beta - 1|}{|u - 1|^{1+\beta}} e^{a\lambda_1 (\ln u - by)} \frac{1}{|a| u} du
\]

\[
= \frac{1}{|a|} \int_{0}^{\infty} \frac{|u^\beta - 1|}{|u - 1|^{1+\beta}} u^{\lambda_1 - 1} du,
\]

\[
\varpi(\lambda_1, x) = e^{a\lambda_1 x} \int_{-\infty}^{\infty} \frac{|u^\beta - 1|}{|u - 1|^{1+\beta}} e^{a\lambda_1 (\ln u - ax)} \frac{1}{|b u} du
\]

\[
= \frac{1}{|b|} \int_{0}^{\infty} \frac{|u^\beta - 1|}{|u - 1|^{1+\beta}} u^{\lambda_1 - 1} du.
\]

For \(-1 < \beta < 0\), in view of (3), we find

\[
0 < \int_{0}^{\infty} \frac{|u^\beta - 1|}{|u - 1|^{1+\beta}} u^{\lambda_1 - 1} du
\]

\[
= \int_{0}^{1} \frac{u^{\lambda_1 + 1} - u^{\lambda_1 - 1}}{(1 - u)^{1+\beta}} du + \int_{1}^{\infty} \frac{u^{\lambda_1 - 1} - u^{\beta + \lambda_1 - 1}}{(u - 1)^{1+\beta}} du
\]
for \(0 < \beta < 1\), by (3), we still find

\[
0 < \int_0^\infty \frac{|u^\beta - 1|}{|u - 1|^{\lambda + \beta}} u^{\lambda_1 - 1} du
= \int_0^1 \frac{u^{\lambda_1 - 1} - u^{\lambda_1 + \beta - 1}}{(1 - u)^{\lambda + \beta}} du + \int_1^\infty \frac{u^{\lambda_1 + \beta - 1} - u^{\lambda_1 - 1}}{(u - 1)^{\lambda + \beta}} du
= \int_0^1 \frac{u^{\lambda_1 - 1} - u^{\lambda_1 + \beta - 1}}{(1 - u)^{1 - (1 - \lambda - \beta)}} du + \int_0^1 \frac{v^{\lambda_1 - 1} - v^{\lambda_1 + \beta - 1}}{(1 - v)^{1 - (1 - \lambda - \beta)}} dv
= \sum_{i=1}^2 (B(1 - \lambda - \beta, \lambda_i) - B(1 - \lambda - \beta, \lambda_i + \beta)) < \infty.
\]

Hence, we have (8) and (9). \(\square\)

Theorem 1. Suppose that \(p > 1, \frac{1}{p} + \frac{1}{q} = 1, a, b \in \mathbb{R} \setminus \{0\}, \beta \in (-1, 0) \cup (0, 1), \lambda_1, \lambda_2 > \max\{0, -\beta\}, \lambda_1 + \lambda_2 = \lambda < 1 - \beta, k(\lambda_1) \in \mathbb{R}_+\) is indicated by (7), \(f(x), g(y)\) are non-negative measurable functions in \((-\infty, \infty)\), satisfying

\[
0 < \int_{-\infty}^\infty \left(\frac{f(x)}{e^{a\lambda_1 x}}\right)^p dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^\infty \left(\frac{g(y)}{e^{b\lambda_1 y}}\right)^q dy < \infty.
\]

