Generalizations of Caristi-Kirk Theorem in Partial Metric Spaces and Applications

Seong-Hoon Cho

Department of Mathematics
Hanseo University, Seosan
Chungnam, 356-706, South Korea

Copyright © 2017 Seong-Hoon Cho. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, some generalizations of Caristi-Kirk fixed point theorem in partial metric spaces are established, and applications of our results are given.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Fixed point, Locally bounded function, Partial metric space

1 Introduction and preliminaries

Let \((X, d)\) be a complete metric space, and let \(T : X \to X\) be a map.

Caristi-Kirk fixed point theorem states that \(T\) has a fixed point, whenever there exists a lower semicontinuous function \(\phi : X \to \mathbb{R}_+\), where \(\mathbb{R}_+\) denotes the set of all positive real numbers, such that

\[
d(x, Tx) \leq \phi(x) - \phi(Tx) \text{ for all } x \in X.
\]

Since the theorem is proved, many authors gave generalizations and applications of it.

Especially, the authors of [7, 8] obtained functional type Caristi-Kirk theorems in metric spaces.
The author of [1] obtained a generalization of Banach’s contraction principle by introducing partial metric spaces. And then, a lot of authors extended fixed point results in metric spaces to partial metric spaces.

Some authors, for instance [2, 6, 9, 11] investigated Caristi-Kirk fixed point theorem in partial metric spaces.

In this paper, we obtain a generalization of Theorem 2.3 of [12] and Theorem 4.1 of [6], and then we give an extension of Theorem 4 of [7] to partial metric spaces.

Recall that some definitions and basic results in partial metric spaces. For more details, we refer to [1].

Let X be a nonempty set.

A mapping $p : X \times X \to \mathbb{R}^+$ is called a partial metric [1] on X if and only if for each $x, y, z \in X$ the following axioms are satisfied:

1. $p(x, x) = p(x, y) = p(y, y)$ if and only if $x = y$;
2. $p(x, x) \leq p(x, y)$;
3. $p(x, y) = p(y, x)$;
4. $p(x, y) \leq p(x, z) + p(z, y) - p(z, z)$.

The pair (X, p) with nonempty set X and partial metric p on X, is called a partial metric space.

Let (X, p) be a partial metric space, and let

$$B_p(x, \epsilon) = \{ y \in X : p(x, y) < p(x, x) + \epsilon \}$$

for all $x \in X$ and $\epsilon > 0$.

It is well known that each partial metric p on X generates a T_0-topology σ_p on X which has, as a base, the class of open p-balls:

$$\{ B_p(x, \epsilon) : x \in X, \epsilon > 0 \}.$$

Also, it is known that the functions $p_s, p_w : X \times X \to \mathbb{R}^+$ defined by

$$p_s(x, y) = 2p(x, y) - p(x, x) - p(y, y)$$

and

$$p_w(x, y) = p(x, y) - \min\{p(x, x), p(y, y)\}$$

are metrics on X.

From now on, let X be a partial metric space endowed with a partial metric p on X.

Let $\{x_n\} \subset X$ be a sequence and $x \in X$. Then we say that
(1) \(\{x_n\} \) is **convergent to** \(x \) in \((X, p)\) if and only if \(\lim_{n \to \infty} p(x, x_n) = p(x, x) \);

(2) \(\{x_n\} \) is **properly convergent to** \(x \) in \((X, p)\) if and only if \(\lim_{n \to \infty} p(x, x_n) = \lim_{n \to \infty} p(x_n, x_n) = p(x, x) \);

(3) \(\{x_n\} \) is called **Cauchy sequence** if and only if there exists \(\lim_{n,m \to \infty} p(x_n, x_m) \) such that it is finite;

(4) \(X \) is **complete** if and only if every Cauchy sequence in \(X \) is convergent to a point \(z \in X \) such that

\[
\lim_{n,m \to \infty} p(x_n, x_m) = p(z, z).
\]

Remark 1.1. \(X \) is complete if and only if for every Cauchy sequence \(\{x_n\} \) in \(X \), there exists \(z \in X \) such that

\[
\lim_{n,m \to \infty} p(x_n, x_m) = \lim_{n,m \to \infty} p(x_n, z) = p(z, z).
\]

Thus every Cauchy sequence in \(X \) is properly convergent whenever \(X \) is complete.

