Moore-Penrose Inverses of Operators in Hilbert C^*-Modules

Fugen Gao

College of Mathematics and Information Science
Henan Normal University, Henan, China

Guoqing Hong

College of Mathematics and Information Science
Henan Normal University, Henan, China

Abstract

For two given bounded adjointable operators T and S between Hilbert C^*-modules, it is well known that an operator Moore-Penrose inverse exists iff the operator has closed range. In this paper, we give some formulas for the Moore-Penrose inverses of products TS.

Mathematics Subject Classification: 47A05, 46L08, 15A09

Keywords: Hilbert C^*-module, bounded adjointable operator, Moore-Penrose inverse, product operators

1 Introduction and preliminaries

Throughout the paper, we assume that E, F, G are Hilbert A-modules, where A is a C^*-algebra. For an operator T, let $R(T)$ be the range of T and $K(T)$ be the kernel of T. The notation $[T, S]$ denotes the commutator $TS - ST$ of T and S. We abbreviate Moore-Penrose inverse to MP-inverse.
For two given invertible operator T, S in Hilbert C^*-modules, the equality $(TS)^{-1} = S^{-1}T^{-1}$ is called the reverse order law. If T and S are invertible operator then the reverse order law effective but this case does not validate for the MP-inverse in general. The problem first studied by Greville [5] and then reconsidered by Bouldin [1] and Izumino [6]. A number of researchers discussed the problem such that reverse order law holds from different angles [2, 3, 4, 8, 15]. We also refer to another interesting Sharifi and Bonakdar [15] of this type.

In this paper we continue and supplement this research by using the space decompositions and operator matrix representations in C^*-modules. We specialize the investigations to the MP-inverses of TS and give some formulas for the MP-inverses of TS.

The notion of C^*-module has been presented by Kaplansky [7] and Paschke [13]. A Hilbert C^*-module E is right A-module with an inner product $\langle \cdot , \cdot \rangle : E \times E \rightarrow A$ satisfying

1. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$,
2. $\langle x, ya \rangle = \langle x, y \rangle a$,
3. $\langle y, x^* \rangle = \langle x, y \rangle$,
4. $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ iff $x = 0$,

for all $x, y, z \in E$, $a \in A$, $\alpha, \beta \in C$ and such that E is complete corresponding to $\|x\| = \sqrt{\|\langle x, x \rangle\|}$.

Hilbert C^*-module can be regard as a generalization of the Hilbert space. In spite of this promotion is natural, some basic properties of Hilbert spaces are not applicable in Hilbert C^*-modules. Therefore, when studying a certain problem in C^*-modules, it is useful to find conditions to gain the results homologous to those for Hilbert spaces.

The elements of $L(E,F)$ is said to be bounded adjointable operators, if there is an operator $T^* : F \rightarrow E$ satisfying $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for each $x \in E$ and $y \in F$. The operator T is selfadjoint if $T = T^*$ and $T \in L(E,F)$ is MP-invertible if there is $X \in L(F,E)$ such that

$$TXT = T, \quad XTX = X, \quad (TX)^* = TX, \quad (XT)^* = XT.$$

There is at most one element X satisfying the above formula, if $T \in L(E,F)$ is MP-invertible, then the unique X is called MP-inverse of T. In symbols this is denoted by T^+. Xu and Sheng [16] show that an operator permits a MP-inverses iff the operator has closed range. Moreover, Sharifi [14] show that TS has closed range iff the kernel of T is orthogonally complemented with the range of S, iff the kernel of S^* is orthogonally complemented with the range of T^*.

If a Hilbert A-submodule W of a Hilbert A-module E and its orthogonal complement W^\perp yield $E = W \oplus W^\perp$, then W is orthogonal complemented. We associate the matrix representation of an operator $T \in L(E,F)$ with respect
to some natural decompositions of C^*-modules. If $E = K \oplus K^\perp$, $F = H \oplus H^\perp$ then operator T has the following matrix form

$$T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$$

where $T_1 \in L(K, H)$, $T_2 \in L(K^\perp, H)$, $T_3 \in L(K, H^\perp)$, $T_4 \in L(K^\perp, H^\perp)$.