We have the following equivalent inequalities:

\[
I := \int_{-\infty}^\infty \int_{-\infty}^\infty \left|\frac{e^{\beta(ax+by)} - 1}{e^{ax+by} - 1}\right|^{\lambda + \beta} f(x)g(y) dx dy
< \frac{k(\lambda_1)}{|b|^{\frac{1}{p}} |a|^{\frac{1}{q}}} \left[\int_{-\infty}^\infty \left(\frac{f(x)}{e^{a\lambda_1 x}}\right)^p dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^\infty \left(\frac{g(y)}{e^{b\lambda_1 y}}\right)^q dy \right]^{\frac{1}{q}}, \quad (10)
\]

\[
J := \left\{ \int_{-\infty}^\infty e^{b\lambda_1 y} \left[\int_{-\infty}^\infty \left|\frac{e^{\beta(ax+by)} - 1}{e^{ax+by} - 1}\right|^{\lambda + \beta} f(x) dx \right]^p dy \right\}^{\frac{1}{p}}
< \frac{k(\lambda_1)}{|b|^{\frac{1}{p}} |a|^{\frac{1}{q}}} \left[\int_{-\infty}^\infty \left(\frac{f(x)}{e^{a\lambda_1 x}}\right)^p dx \right]^{\frac{1}{p}}. \quad (11)
\]
Proof. By Hölder’s inequality with weight (cf. [18]) and (5), we have

\[
\int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{e^{ax+by} - 1} f(x) dx \\
= \int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{|e^{ax+by} - 1|^{\lambda+\beta}} \left(\frac{e^{b\lambda_1 y/p}}{e^{a\lambda_1 x/q}} \right) \left(\frac{e^{a\lambda_1 x/q}}{e^{b\lambda_1 y/p}} \right) f(x) dx \\
\leq \left[\int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{e^{ax+by} - 1} e^{b\lambda_1 y} f^p(x) dx \right]^{\frac{1}{p}} \\
\times \left[\int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{e^{ax+by} - 1} e^{a\lambda_1 x} \frac{1}{e^{(p-1)a\lambda_1 x}} dx \right]^{\frac{1}{q}}.
\] (12)

If (12) takes the form of equality for a \(y \in (-\infty, \infty) \), then there exists constants \(A \) and \(B \), such that they are not all zero, and

\[
A \frac{e^{b\lambda_1 y}}{e^{(p-1)a\lambda_1 x}} f^p(x) = B \frac{e^{a\lambda_1 x}}{e^{(q-1)b\lambda_1 y}} \ a.e. \ in \ (-\infty, \infty).
\]

We suppose that \(A \neq 0 \) (otherwise, \(B = A = 0 \)). Then it follows that

\[
\left(\frac{f(x)}{e^{a\lambda_1 x}} \right)^p = \frac{B e^{-q\lambda_1 y}}{A} \ a.e. \ in \ (-\infty, \infty),
\]

which contradicts the fact that \(0 < \int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{a\lambda_1 x}} \right)^p dx < \infty \).

Then by (9), Fubini theorem (cf. [19]) and (6), we have

\[
J < \left(\frac{k(\lambda_1)}{|a|} \right)^\frac{1}{q} \left\{ \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{e^{ax+by} - 1} \frac{e^{b\lambda_1 y} f^p(x)}{e^{(p-1)a\lambda_1 x}} dx \right| dy \right\}^{\frac{1}{p}} \\
= \left(\frac{k(\lambda_1)}{|a|} \right)^\frac{1}{q} \left[\int_{-\infty}^{\infty} \omega(\lambda_1, x) \left(\frac{f(x)}{e^{a\lambda_1 x}} \right)^p dx \right]^{\frac{1}{p}}.
\] (13)

Hence, in view of (9), inequality (11) follows.