Remark 1.2. Let \(\{x_n\} \) be a sequence of points in \(X \), and let \(x \in X \). If the sequence \(\{x_n\} \) is convergent to \(x \) in \((X, p_s)\), then it is convergent to \(x \) in \((X, p)\), and the converse is not true (see \([1, 4]\)).

Lemma 1.1. A sequence \(\{x_n\} \) of points in \(X \) is properly convergent to \(x \) in \((X, p)\) if and only if it is convergent to \(x \) in \((X, p_s)\).

Proof. Obviously, \(\{x_n\} \) is convergent to \(x \) in \((X, p_s)\) whenever it is properly convergent to \(x \) in \((X, p)\).

Assume that \(\{x_n\} \) is convergent to \(x \) in \((X, p_s)\).

Then, from Remark 1.2 \(\lim_{n \to \infty} p(x_n, x) = p(x, x) \). Thus we have

\[
\lim_{n \to \infty} p_s(x_n, x) = 2p(x, x) - \lim_{n \to \infty} p(x_n, x_n) - p(x, x) = 0
\]

and so

\[
\lim_{n \to \infty} p(x_n, x_n) = p(x, x).
\]

Hence,

\[
\lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, x_n) = p(x, x)
\]

and hence the sequence \(\{x_n\} \) is properly convergent to \(x \) in \((X, p)\) \hfill \Box
Example 1.1. Let $X = \mathbb{R}^+$, and let $p(x, y) = \frac{1}{2} \{ |x - y| + |x| + |y| \}$ for all $x, y \in X$.

Then, (X, p) is a complete partial metric space.

Let $x_n = \frac{1}{n}$ for all $n \in \mathbb{N}$.

Then $\lim_{n \to \infty} p(x_n, 1) = 1 = p(1, 1)$, and so it is convergent to 1 in (X, p).

However, $\lim_{n \to \infty} p(x_n, x_n) = 0 \neq p(1, 1)$, and hence it is not properly convergent to 1 in (X, p).

Note that $\lim_{n \to \infty} p_s(x_n, 1) \neq 0$ and it is not convergent to 1 in (X, p_s).

Let $\phi : X \to \mathbb{R}^+$ be a function. Then, we say that

(1) ϕ is lower semicontinuous for (X, p) if and only if it satisfies

\[
\phi(x) \leq \lim_{n \to \infty} \inf \phi(x_n)
\]

for any sequence $\{x_n\}$ in X and $x \in X$ such that it is convergent to x in (X, p).

(2) ϕ is lower semicontinuous for (X, p_s) if and only if (1.1) holds for any sequence $\{x_n\}$ in X and $x \in X$ such that it is convergent to x in (X, p_s).

(3) ϕ is properly lower semicontinuous for (X, p) if and only if (1.1) holds for any sequence $\{x_n\}$ in X and $x \in X$ such that it is properly convergent to x in (X, p).

From Lemma 1.1, $\phi : X \to \mathbb{R}^+$ is lower semicontinuous for (X, p_s) if and only if it is properly lower semicontinuous for (X, p).

From Remark 1.2 we have the following result.

Lemma 1.2. Let $\phi : X \to \mathbb{R}^+$ be a function. We consider the following statements.

(1) ϕ is lower semicontinuous for (X, p);

(2) ϕ is properly lower semicontinuous for (X, p).

Then the following implications holds:

(1) \Rightarrow (2).

Note that the converse is not true.

Lemma 1.3. Let Y be a closed subset of X. If $\phi : X \to \mathbb{R}^+$ is lower semicontinuous (resp. properly lower semicontinuous), then the restriction function with respect to Y, $\phi|_Y : Y \to \mathbb{R}^+$ is lower semicontinuous (resp. properly lower semicontinuous) for (Y, p).
Proof. Let \(\{x_n\} \) be a sequence in \(Y \) such that \(\lim_{n \to \infty} p(x_n, x) = p(x, x) \).