2 Main results

First, we need following three auxiliary results.

Lemma 2.1. [9] Let $T \in L(E, F)$ and $R(T)$ be closed. Then T has the following matrix form:

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(T^*) \\ K(T) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(T) \\ K(T^*) \end{bmatrix},$$

where T_1 is invertible. Moreover

$$T^\dagger = \begin{bmatrix} T_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(T) \\ K(T^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(T^*) \\ K(T) \end{bmatrix}.$$

Lemma 2.2. [15] Let E_1, E_2 be closed submodules of E and F_1, F_2 be closed submodules of F such that $E = E_1 \oplus E_2$ and $F = F_1 \oplus F_2$. If $T \in L(E, F)$ has closed range, then T has the following matrix form:

(i)

$$T = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(T) \\ K(T^*) \end{bmatrix}.$$

Moreover

$$T^\dagger = \begin{bmatrix} T_1^* D^{-1} & 0 \\ T_2^* D^{-1} & 0 \end{bmatrix},$$

where $D = T_1 T_1^* + T_2 T_2^* \in L(\mathcal{R}(T))$ is positive and invertible.

(ii)

$$T = \begin{bmatrix} T_1 & 0 \\ T_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(T^*) \\ K(T) \end{bmatrix} \to \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}.$$

Moreover

$$T^\dagger = \begin{bmatrix} D^{-1} T_1^* & D^{-1} T_2^* \\ 0 & 0 \end{bmatrix}.$$
where $D = T_1^*T_1 + T_2^*T_2 \in L(R(T^*))$ is positive and invertible.

Lemma 2.3. Let $N \in L(E, F)$ have a closed range, and let $M \in L(F)$ be selfadjoint and invertible. Then $R(MN) = R(N)$ iff $[M, NN^\dagger] = 0$.

Proof. Suppose N have a closed range, M be selfadjoint and invertible. We consider the orthogonal direct sums $E = R(N^*) + K(N)$ and $F = R(N) + K(N^*)$. Then the operators N and M have the corresponding matrix forms as follows:

$$N = \begin{bmatrix} N_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(N^*) \\ K(N) \end{bmatrix} \to \begin{bmatrix} R(N) \\ K(N^*) \end{bmatrix},$$

where N_1 is invertible, and

$$M = \begin{bmatrix} M_1 & M_2 \\ M_3 & M_4 \end{bmatrix} : \begin{bmatrix} R(N) \\ K(N^*) \end{bmatrix} \to \begin{bmatrix} R(N) \\ K(N^*) \end{bmatrix},$$

where $M_3 = M_2^*$. It follows that

$$MN = \begin{bmatrix} M_1N_1 & 0 \\ M_3N_1 & 0 \end{bmatrix} : \begin{bmatrix} R(N^*) \\ K(N) \end{bmatrix} \to \begin{bmatrix} R(N) \\ K(N^*) \end{bmatrix}.$$

Hence, $R(MN) = R(N)$ implies $M_3 = 0$ and $M_2 = 0$, so $M = \begin{bmatrix} M_1 & 0 \\ 0 & M_4 \end{bmatrix}$.

Since M is selfadjoint and invertible, we obtain that M_1 and M_4 are also selfadjoint and invertible. Since $N^\dagger = \begin{bmatrix} N_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}$, we obtain that $MNN^\dagger = NN^\dagger M$ holds.

Conversely, if M is invertible and $MNN^\dagger = NN^\dagger M$, then

$$R(MN) = R(MNN^\dagger) = R(NN^\dagger M) = R(NN^\dagger) = R(N).$$

□

In the following, we give some formulas about $(TS)^\dagger$.