By Hölder’s inequality (cf. [18]), we still find

\[
I = \int_{-\infty}^{\infty} \frac{e^{b\lambda_1 y}}{e^{(p-1)a\lambda_1 x}} f^p(x) dx \left(e^{-b\lambda_1 y} g(y) \right) dy \\
\leq J \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{b\lambda_1 y}} \right)^q dy \right]^{\frac{1}{q}}.
\] (14)
Then by (11), we have (10). On the other hand, suppose that (10) is valid. Setting
\[
g(y) := e^{\beta y} \left[\int_{-\infty}^{\infty} \frac{|e^{\beta(x+by)} - 1|}{|e^{ax+by} - 1|^{\lambda+\beta}} f(x) \, dx \right]^{p-1}, \quad y \in \mathbb{R},
\] (15)
it follows that \(J = \int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda y}} \right)^q \, dy \). By (13), we have \(J < \infty \). If \(J = 0 \), then (11) is trivially valid; if \(0 < J < \infty \), then by (10), we obtain
\[
\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda y}} \right)^q \, dy = J^p = I
\]
\[
< \frac{k(\lambda_1)}{|b|^{1/p} |a|^{1/q}} \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^p \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda_1 y}} \right)^q \, dy \right]^{\frac{1}{q}},
\] (16)
\[
J = \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda_1 y}} \right)^q \, dy \right]^{\frac{1}{p}} < \frac{k(\lambda_1)}{|b|^{1/p} |a|^{1/q}} \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^p \, dx \right]^{\frac{1}{p}}.
\] (17)

Hence, we have (11), which is equivalent to (10). □

3 Best possible constant factor

Theorem 2. As regard the assumptions of Theorem 1, the constant factor
\[
k(\lambda_1) = \frac{k(\lambda_1)}{|b|^{1/p} |a|^{1/q}}
\] in (10) and (11) is the best possible.

In particular, for \(a = b = 1 \) in (10) and (11), we have the following equivalent inequalities with the non-homogeneous kernel and a best possible constant factor \(k(\lambda_1) \):
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|e^{\beta(x+y)} - 1|}{|e^{ax+y} - 1|^{\lambda+\beta}} f(x) g(y) \, dx \, dy
\]
\[
< k(\lambda_1) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^p \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda_1 y}} \right)^q \, dy \right]^{\frac{1}{q}},
\] (18)
\[
\left\{ \int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^p \, dx \right\}^{\frac{1}{p}}
\]
\[
< k(\lambda_1) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^p \, dx \right]^{\frac{1}{p}}.
\] (19)

Proof. We set \(E_a = \{ x \in \mathbb{R}; ax \geq 0 \} \), wherefrom \(E_{(-b)} = \{ x \in \mathbb{R}; (-b)x \geq 0 \} = \{ y \in \mathbb{R}; by \leq 0 \} \). For any \(n \in \mathbb{N} \), we define functions \(\tilde{f}_n(x) \) and \(\tilde{g}_n(y) \) as
follows:

\[
\tilde{f}_n(x) := \begin{cases}
e^{a(\lambda_1 - \frac{1}{pm})x}, & x \in E_a, \\ 0, & x \in \mathbb{R} \setminus E_a \end{cases}, \quad \tilde{g}_n(y) := \begin{cases}
e^{b(\lambda_1 + \frac{1}{pm})y}, & y \in E_{(b)}, \\ 0, & y \in \mathbb{R} \setminus E_{(b)} \end{cases}.
\]

Then we obtain

\[
\tilde{J}_n := \left[\int_{-\infty}^{\infty} \left(\frac{\tilde{f}_n(x)}{e^{a\lambda_1 x}} \right)^p \ dx \right]^{1/p} \left[\int_{-\infty}^{\infty} \left(\frac{\tilde{g}_n(y)}{e^{b\lambda_1 y}} \right)^q \ dy \right]^{1/q}
= \left[\int_{E_a} \left(\frac{e^{a(\lambda_1 - \frac{1}{pm})x}}{e^{a\lambda_1 x}} \right)^p \ dx \right]^{1/p} \left[\int_{E_{(b)}} \left(\frac{e^{b(\lambda_1 + \frac{1}{pm})y}}{e^{b\lambda_1 y}} \right)^q \ dy \right]^{1/q}
= \left(\int_{E_a} e^{-\frac{a}{n}x} \ dx \right)^{1/p} \left(\int_{E_{(b)}} e^{\frac{b}{n}y} \ dy \right)^{1/q}
= \left(\frac{1}{|a|} \int_{0}^{\infty} e^{-\frac{a}{n}u} \ du \right)^{1/p} \left(\frac{1}{|b|} \int_{-\infty}^{0} e^{\frac{b}{n}v} \ dv \right)^{1/q} = \frac{n}{|a|^{1/p}|b|^{1/q}},
\]