Since \(Y \) is closed, \(x \in Y \) and so \(x \in X \). Since \(\{x_n\} \subset X \) and \(\phi \) is lower semicontinuous, we have \(\phi(x) \leq \lim_{n \to \infty} \inf \phi(x_n) \). Owing to the fact that \(\{x_n\} \subset Y \) and \(x \in Y \), \((\phi|_Y)(x) \leq \lim_{n \to \infty} \inf (\phi|_Y)(x_n) \). Hence \(\phi|_Y \) is lower semicontinuous for \((Y,p)\).

Lemma 1.4. If a sequence \(\{x_n\} \) of points in \(X \) properly converges to some \(x \in X \), then \(\lim_{n \to \infty} p(x_n, y) = p(x, y) \), for every \(y \in X \).

Proof. We deduce that

\[
p(x_n, y) \leq p(x_n, x) + p(x, y) - p(x, x)
\]

and so

\[
\lim_{n \to \infty} p(x_n, y) \leq p(x, y).
\]

Since \(p(x, y) \leq p(x, x_n) + p(x_n, y) - p(x_n, x_n) \), we have

\[
p(x, y) \leq \lim_{n \to \infty} p(x_n, y).
\]

Hence \(\lim_{n \to \infty} p(x_n, y) = p(x, y) \).

Lemma 1.5. [12] For each \(x \in X \), the function \(p_x : X \to \mathbb{R}_+ \) defined by

\[
p_x(y) = p(x, y)
\]

is lower semicontinuous for \((X,p_s)\), and hence it is properly lower semicontinuous for \((X,p)\).

Remark 1.3. For each \(x \in X \), \(p_x - p(x, x) \) is lower semicontinuous for \((X,p_s)\), and hence it is properly lower semicontinuous for \((X,p)\).

Lemma 1.6. [11] A sequence \(\{x_n\} \) of points in \(X \) is Cauchy if and only if

\[
\lim_{m,n \to \infty} \{p(x_n, x_m) - p(x_m, x_m)\} = 0.
\]

The following Theorem is a slightly generalization of Theorem 2.3 of [12] and Theorem 4.1 of [6].

Theorem 1.1. Let \(T : X \to X \) be a map such that

\[
p(x, Tx) - p(x, x) \leq \phi(x) - \phi(Tx)
\]

for all \(x \in X \), where \(\phi : X \to \mathbb{R}_+ \) is properly lower semicontinuous for \((X,p)\). If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \), where \(\text{Fix}(T) = \{x \in X : x = Tx\} \).
\textbf{Proof.} For each \(x \in X \), let \(S(x) = \{ y \in X : p(x, y) - p(x, x) \leq \phi(x) - \phi(y) \} \).

Then \(S(x) \neq \emptyset \) since \(Tx \in S(x) \).

Because \(p_x + \phi - p(x, x) : X \to \mathbb{R}_+ \) is properly lower semicontinuous, for each \(x \in X \) the set \(\{ y \in X : p(x, y) + \phi(y) - p(x, x) \leq \phi(x) \} \) is closed in \(X \), and so \(S(x) \) is closed in \(X \).

Let \(x_0 \in X \) be fixed, and let \(x_1 \in S(x_0) \) be such that

\[
\phi(x_1) < \inf_{y \in S(x_0)} \phi(y) + \frac{1}{2}.
\]

Then we have

\[
S(x_1) \subset S(x_0).
\]
(1.3)

In fact, if \(x \in S(x_1) \), then \(p(x_1, x) - p(x_1, x_1) \leq \phi(x_1) - \phi(x) \). Since \(x_1 \in S(x_0) \),

\[
p(x_0, x_1) - p(x_0, x_0) \leq \phi(x_0) - \phi(x_1).
\]

Hence we obtain

\[
p(x_0, x) \leq p(x_0, x_1) + p(x_1, x) - p(x_1, x_1)
\]

\[
\leq p(x_0, x_0) + \phi(x_0) - \phi(x_1) + p(x_1, x_1) + \phi(x_1) - \phi(x) - p(x_1, x_1)
\]

which implies

\[
p(x_0, x) - p(x_0, x_0) \leq \phi(x_0) - \phi(x_1).
\]

Hence \(x \in S(x_0) \), and hence (1.3) holds.