Theorem 2.4. Suppose $S \in L(E, F)$, $T \in L(F, G)$, TS have closed ranges. Then $(TS)^\dagger = (T^*TS)^\dagger T^\dagger$ iff $R(TT^*TS) = R(TS)$.

Proof. By Lemma (2.1), the operator S and its MP-inverse S^\dagger have the following matrix forms:

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(S^*) \\ K(S) \end{bmatrix} \to \begin{bmatrix} R(S) \\ K(S^*) \end{bmatrix},$$

$$S^\dagger = \begin{bmatrix} S_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(S) \\ K(S^*) \end{bmatrix} \to \begin{bmatrix} R(S^*) \\ K(S) \end{bmatrix}.$$

From Lemma 2.2 it follows that the T and its MP-inverse T^\dagger have the following matrix forms:
\[T = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} : R(S) \rightarrow R(T) \]

\[T^\dagger = \begin{bmatrix} T_1^* D^{-1} & 0 \\ T_2^* D^{-1} & 0 \end{bmatrix}, \]

where \(D = T_1 T_1^* + T_2 T_2^* \in L(R(T)) \) is positive and invertible. Then we have the following products

\[TS = \begin{bmatrix} T_1 S_1 & 0 \\ 0 & 0 \end{bmatrix} \]

and

\[(TS)^\dagger = \begin{bmatrix} (T_1 S_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix} \]

\[S^\dagger T^\dagger = \begin{bmatrix} S_1^{-1} T_1^* D^{-1} & 0 \\ 0 & 0 \end{bmatrix}. \]

Notice that

\[R((T^\dagger TS)^*) = R(S^* T^\dagger T) = S^* R(T^\dagger T) = S^* R(T^*) = R((TS)^*) \]

is closed, so \(R(T^\dagger TS) \) is closed. First, we find the equivalent conditions for our statements.

(1). Let us denote \(C = T^\dagger TS \). Using [[11], Corollary 2.4] we find \(C^\dagger \) as follows

\[C^\dagger = (C^*C)^\dagger C^* = \begin{bmatrix} (S_1^* T_1^* D^{-1} T_1^* S_1^\dagger) & (S_1^* T_1^* D^{-1} T_1^* S_1^\dagger) \\ 0 & 0 \end{bmatrix}. \]

Now, we can see that \((TS)^\dagger = (T^\dagger TS)^\dagger T^\dagger \) is equivalent with

\[(T_1 S_1)^\dagger = (S_1^* T_1^* D^{-1} T_1^* S_1^\dagger) S_1^* T_1^* D^{-1} = (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}}. \]

(2). It is obvious that \(TT^* TS = \begin{bmatrix} DT_1 S_1 & 0 \\ 0 & 0 \end{bmatrix} \), so \(R(TT^* TS) = R(TS) \) holds iff \(R(DT_1 S_1) = R(T_1 S_1) \).

(1) \(\Rightarrow \) (2) From the third Moore-Penrose equation for \((T_1 S_1)^\dagger = (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}} \), we see that \(T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}} \) is selfadjoint. So we have the following equivalents:

\[T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}} \text{ is selfadjoint} \]

\[\Leftrightarrow D^{-\frac{1}{2}} T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-1} \text{ is selfadjoint} \]

\[\Leftrightarrow [D, D^{-\frac{1}{2}} T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger] = 0 \]

\[\Leftrightarrow D^\frac{1}{2} T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger = D^{-\frac{1}{2}} T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D \]

\[\Leftrightarrow DT_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger = T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D. \]

Now,

\[R(DT_1 S_1) = R(DT_1 S_1 (T_1 S_1)^\dagger) = R(T_1 S_1 (T_1 S_1)^\dagger D) = R(T_1 S_1). \]