\[
\tilde{I}_n := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|e^{\beta(ax+by)} - 1|}{|e^{ax+by} - 1|^{\lambda+\beta}} \tilde{f}_n(x) \tilde{g}_n(y) \ dx \ dy
= \int_{E_{(b)}} e^{b(\lambda_1 + \frac{1}{pm})y} \left[\int_{E_a} \frac{|e^{\beta(ax+by)} - 1|}{|e^{ax+by} - 1|^{\lambda+\beta}} e^{a(\lambda_1 - \frac{1}{pm})x} \ dx \right] \ dy.
\]

Setting \(u = e^{ax+by} \) in the above integral, we obtain

\[
\tilde{I}_n = \frac{1}{|a|} \int_{E_{(b)}} e^{b(\lambda_1 + \frac{1}{pm})y} \left[\int_{e^{by}}^{\infty} \frac{|u^\beta - 1|}{u^{\lambda+\beta} u^{(\lambda_1 - \frac{1}{pm})(\ln u - by)}} \ du \right] \ dy
= \frac{1}{|a|} \int_{E_{(b)}} e^{\frac{b}{n}y} \left[\int_{e^{by}}^{\infty} \frac{|u^\beta - 1|}{u - 1} u^{(\lambda_1 - \frac{1}{pm})^{-1}} \ du \right] \ dy
= \frac{1}{|ab|} \int_{-\infty}^{0} e^{\frac{v}{n}} \left[\int_{e^{vy}}^{\infty} \frac{|u^\beta - 1|}{u - 1} u^{(\lambda_1 - \frac{1}{pm})^{-1}} \ du \right] \ dv
= \frac{1}{|ab|} \left[\int_{-\infty}^{0} e^{\frac{v}{n}} \int_{e^{vy}}^{1} \frac{|u^\beta - 1|}{u - 1} u^{(\lambda_1 - \frac{1}{pm})^{-1}} \ du \ dv + \int_{0}^{\infty} e^{\frac{v}{n}} \int_{1}^{\infty} \frac{|u^\beta - 1|}{u - 1} u^{(\lambda_1 - \frac{1}{pm})^{-1}} \ du \ dv \right]
\]
Remark 1. For \(a = 1, b = -1 \) in (11) and (12), replacing \(e^{\lambda y} g(y) \) by \(g(y) \), we obtain \(0 < \int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda_2 y}} \right)^{\frac{q}{p}} dy < \infty \), and the following equivalent inequalities with the homogeneous kernel and the best possible constant factor \(k(\lambda_1) \):

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|e^{\beta x} - e^{\beta y}|}{|e^{x} - e^{y}|^{1+\beta}} f(x) g(y) dx dy < k(\lambda_1) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^{p} dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda_2 y}} \right)^{q} dy \right]^{\frac{1}{q}},
\]

(21)

\[
\left\{ \int_{-\infty}^{\infty} e^{p\lambda_2 y} \left[\int_{-\infty}^{\infty} \frac{|e^{\beta x} - e^{\beta y}|}{|e^{x} - e^{y}|^{1+\beta}} f(x) dx \right] dy \right\}^{\frac{1}{p}} < k(\lambda_1) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{\lambda_1 x}} \right)^{p} dx \right]^{\frac{1}{p}}.
\]

(22)
In particular, for $p = q = 2, \lambda_1 = \lambda_2 = \frac{\lambda}{2}$ in (21), we obtain (4).

Acknowledgements. This work is supported by the National Natural Science Foundation (No. 61370186), and Appropriative Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25). We are grateful for their help.

References

[13] B. He, B. Yang, On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hyper-geometric function, Mathematics in Practice and Theory, 40 (2010), no. 18, 203-211.

Received: February 21, 2017; Published: March 21, 2017