Inductively, we have a sequence \(\{x_n\} \) of points in \(X \) and a sequence \(\{S(x_n)\} \) of closed subsets of \(X \) such that for all \(n \in \mathbb{N} \)

\[
S(x_{n+1}) \subset S(x_n) \text{ and } x_{n+1} \in S(x_n)
\]
(1.4)

and

\[
p(x_n, x) - p(x_n, x) < \frac{1}{2^n} \text{ for all } x \in S(x_n).
\]
(1.5)

We now show that \(\{x_n\} \) is a Cauchy sequence.

For \(m > n \), from (1.4) we have \(x_m \in S(x_n) \).

From (1.5) we obtain

\[
p(x_n, x_m) - p(x_m, x_m) < \frac{1}{2^n}.
\]

Hence

\[
\lim_{n,m \to \infty} \{p(x_n, x_m) - p(x_m, x_m)\} = 0
\]

and so \(\{x_n\} \) is a Cauchy sequence by Lemma 1.6.

It follows from the completeness of \(X \) that there exists \(z \in X \) with

\[
\lim_{n,m \to \infty} p(x_n, x_m) = \lim_{n \to \infty} p(x_n, z) = p(z, z).
\]
Since ϕ is properly lower semicontinuous,

$$\phi(z) \leq \lim_{n \to \infty} \inf \phi(x_n).$$

It follows from the fact $x_m \in S(x_n)$ that

$$\phi(x_m) \leq \phi(x_n) - p(x_n, x_m) + p(x_n, x_n)$$
$$\leq \phi(x_n) - p(x_n, z) + p(x_m, z) - p(x_m, x_m) + p(x_n, x_n),$$

because $p(x_n, z) \leq p(x_n, x_m) + p(x_m, z) - p(x_m, x_m)$.

Thus, we have

$$\phi(z) \leq \lim_{m \to \infty} \inf \phi(x_m)$$
$$\leq \lim_{m \to \infty} \inf \{\phi(x_n) - p(x_n, z) + p(x_m, z) - p(x_m, x_m) + p(x_n, x_n)\}$$
$$= \phi(x_n) - (p(x_n, z) - p(x_n, x_n)).$$

Hence $p(x_n, z) - p(x_n, x_n) \leq \phi(x_n) - \phi(z)$, and hence $z \in S(x_n)$ for all $n \in \mathbb{N}$.

From (1.2)

$$p(z, Tz) - p(z, z) \leq \phi(z) - \phi(Tz) \quad (1.6)$$

From the fact $z \in S(x_n)$ and (1.6) we deduce that

$$p(x_n, Tz) - p(x_n, x_n)$$
$$\leq p(x_n, z) - p(x_n, x_n) + p(z, Tz) - p(z, z)$$
$$\leq \phi(x_n) - \phi(z) + \phi(z) - \phi(Tz)$$
$$= \phi(x_n) - \phi(Tz).$$

Thus $Tz \in S(x_n)$ for all $n \in \mathbb{N}$.

Hence,

$$p(x_n, Tz) - p(Tz, Tz) < \frac{1}{2^n}.$$

Letting $n \to \infty$ in above inequality and using Lemma 1.4,

$$p(z, Tz) = p(Tz, Tz).$$

We deduce that

$$p(x_n, z) \leq p(x_n, Tz) + p(z, Tz) - p(Tz, Tz) = p(x_n, Tz).$$
because \(p(z, Tz) = p(Tz, Tz) \). Hence

\[
0 \leq p(x_n, z) - p(Tz, Tz) \leq p(x_n, Tz) - p(Tz, Tz) < \frac{1}{2^n},
\]

because \(Tz \in S(x_n) \). By letting \(\rightarrow \infty \) in above, we obtain

\[
p(z, z) = p(Tz, Tz).
\]

Hence \(p(z, Tz) = p(Tz, Tz) = p(z, z) \), and hence \(z = Tz \).

From Lemma 1.2 we have the following results.