(2) \(\Rightarrow \) (1) If \(R(DT_1 S_1) = R(T_1 S_1) \), then we apply Lemma 2.3 to obtain

\[[D, T_1 S_1 (T_1 S_1)^\dagger] = 0. \]
Now, from the previous argument it follows that $T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}}$ is self-adjoint. Noticed that $(D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}} T_1 S_1$ is the orthogonal projection onto

$$R((T_1 S_1)^* D^{-\frac{1}{2}}) = R((T_1 S_1)^*),$$

so $T_1 S_1 (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}} T_1 S_1 = T_1 S_1$. Finally, it is not difficult to examine that $(T_1 S_1)^\dagger = (D^{-\frac{1}{2}} T_1 S_1)^\dagger D^{-\frac{1}{2}}$ holds. □

Similarly to Theorem 2.4 we have:

Theorem 2.5. Suppose $S \in L(E, F)$, $T \in L(F, G)$. TS have closed ranges. Then $(TS)^\dagger = S^\dagger (T S S^\dagger)^\dagger$ iff $R(S^* S(TS)^*) = R((TS)^*)$.

Proof. According to Theorem 2.4, we have the following equivalences:

$$(S^* T^*)^\dagger = (T^*)^\dagger (S^* T^\dagger T)^\dagger \iff R(T T^* S) = R(T S)$$

Now, take $T' = S^*$ and $S' = T^*$,

$$(T' S')^\dagger = S'^\dagger (T' S' S'^\dagger)^\dagger \iff R(S'^* S' S'^* T'^*) = R(S'^* T'^*).$$

□

Theorem 2.6. Suppose $S \in L(E, F)$, $T \in L(F, G)$. TS have closed ranges. Then $S^\dagger = (TS)^\dagger T$ iff $R(T^* T S) = R(S)$.

Proof. We keep the matrix forms of T and S as in previous theorems.

(1) We can obtain that $S^\dagger = (TS)^\dagger T$ iff $I = (T_1 S_1)^\dagger T_1 S_1$ and $(T_1 S_1)^\dagger T_2 = 0$. Hence, $S^\dagger = (TS)^\dagger T$ is equivalent to the following two conditions: T_1 is injective with closed range and $(T_1 S_1)^\dagger T_2 = 0$.

(2) $R(T^* T S) = R(S)$ iff $R(T_1^* T_1 S_1) = R(S_1)$ and $T_2^* T_1 S_1 = 0$. Hence, $R(T^* T S) = R(S)$ is equivalent to the following two conditions: T_1 is injective with closed range and $T_1^* T_2 = 0$.

To prove the equivalence (1) \iff (2), we have the following:

$$(T_1 S_1)^\dagger T_2 = 0 \iff R(T_2) \subset K((T_1 S_1)^\dagger) = K((T_1 S_1)^*) \iff (T_1 S_1)^* T_2 = 0 \iff T_1^* T_2 = 0.$$

□

We also prove the following result.

Theorem 2.7. Suppose $S \in L(E, F)$, $T \in L(F, G)$. TS have closed ranges. Then $T^\dagger = S(TS)^\dagger$ iff $R(SS^* T^*) = R(T^*)$.

Proof. From the Theorem 2.6 it follows that $S^{*\dagger} = T^* (S^* T^*)^\dagger$ iff $R(T^* T S) = R(S)$. Now replace T^* and S^* by S' and T', to obtain theorem holds. □
Remark 2.8. The conditions $R(T^*TS) = R(S)$ and $R(SS^*T^*) = R(T^*)$ taken in Theorem 2.6 and Theorem 2.7 imply the reverse order law $(TS)^\dagger = S^\dagger T^\dagger$ holds, since $S^\dagger T^\dagger = (TS)^\dagger TS(TS)^\dagger = (TS)^\dagger$.

Acknowledgements. The research is supported by the National Natural Science Foundation of China (11301155), (11271112), IRTSTHN (14IRTSTHN023) and the Natural Science Foundation of the Department of Education, Henan Province (16A110003).

References

Received: March 21, 2017; Published: April 15, 2017