Corollary 1.2. Let \(T : X \to X \) be a map such that

\[
p(x, Tx) - p(x, x) \leq \phi(x) - \phi(Tx)
\]

for all \(x \in X \), where \(\phi : X \to \mathbb{R}_+ \) is lower semicontinuous for \((X, p)\). If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \).

Corollary 1.3. Let \(T : X \to X \) be a map such that

\[
p_w(x, Tx) \leq \phi(x) - \phi(Tx)
\]

for all \(x \in X \), where \(\phi : X \to \mathbb{R}_+ \) is lower semicontinuous (resp. properly lower semicontinuous) for \((X, p)\). If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \).

Proof. From (1.7) we have either

\[
p(x, Tx) - p(Tx, Tx) \leq p(x, Tx) - p(x, x) \leq \phi(x) - \phi(Tx)
\]

or

\[
p(x, Tx) - p(x, x) \leq p(x, Tx) - p(Tx, Tx) \leq \phi(x) - \phi(Tx).
\]

Hence

\[
p(x, Tx) - p(x, x) \leq \phi(x) - \phi(Tx).
\]

By Corollary 1.2 (resp. Theorem 1.1), \(\text{Fix}(T) \neq \emptyset \).

By Corollary 1.2, we obtain the following result.

Corollary 1.4. [6] Let \(T : X \to X \) be such that

\[
p(x, Tx) \leq \phi(x) - \phi(Tx)
\]

for all \(x \in X \), where \(\phi : X \to \mathbb{R}_+ \) is lower semicontinuous for \((X, p)\). If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \).

By Lemma 1.1, we have the following corollary.
Corollary 1.5. [3] Let $T : X \to X$ be a map such that
\[p(x, Tx) - p(x, x) \leq \phi(x) - \phi(Tx) \]
for all $x \in X$, where $\phi : X \to \mathbb{R}_+$ is lower semicontinuous for (X, p_s). If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Corollary 1.6. [12] Let $T : X \to X$ be a map such that
\[p(x, Tx) \leq \phi(x) - \phi(Tx) \]
for all $x \in X$, where $\phi : X \to \mathbb{R}_+$ is lower semicontinuous for (X, p_s). If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Note that if $\phi : X \to \mathbb{R}_+$ is lower semicontinuous (resp. properly lower semicontinuous), then $\nu \phi$ is lower semicontinuous (resp. properly lower semicontinuous), where ν is a positive constant.

Thus from Theorem 1.1 we have the following corollary.

Corollary 1.7. Let $T : X \to X$ be a map such that
\[p(x, Tx) - p(x, x) \leq \nu(\phi(x) - \phi(Tx)) \]
for all $x \in X$, where ν is a positive constant and $\phi : X \to \mathbb{R}_+$ is properly lower semicontinuous for (X, p). If X is complete, then $\text{Fix}(T) \neq \emptyset$.

One can prove the next Theorem as same as proof of Theorem 1.1.

Theorem 1.8. Let $T : X \to X$ be a map such that
\[p(x, Tx) - p(Tx, Tx) \leq \phi(x) - \phi(Tx) \]
for all $x \in X$, where $\phi : X \to \mathbb{R}_+$ is properly lower semicontinuous for (X, p). If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Corollary 1.9. Let $T : X \to X$ be a map such that
\[p(x, Tx) - p(Tx, Tx) \leq \nu(\phi(x) - \phi(Tx)) \]
for all $x \in X$, where $\phi : X \to \mathbb{R}_+$ is properly lower semicontinuous for (X, p). If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Corollary 1.10. [11] Let $T : X \to X$ be a map such that
\[p(x, Tx) - p(Tx, Tx) \leq \phi(x) - \phi(Tx) \]
for all $x \in X$, where $\phi : X \to \mathbb{R}_+$ is lower semicontinuous for (X, p). If X is complete, then $\text{Fix}(T) \neq \emptyset$.
A function \(c : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is right upper semicontinuous if and only if, for any sequence \(\{ t_n \} \) in \(\mathbb{R}_+ \) and \(\alpha \geq 0 \) with \(t_n \downarrow \alpha \), we have
\[
c(\alpha) \geq \lim_{n \to \infty} \sup c(t_n).
\]

A function \(c : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is right locally bounded from above if and only if, for each \(\alpha \geq 0 \), there exists \(\lambda = \lambda(\alpha) > 0 \) such that
\[
\sup c([\alpha, \alpha + \lambda]) < \infty.
\]

Lemma 1.7. [7] If \(c : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is right upper semicontinuous, then it is right locally bounded from above.

Throughout this paper, let \(c : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) be right locally bounded from above, and let \(\phi : X \rightarrow \mathbb{R}_+ \) be a properly lower semicontinuous function for \((X,p)\).

2 Fixed point theorems

Theorem 2.1. Let \(T : X \rightarrow X \) be a map such that
\[
p(x,Tx) - p(x,x) \leq H(c(\phi(x)), c(\phi(Tx)))(\phi(x) - \phi(Tx))
\] (2.1)
for all \(x \in X \), where \(H : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a locally bounded function. If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \).

Proof. Let \(\alpha = \inf_{x \in X} \phi(x) \). Since \(c \) is right locally bounded from above, there exists \(\lambda > 0 \) such that \(\mu := \sup c([\alpha, \alpha + \lambda]) < \infty \). Hence there exists \(\nu > 0 \) such that \(H(s,t) \leq \nu \) for all \(s,t \in [0,\mu] \). For some \(x_0 \) such that \(\alpha \leq \phi(x_0) \leq \alpha + \lambda \), let \(X_0 = \{ x \in X : \phi(x) \leq \phi(x_0) \} \).

Then \(X_0 \) is a nonempty closed subset of \(X \). Hence \((X_0,p) \) is complete.

For \(x \in X_0 \), we have
\[
\phi(Tx) \leq \phi(x) \leq \phi(x_0)
\]
and so
\[
T(X_0) \subset X_0.
\]

Since \(\phi(x), \phi(Tx) \in [\alpha, \alpha + \lambda] \), we have
\[
H(c(\phi(x)), c(\phi(Tx))) \leq \nu.
\] (2.2)

From (2.1) and (2.2) we have
\[
p(x,Tx) - p(x,x) \leq \nu(\phi(x) - \phi(Tx)) = \nu(\phi|_{X_0}(x) - \phi|_{X_0}(Tx))
\]
for all \(x \in X_0 \).

By lemma 1.3 and Corollary 1.7, we have \(\text{Fix}(T) \neq \emptyset \). \(\square \)
If we have $H(s, t) = \max\{s, t\}$, then we obtain the following Corollary.

Corollary 2.2. Let $T : X \to X$ be a map such that

$$p(x, Tx) - p(x, x) \leq \max\{c(\phi(x)), c(\phi(Tx))\}(\phi(x) - \phi(Tx))$$

for all $x \in X$. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

If we have either $H(s, t) = s$ or $H(s, t) = t$, then we obtain the following

Corollary 2.3. Let $T : X \to X$ be a map such that either

$$p(x, Tx) - p(x, x) \leq c(\phi(Tx))(\phi(x) - \phi(Tx))$$

for all $x \in X$ or

$$p(x, Tx) - p(x, x) \leq c(\phi(Tx))(\phi(x) - \phi(Tx))$$

for all $x \in X$. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Corollary 2.4. Let $T : X \to X$ be a map such that

$$p(x, Tx) - p(x, x) \leq \psi(p(x, Tx))(\phi(x) - \phi(Tx))$$

for all $x \in X$, where $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ is right upper semicontinuous.

If X is complete and $p(x, Tx) \leq \phi(x)$ for all $x \in X$, then $\text{Fix}(T) \neq \emptyset$.

Proof. Define $c : \mathbb{R}_+ \to \mathbb{R}_+$ by $c(t) = \sup\{\psi(s) : 0 \leq s \leq t\}$.

Then c is well defined and nondecreasing, and hence right locally bounded from above.

Since $\psi(p(x, Tx)) \leq c(p(x, Tx)) \leq c(\phi(x))$, (2.4) implies (2.3). Thus by Corollary 2.3, $\text{Fix}(T) \neq \emptyset$. \qed

Corollary 2.5. Let $T : X \to X$ be a map such that

$$p^w(x, Tx) \leq H(c(\phi(x)), c(\phi(Tx)))(\phi(x) - \phi(Tx))$$

for all $x \in X$, where $H : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a locally bounded function. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Corollary 2.6. Let $T : X \to X$ be a map such that

$$p(x, Tx) \leq H(c(\phi(x)), c(\phi(Tx)))(\phi(x) - \phi(Tx))$$

for all $x \in X$, where $H : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a locally bounded function. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

One can prove the following theorem as similar with the proof of Theorem 2.1.

Theorem 2.7. Let $T : X \rightarrow X$ be a map such that

$$p(x, Tx) - p(Tx, Ty) \leq H(c(\phi(x)), c(\phi(Tx)))(\phi(x) - \phi(Tx))$$

for all $x \in X$, where $H : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a locally bounded function. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

3 Applications

Lemma 3.1. Let $T : X \rightarrow X$ be a map such that

$$p(Tx, Ty) - p(Ty, Ty) \leq k(p(x, y) - p(y, y)) \quad (2.5)$$

for all $x, y \in X$, where $k \in (0, 1)$ is constant.

If a sequence $\{x_n\}$ of points in X converges to some x in (X, p), then

$$\lim_{n \to \infty} p(Tx_n, Tx) = p(Tx, Tx).$$

Proof. From (2.5) we have

$$p(Tx_n, Tx) - p(Tx, Tx) \leq k(p(x_n, x) - p(x, x)).$$

Hence,

$$0 \leq \lim_{n \to \infty} p(Tx_n, Tx) - p(Tx, Tx) \leq k \lim_{n \to \infty} (p(x_n, x) - p(x, x)) = 0.$$

Thus $\lim_{n \to \infty} p(Tx_n, Tx) = p(Tx, Tx)$.

Lemma 3.2. Let $T : X \rightarrow X$ be a map such that (2.5) is satisfied. If a sequence $\{x_n\}$ of points in X properly converges to some x in (X, p), then $\phi : X \rightarrow \mathbb{R}_+$ defined by $\phi(x) = p(x, Tx) - p(Tx, Tx)$ is properly lower semi-continuous in (X, p).

Proof. Because $p(x_n, Tx) \leq p(Tx, Tx_n) + p(Tx_n, x_n) - p(Tx_n, Tx_n)$, we have

$$p(x_n, Tx) - p(Tx, Tx_n) \leq p(Tx_n, x_n) - p(Tx_n, Tx_n).$$

Hence $\phi(x_n) = p(x_n, Tx_n) - p(Tx_n, Tx_n) \geq p(x_n, Tx) - p(Tx, Tx_n)$.

By Lemma 1.4 and 3.1, we obtain

$$\lim_{n \to \infty} \inf \phi(x_n) \geq p(x, Tx) - p(Tx, Tx) = \phi(x).$$

Hence ϕ is a properly lower semicontinuous function.
Theorem 3.1. Let \(T : X \to X \) be a map such that
\[
p(Tx, Ty) - p(Ty, Ty) \leq k(p(x, y) - p(y, y)) + Lp_s(y, Tx) \tag{2.6}
\]
for all \(x, y \in X \), where \(k \in (0, 1) \) and \(L \geq 0 \). If \(X \) is complete, then \(\text{Fix}(T) \neq \emptyset \).

Proof. Let \(r \in (0, 1) \) be such that \(k = 1 - r \).

From (2.6) we have
\[
r(p(x, y) - p(y, y)) \leq p(x, y) - p(y, y) - \{p(Tx, Ty) - p(Ty, Ty)\} + Lp_s(y, Tx)
\]
and so
\[
p(x, y) - p(y, y) \leq \frac{1}{r}\{p(x, y) - p(y, y) - p(Tx, Ty) - p(Ty, Ty)\} + \frac{L}{r}p_s(y, Tx).
\]
Let \(y = Tx \) and \(\phi(x) = \frac{1}{r}\{p(x, Tx) - p(Tx, Tx)\} \).

Then \(\phi \) is properly lower semicontinuous, and
\[
p(x, Tx) - p(Tx, Tx) \leq \phi(x) - \phi(Tx)
\]
for all \(x \in X \).

Hence, by Theorem 1.2, \(\text{Fix}(T) \neq \emptyset \). \(\square \)

Corollary 3.2. [1] Let \(T : X \to X \) be a map such that
\[
p(Tx, Ty) - p(Ty, Ty) \leq k(p(x, y) - p(y, y))
\]
for all \(x, y \in X \), where \(k \in (0, 1) \). If \(X \) is complete, then \(\text{Fix}(T) \) is singleton.

Proof. By Theorem 3.1 with \(L = 0 \), \(\text{Fix}(T) \neq \emptyset \).

For the uniqueness of fixed point, let \(u, v \in \text{Fix}(T) \).

Then we obtain
\[
p(u, v) - p(v, v) = p(Tu, Tv) - p(Tv, Tv) \leq k(p(u, v) - p(v, v))
\]
which implies
\[
p(u, v) = p(v, v).
\]

Similarly, \(p(v, u) = p(u, u) \).

Thus we have \(p(u, v) = p(v, v) = p(u, u) \). Hence \(u = v \), and hence the set \(\text{Fix}(T) \) is singleton. \(\square \)

Similarly with the proof of Theorem 3.1, one can prove the following Theorem 3.2 and 3.3.
Theorem 3.3. Let $T : X \to X$ be a map such that
\[p(Tx, Ty) - p(x, x) \leq k\{p(x, y) - p(x, x)\} + Lp_s(y, Tx) \]
for all $x, y \in X$, where $k \in (0, 1)$ and $L \geq 0$. If X is complete, then $\text{Fix}(T) \neq \emptyset$. Moreover if $L = 0$, then $\text{Fix}(T)$ is singleton.

Theorem 3.4. Let $T : X \to X$ be a map such that
\[p(Tx, Ty) - p(y, y) \leq k\{p(x, y) - p(y, y)\} + Lp_s(y, Tx) \]
for all $x, y \in X$, where $k \in (0, 1)$ and $L \geq 0$.
If X is complete, then $\text{Fix}(T) \neq \emptyset$. Moreover if $L = 0$, then $\text{Fix}(T)$ is singleton.

Theorem 3.5. Let $T : X \to X$ be a map such that
\[p(Tx, Ty) - p(x, y) \leq kp(x, y) + Lp_s(y, Tx). \quad (2.7) \]
for all $x, y \in X$, where $k \in (0, 1)$ and $L \geq 0$. If X is complete, then $\text{Fix}(T) \neq \emptyset$.

Proof. Let $r \in (0, 1)$ be such that $k = 1 - r$.
From (2.7) we have
\[rp(x, y) \leq p(x, y) - p(Tx, Ty) + Lp_s(y, Tx) \]
and so
\[p(x, y) \leq \frac{1}{r}\{p(x, y) - p(Tx, Ty)\} + \frac{L}{r}p_s(y, Tx). \quad (2.8) \]

Let $y = Tx$ and $\phi(x) = p(x, Tx)$. Then ϕ is properly lower semicontinuous for (X, p) by Lemma 1.5, and from (2.8) we have
\[p(x, Tx) \leq \frac{1}{r}\{\phi(x) - \phi(Tx)\} \]
for all $x \in X$.
From Corollary 1.6 we have $\text{Fix}(T) \neq \emptyset$, because $\frac{1}{r}\phi$ is properly lower semicontinuous for (X, p).

Corollary 3.6. [1] Let $T : X \to X$ be a map such that
\[p(Tx, Ty) \leq kp(x, y). \]
for all $x, y \in X$, where $k \in (0, 1)$ is constant. If X is complete, then $\text{Fix}(T)$ is singleton.
Proof. If \(u, v \in Fix(T) \), then we obtain
\[
p(u, v) = p(Tu, Tv) \leq kp(u, v)
\]
which implies
\[
p(u, v) = 0.
\]
Similarly,
\[
p(v, v) = p(u, u) = 0.
\]
Thus we have \(p(u, v) = p(v, v) = p(u, u) \). Hence \(u = v \), and hence the set \(Fix(T) \) is singleton.

References

Received: January 31, 2017; Published: March 1, 2017